
Revisiting Synthesis of Switching Controllers for Linear Hybrid Systems

Massimo Benerecetti Marco Faella Stefano Minopoli

Abstract— We study the problem of automatically generating
switching controllers for the class of Linear Hybrid Automata,
with respect to safety objectives. We identify and solve inaccu-
racies contained in previous characterizations of the problem,
providing a sound and complete symbolic fixpoint procedure,
based on polyhedral abstractions of the state space. We also
prove the termination of each iteration of the procedure.
Some promising experimental results are presented, based on
an implementation of the semi-algorithm on top of the tool
PHAVer.

I. INTRODUCTION

Hybrid systems are an established formalism for modeling
physical systems which interact with a digital controller.
From an abstract point of view, a hybrid system is a
dynamic system whose state variables are partitioned into
discrete and continuous ones. Typically, continuous variables
represent physical quantities like temperature, speed, etc.,
while discrete ones represent control modes, i.e., states of
the controller.

Hybrid automata [9] are the most common syntactic
variety of hybrid system: a finite set of locations, similar
to the states of a finite automaton, represents the value of
the discrete variables. The current location, together with
the current value of the (continuous) variables, form the
instantaneous description of the system. Change of location
happens via discrete transitions, and the evolution of the vari-
ables is governed by differential equations attached to each
location. In a Linear Hybrid Automaton (LHA), the allowed
differential equations are in fact differential inclusions of the
type ẋ ∈ P , where ẋ is the vector of the first derivatives of
all variables and P ⊆ Rn is a convex polyhedron. Notice
that differential inclusions are non-deterministic, allowing for
infinitely many solutions.

The most studied problem for hybrid systems is reacha-
bility: computing the set of states that are reachable from the
initial states, in any amount of time. The reachability problem
for LHAs was proved undecidable in [11], indicating that no
exact discrete abstraction exists. The complexity standing of
the problem was further refined to semi-decidable in [15],
whose results imply that it is possible to exactly compute
the set of states that are reachable within a bounded number
of discrete transitions (bounded-horizon reachability).

We study LHAs whose discrete transitions are partitioned
into controllable and uncontrollable ones, and we wish to
compute a strategy for the controller to satisfy a given goal,
regardless of the evolution of the continuous variables and
of the uncontrollable transitions. Hence, the problem can be

All authors are with the Department of Physics, Università di Napoli
“Federico II”, Italy. {mfaella,bene,minopoli}@na.infn.it

viewed as a two player game [14]: on one side the controller,
who can only issue controllable transitions, on the other
side the environment, who can choose the trajectory of the
variables and can take uncontrollable transitions whenever
they are enabled.

As control goal, we consider safety, i.e., the objective of
keeping the system within a given region of safe states. This
problem has been considered several times in the literature.
Here, we fix some inaccuracies in previous presentations,
propose a sound and complete procedure for the problem1,
and we present a publicly available implementation of the
procedure, in a tool called PHAVer+. In particular, we present
a novel algorithm for computing the set of states that may
reach a given polyhedral region while avoiding another one,
a problem that is at the heart of the synthesis procedure.

Contrary to most recent literature on the subject [1], [2],
[8], we focus on exact algorithms. Although it is established
that exact analysis and synthesis of realistic hybrid systems
is computationally demanding, we believe that the ongoing
research effort on approximate techniques should be based
on the solid grounds provided by the exact approach. For
instance, a tool implementing an exact algorithm (like our
PHAVer+) may serve as a benchmark to evaluate the perfor-
mance and the precision of an approximate tool.

Related work: The idea of automatically synthesizing
controllers for dynamic systems arose in connection with
discrete systems [13], and was later applied to real-time
systems modeled by timed automata [12], and finally to
hybrid systems [15], [10], and in particular to Linear Hybrid
Automata, the very model that we analyze in this paper.
Wong-Toi proposed the first symbolic procedure to compute
the controllable region of a LHA w.r.t. a safety goal [15]. The
heart of the procedure lies in the operator flow avoid(U, V),
which computes the set of system configurations from which
a continuous trajectory may reach the set U while avoiding
the set V (hence, in this paper we call this operator RWA,
for Reach While Avoiding). Tomlin et al. [14] and Balluchi et
al. [3] analyze much more expressive models, with generality
in mind rather than automatic synthesis. Their Reach and
Unavoid Pre operators, respectively, again correspond to
flow avoid.

As explained in Section III-D, the algorithm provided
in [15] for flow avoid(U, V) does not work for non-convex
V , a case which is very likely to occur in practice, even if the
original safety goal is convex. A slightly different algorithm
for flow avoid is reported to have been implemented in the

1In other words, an algorithm that may or may not terminate, and that
provides the correct answer whenever it terminates.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 4753

tool HONEYTECH [7], and we compare it with ours in
Section III-D.

Asarin et al. [1] investigate the synthesis problem for
hybrid systems where all discrete transitions are controllable
and the trajectories satisfy given linear differential equations
of the type ẋ = Ax. The expressive power of these
constraints is incomparable with the one offered by the
differential inclusions occurring in LHAs. In particular, linear
differential equations give rise to deterministic trajectories,
while differential inclusions are non-deterministic. In control
theory terms, differential inclusions can represent the pres-
ence of environmental disturbances. The tool d/dt [2], by
the same authors, is reported to support controller synthesis
for safety objectives, but the publicly available version in
fact does not.

