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Abstract—A proper orthogonal decomposition (POD)-based
nonlinear estimator for fluid flow velocity fields is developed,
which is capable of achieving finite-time convergence of the
Galerkin coefficient estimates. Using Galerkin projection and
POD-based model reduction, the incompressible Navier-Stokes
equations are recast as a set of nonlinear ordinary differential
equations in the Galerkin coefficients. A sliding-mode-based
observer is designed to estimate the unknown time-varying
Galerkin coefficients. Convergence of the estimates is proven to
be achieved in finite time, and high-fidelity numerical simulation
results are provided to complement the theoretical development.

I. INTRODUCTION

Control of air flow is of fundamental importance for

aerospace or aeronautical applications, since the performance

of aircraft systems, for example, is highly impacted by their

aerodynamic characteristics. While numerous nonlinear flow

control techniques have been presented in controls literature,

nonlinear estimation techniques are not as often applied to

fluid flow problems.

One of the challenges in designing controllers for fluid

flow fields is that the dynamics are governed by nonlinear

partial differential equations (i.e., the Navier-Stokes equa-

tions). Proper orthogonal decomposition (POD)-based model

reduction is a well-established method for expressing the

Navier-Stokes equations in a more tractable form [1]–[3]. In

the POD-based method, the nonlinear Navier-Stokes equations

are projected onto a subspace using the Galerkin projection.

In the Galerkin method, the state variables (e.g., flow field

velocity) can be expressed as linear combinations of the POD

modes. By using this new representation of the state variables,

the original Navier-Stokes equations can be rewritten as a set

of nonlinear ordinary differential equations. The state variables

in the transformed set of equations are the time-varying

coefficients of the POD modes. By building an observer to

estimate the coefficients, an observer of the fluid flow velocity

field can thus be obtained [4], [5].

Utilization of POD-based observer design is well estab-

lished in literature. In [4], an extended Kalman filter (EKF)-

based observer is utilized to estimate the coefficients in the

reduced-order model obtained from the Galerkin projection.

An unscented Kalman Filter (UKF)-based observer is used in

[6] to estimate velocity fields and contaminant concentration

fields using the POD technique. It was found in [6] that the

UKF did not significantly outperform the EKF for the given

system. In [6], a higher-order Kalman filter is used to design

an observer for contaminant concentration fields. In [7], POD-

based model reduction is used in conjunction with Quadratic

Stochastic Estimation (QSE) to estimate the temporal behavior

of the POD modes. The modified QSE technique presented in

[7] allows estimation of the time-variation of the POD modes

using wall-pressure measurements. In [8], a model for real-

time estimation of velocity fields, called the “episodic POD

model,” is presented. By utilizing measurements at the current

time, an approximation of the entire 3D velocity fields can

be obtained at past and future times using the episodic POD

model.

While the aforementioned observer strategies perform well

in their respective tasks, rigorous mathematical verification of

estimator performance is not provided. By applying nonlinear

estimation techniques, additional insights can be gained into

the performance characteristics of fluid flow field observer

designs.

The contribution in this paper is the development and

rigorous mathematical validation of a POD-based nonlinear

flow velocity field estimator design, which achieves finite-

time estimation of the coefficients in the reduced-order model

obtained from the Galerkin projection. Using POD and the

Galerkin projection, the Navier-Stokes equations are recast as

a set of nonlinear ordinary differential equations in terms of

the unknown Galerkin coefficients. A sliding-mode observer is

utilized to estimate the Galerkin coefficients, and convergence

of the estimates is proven to be achieved in finite-time. High-

fidelity numerical simulation results are provided to comple-

ment the theoretical development.

II. FLOW VELOCITY FIELD DYNAMICS

In this section, a reduced-order model for the fluid flow

velocity field dynamics will be derived. To this end, POD-

based model reduction will be utilized to express the in-

compressible Navier-Stokes equations as a set of nonlinear

ordinary differential equations.

The (scaled) incompressible Navier-Stokes equations are

given by

div (u) = 0

@u

@t
= � (u � r)u+ vr2u�rp (1)

where u (z; t) : 
�R! R
3 denotes the velocity field defined

over a spatial domain, z 2 
; p (z; t) 2 R3 is the pressure
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field; and v , 1=Re represents the (constant) kinematic

viscosity, where Re denotes the Reynolds number.

Although we are considering incompressible flow in this

paper, the following model reduction approach can be directly

applied to compressible flows as well [9]–[11]. The subsequent

nonlinear estimator design and analysis can also be applied to

the compressible flow case with minor modifications, provided

one can develop the appropriate POD basis.

A. POD-based Model Reduction

In POD-based model reduction, the velocity field u (z; t)
is expanded in terms of a finite sum of POD modes � (z)
defined on the spatial domain 
.1 The POD expansion can be

expressed in terms of n modes as

u (z; t) =

nX

j=1

aj (t)�j (z) : (2)

By rewriting the velocity field u (z; t) in terms of the modal

decomposition in (2), the Navier-Stokes equation in (1) can

be recast in a nonlinear ordinary differential equation in terms

of the unknown time-varying coefficients ai (t) ; i = 1; :::; n.

To this end, the decomposition in (2) is substituted into (1) to

yield the following:

nX

i=1

_ai (t)�i (z) = (3)

�

0

@
nX

j=1

aj (t)�j (z) � r

1

A
nX

k=1

ak (t)�k (z)

+v

nX

i=1

ai (t)r
2�i (z)�rp:

Where div (�i) = 0 was utilized. By orthogonality of modes,



�i (z) ; �j (z)

�
=

�
1 i = j
0 i 6= j

: (4)

After projecting the terms in (3) onto the space of POD modes,

and utilizing (4), (3) can be rewritten and simplified as

_ak (t) = (5)

�
nX

i=1

nX

j=1

ai (t) aj (t)

�
�j (z) � r

�
�i (z) ; �k (z)

�

+v
nX

i=1

ai (t)


r2�i (z) ; �k (z)

�
� hrp; �k (z)i :

In (5), the notation h�; �i represents the standard inner product

given by

h� (z) ; � (z)i =

Z




� (z) � � (z) dV (6)

where � (z) � � (z) denotes the standard dot product between

the vectors � (z) and � (z) in Euclidean space, and dV is a

1In the current analysis, the POD expansion is expressed in terms of the
spatial modes � (z), but for some applications temporal modes  (t) might
be more appropriate.

volume element. The expression in (5) constitutes a reduced-

order system of ordinary nonlinear (quadratic) differential

equations. Given a set of representative POD modes, the

system in (5) provides a description of the flow dynamics.

The expression in (5) can be rewritten in the more compact

form

_ak(t) = Lka(t) + a
T (t)Qka(t) (7)

where Lk (z) 2 R
1�n is a row vector with elements Lki (z)

given by

Lki (z) = v


r2�i (z) ; �k (z)

�
(8)

and Qk (z) 2 R
n�n is a matrix with elements Qkij (z) given

by

Qkij (z) =

�
�j (z) � r

�
�i (z) ; �k (z)

�
; k = 1; :::; n: (9)

The pressure term is ignored in (7). Since div (�) = 0, it can

be shown that �k (z) = 0 on the boundary of 
. Thus, the

pressure term in (5) vanishes over a closed domain [5].

Introducing the state vector x (t) = [a1 (t) ; :::; an (t)]
T 2

Rn we can represent the system (7) in the following form:

_x = A(x)x; (10)

where

A(x) = L+
nX

i=1

xiPi; (11)

where L 2 R
k�n is a matrix with rows Lk, and Pi is the

matrix comprised of the ith rows of the matrices Qk.

Based on the standard assumption that multiple velocity

field measurements are available, the measurable system out-

puts can be expressed as

y = Cx; (12)

where y 2 R1, and C 2 R1�n is a known constant vector.

III. SLIDING MODE OBSERVER FOR GENERAL

NONLINEAR SYSTEM

In this section, we will describe the general approach that

we utilize to design an observer for the nonlinear system (10)

- (12). The observer design is based on the sliding mode

technique presented in [12].

Consider a nonlinear system given by

_x = f(x); (13)

where x (t) 2 Rn, with output vector measurements

y = h(x) 2 Rm: (14)

The system (10) - (12) is a particular case of the system (13)

- (14).

Let us introduce the following vector function:

H(x) = [h1(x); : : : ; hn(x)]
T ; (15)

where

h1(x) = h(x);
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and

hi(x) =
@hi�1(x)

@x
f(x) = Li�1f h(x); i = 2; : : : ; n: (16)

are repeated Lie derivatives of h(x) in the direction of the

vector field f(x).
From (13) - (14) and (16), we have that if x(t) is a solution

of (13), then

d

dt
hi(x(t)) = hi+1(x(t)); i = 1; : : : ; n� 1: (17)

As can be seen, the functions f(x) and h(x) in (10) - (12)

are sufficiently smooth so that all of the partial derivatives

given in (16) exist and are continuous.

In order to ensure that the state x (t) can be found through

observation of the output y (t), a nonlinear observability

condition is needed. Namely, that for a given domainX0 � R
n

of initial conditions, which is assumed to be bounded, all the

solutions of the system (13) belong to the open one-component

domain X � Rn for all 0 � t < 1, and the Jacobian of the

diffeomorphism

H : Rn ! Rn (18)

where H(x) = [h1(x); : : : ; hn(x)]
T , is nonsingular in X , i.e.:

����det
@H(x)

@x

���� � � > 0 (19)

for some � > 0 and every x 2 X . From here, it follows that

the map H is an injection.

To estimate the state variables of system (13) using mea-

surements (14) we can use Drakunov observer suggested in

[12] of the form:

_̂x =

�
@H(x̂)

@x

��1
M(x̂)sign[V (t)�H(x̂)] (20)

where V (t) = [v1(t); : : : ; vn(t)]
T and

v1(t) = y(t) (21)

vi+1(t)=fmi(x̂)sign[vi(t)�hi(x̂(t))]geq; i=1; : : : ; n� 1
(22)

where f: : :geq denotes an “equivalent value operator” of a

discontinuous function in sliding mode. The basic notion of the

equivalent value in sliding mode was introduced by Utkin (see,

for example, [13] for original development). It is consistent

with the Filippov definition [14], [15]. The equivalent value

in sliding mode can be calculated using different means. For

example, if the sliding mode is implemented with chattering,

then the equivalent value can be approximated via low-pass

filter of the signum function. By using higher-order sliding

modes, the exact value of the equivalent value can be obtained

in finite time without the use of filters.

Let us note here, that sliding mode should not be nec-

essarily associated with chattering phenomena, which is a

common misconception. Chattering is a result of nonideal

implementation of the sliding mode, but not sliding mode

itself. For example, a mass resting on an inclined surface

due to Coulomb friction is, in fact, a system with sliding

mode, since idealization of the Coulomb friction model is

�Nsign( _x), and for sufficiently large N we have _x = 0. Zero

velocity of the mass is classical sliding mode, since _x = 0 is

a stable invariant manifold, where the “control” �Nsign( _x)
is discontinuous. As a rule, there is no chattering here.

In digital implementation, the finite-time convergence and

close to sliding motion without any chattering can be achieved

by using continuous approximation of the discontinuous func-

tion in small "-vicinity of the sliding manifold. The correct

choice of " will result in convergence to the vicinity of the

sliding manifold that may be sufficient for practical purposes.

The other possibility is to use higher-order numerical algo-

rithms. In this case the sign-function in a numerical scheme

is replaced by a variable vk calculated on the basis of the

previous steps of the algorithm, and once the sliding manifold

is reached vk = ueq.

The matrix M(x̂) in (20) is an n� n diagonal matrix with

positive diagonal entries mi(x̂), i = 1; : : : ; n:

M(x̂) = diag[m1(x̂); : : : ;mn(x̂)]: (23)

In [12] it is shown that by a suitable choice of M(x̂), the

observer (20) converges in any prescribed finite time interval.

The choice of this matrix M is defined by the region of initial

conditions X0 for the system (13) and the upper estimates of

hi.

In the observers shown above we used the sign(�) to

provide convergence to the manifold � = 0 and then to keep

the extended system (system+observer) state on this manifold

in spite of the “disturbance,” but in fact, any other type of

control with such properties can be used for this purpose (for

example with internal dynamics). This issue is computational

and depends on the numerical algorithms used to implement

continuous-time observer systems.

IV. SLIDING MODE OBSERVER FOR FLUID FLOW

In this section, the sliding mode observer design approach

described in the previous section will be applied to the fluid

flow dynamic system given in (10) and (12). In this case

f(x) = A(x)x is a quadratic function, but the observation

equation is linear. This fact can be expressed mathematically

as

h1(x) = Cx (24)

where the state x (t) 2 R
n contains the unknown Galerkin

coefficients, as defined previously. Based on (24), the Lie

derivatives of h(x) can be calculated as follows:

h2(x) =
@h(x)

@x
f(x) = Cf(x)

h3(x) =
@h2(x)

@x
f(x) = C

@f(x)

@x
f(x)

...

hm(x) = CFm(x) (25)
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where the vector fields Fm(x) are defined via the recurrent

relation

Fm(x) =
@Fm�1(x)

@x
f(x) (26)

and

F1(x) = x:

We can use the specific form of f(x) to calculate F2(x).
This will allow us to use the third order sliding mode observer

to identify the Galerkin coefficients a1 (t) ; a2 (t) and a3 (t).
By comparing (10) and (11) with (13), we have

F2(x) = f(x) =

 

L+

nX

i=1

xiPi

!

x: (27)

The function F3 is obtained as

F3(x) =
@f(x)

@x
f(x)

where due to the quadratic form of f(x), the derivative can

be calculated as

@f(x)

@x
= L+ 2

nX

i=1

xiPi: (28)

So F3(x) can be expressed as

F3(x) =

 

L+ 2

nX

i=1

xiPi

! 

L+

nX

i=1

xiPi

!

x: (29)

Considering the case n = 2, we have

H(x) = [h1(x); h2(x)]
T

=

"

Cx; C

 

L+
2X

i=1

xiPi

!

x

#T
: (30)

Based on (30), the Jacobian
@H(x)
@x

can be calculated as

@H(x)

@x
= (31)

�
c1 c2

C(L+ 2
P2

i=1 xiPi)1 C(L+ 2
P2

i=1 xiPi)2;

�

where c1, c2 2 R are constants, and the notation (::)i
represents the ith column of the matrix in parentheses.

For the case n = 3 we have

H(x) = [h1(x); h2(x); h3(x)]
T

=

2

666
4

(Cx)
T

�
C(L+

P3
i=1 xiPi)x

�T

�
C(L+ 2

P3
i=1 xiPi)(L+

P3
i=1 xiPi)x

�T

3

777
5
: (32)

Theorem 1: For any t1 > 0, there exists a diagonal matrix

M (x̂) such that x̂ (t) � x (t) for t � t1.

Proof: Proof of Theorem 1 can be found in [12].

It is assumed that the locations of flow velocity sensors can

be judiciously selected such that the Jacobian in (31) satisfies

observability condition (19). Preliminary results show that this

is a mild assumption.

V. SIMULATION RESULTS

The numerical example presented in this section serves only

the purpose of numerical verification of implementability of

the described method to estimation of Galerkin coefficients.

We used the following system parameters found in the

literature (see (7) - (9)): c1 = �5; c2 = 32:7; l11 = 30; l12 =
36:5; l21 = �111:7; l22 = �120:5; q112 = �45:4; q122 =
47:2; q211 = �361:1; q212 = 304.

The remaining coefficients qkij were assumed to be zero.

Our observer (20) was implemented in Matlab using saturation

functions sat" with small linear "-zone around zero, rather

than discontinuous (i.e., sign) functions. It enabled us to com-

pletely avoid using equivalent filters and to just directly use the

the value of v in (22): vi+1(t) = mi(x̂)sat"[vi(t)�hi(x̂)(t))].
The simulation results are shown in Fig. 1 - Fig. 3. In Fig.

1, we demonstrate convergence of the observer for several

initial conditions of the Galerkin system. The simulation time

interval is 0:5 sec. As can be seen, the observer has a certain

overshoot due to the fact that during the reaching phase to

the first sliding surface y � h(x̂) = 0, the equivalent value

of the second sat" function is �1. However, once sliding

occurs the equivalent value provides enough information for

convergence to the second sliding surface v2 � Lfh(x̂) = 0,

resulting in convergence of the estimates to the actual values

of the Galerkin parameters as shown in Fig. 2 and Fig. 3. Fig.

2 shows the time plots of a1 (t), a2 (t), and their estimates

for the entire duration of the simulation. Fig. 3 highlights the

first 0:1 sec of the simulation interval to more clearly illustrate

that sliding mode starts within 0:01 sec. The initial conditions

for the estimates are zero. In Fig. 3, the estimates appear to

start from 0:2 and �0:2, but zooming the simulation plots

at the start shows that the estimates almost instantly (within

0:001 sec) jump to 0:2 and �0:2 and then converge within

0:01 sec to the vicinity of the actual ai (t).
Small differences between ai (t) and their estimates that

are evident in the plot of Fig. 3 are due to numerical error

in the algorithm implementation. This is because the sat"
function was utilized in the Matlab program, instead of the

sign-function. By reducing " and the simulation step size,

this error can be rendered negligible.

VI. CONCLUSIONS

A POD-based nonlinear observer is presented, which

achieves finite-time estimation of the Galerkin coefficients.

Utilizing Galerkin projection in conjunction with POD-based

model reduction, the incompressible Navier-Stokes equations

are recast as a set of nonlinear ordinary differential equations

in terms of the unknown coefficients obtained via Galerkin

projection. By using POD-based model reduction, the problem

of estimating the fluid flow velocity field is achieved by

estimating the time-varying Galerkin coefficients. A sliding-

mode-based observer is designed to estimate the Galerkin co-

efficients. Finite-time convergence of the estimates is achieved,

and high-fidelity simulation results are provided to illustrate

the performance of the observer design. Future work will
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Fig. 1. State space plots of a1 (t), a2 (t) (blue) and their estimates (red).
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Fig. 2. Time plots of a1 (t), a2 (t), and their estimates for the entire
simulation interval.

address the challenges involved in dealing with an unknown

output mapping (i.e., where the matrix C is unknown).
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