The rest of the paper is organized as follows. Section II in-
troduces and motivates the model. In Section III, we present
the procedure which solves the synthesis problem. Section IV
reports some experiments performed on our implementation
of the procedure, while Section V draws some conclusions.

II. LINEAR HYBRID AUTOMATA

A convex polyhedron is a subset of Rn that is the in-
tersection of a finite number of half-spaces. A polyhedron
is a subset of Rn that is the union of a finite number
of convex polyhedra. For a general (i.e., not necessarily
convex) polyhedron G ⊆ Rn, we denote by [[G]] ⊆ 2R

n

its representation as a finite set of convex polyhedra.
Given an ordered set X = {x1, . . . , xn} of variables, a

valuation is a function v : X → R. Let Val(X) denote
the set of valuations over X . There is an obvious bijection
between Val(X) and Rn, allowing us to extend the notion
of (convex) polyhedron to sets of valuations. We denote by
CPoly(X) (resp., Poly(X)) the set of convex polyhedra
(resp., polyhedra) on Val(X).

We use Ẋ to denote the set {ẋ1, . . . , ẋn} of dotted vari-
ables, used to represent the first derivatives, and X ′ to denote
the set {x′1, . . . , x′n} of primed variables, used to represent
the new values of variables after a transition. Arithmetic op-
erations on valuations are defined in the straightforward way.
An activity over X is a differentiable function f : R≥0 →
Val(X). Let Acts(X) denote the set of activities over X .
The derivative ḟ of an activity f is defined in the standard
way and it is an activity over Ẋ . A Linear Hybrid Automaton
(LHA) H = (Loc, X,Edgc,Edgu,Flow , Inv , Init) consists
of the following:

• A finite set Loc of locations.
• A finite set X = {x1, . . . , xn} of continuous, real-

valued variables. A state is a pair 〈l, v〉 of a location l
and a valuation v ∈ Val(X).

• Two sets Edgc and Edgu of controllable and uncontrol-
lable transitions, respectively. They describe instanta-
neous changes of locations, in the course of which vari-
ables may change their value. Each transition (l, µ, l′) ∈
Edgc ∪ Edgu consists of a source location l, a target
location l′, and a jump relation µ ∈ Poly(X∪X ′), that

specifies how the variables may change their value dur-
ing the transition. The projection of µ on X describes
the valuations for which the transition is enabled; this
is often referred to as a guard.

• A mapping Flow : Loc → CPoly(Ẋ) attributes to each
location a set of valuations over the first derivatives
of the variables, which determines how variables can
change over time.

• A mapping Inv : Loc → Poly(X), called the invariant.
• A mapping Init : Loc → Poly(X), contained in

the invariant, defining the initial states from which all
behaviors of the automaton originate.

We use the abbreviations S = Loc × Val(X) for the set of
states and Edg = Edgc ∪Edgu for the set of all transitions.
Moreover, we let InvS =

⋃
l∈Loc{l} × Inv(l) and InitS =⋃

l∈Loc{l}× Init(l). Notice that InvS and InitS are sets of
states. For a polyhedron or a set of states P , we denote by
P its complement.

A. Semantics

The behavior of a LHA is based on two types of transi-
tions: discrete transitions correspond to the Edg component,
and produce an instantaneous change in both the location
and the variable valuation; timed transitions describe the
change of the variables over time in accordance with the
Flow component.

Given a state s = 〈l, v〉, we set loc(s) = l and val(s) = v.
An activity f ∈ Acts(X) is called admissible from s if (i)
f(0) = v and (ii) for all δ ≥ 0 it holds ḟ(δ) ∈ Flow(l). We
denote by Adm(s) the set of activities that are admissible
from s. Additionally, for f ∈ Adm(s), the span of f in l,
denoted by span(f, l) is the set of all values δ ≥ 0 such that
〈l, f(δ′)〉 ∈ InvS for all 0 ≤ δ′ ≤ δ. Intuitively, δ is in the
span of f iff f never leaves the invariant in the first δ time
units. If all non-negative reals belong to span(f, l), we write
∞ ∈ span(f, l).

a) Runs: Given two states s, s′, and a transition e ∈
Edg , there is a discrete transition s e−→ s′ with source s and
target s′ iff: (i) s, s′ ∈ InvS , (ii) e = (loc(s), µ, loc(s′)),
and (iii) (val(s), val(s′)) ∈ µ. There is a timed transition
s

δ,f−−→ s′ with duration δ ∈ R≥0 and activity f ∈
Adm(s) iff: (i) s ∈ InvS , (ii) δ ∈ span(f, loc(s)), and
(iii) s′ = 〈loc(s), f(δ)〉. For technical convenience, we
admit timed transitions of duration zero2. A special timed
transition is denoted s

∞,f−−−→ and represents the case when
the system follows an activity forever; this is only allowed
if ∞ ∈ span(f, loc(s)). Finally, a joint transition s

δ,f,e−−−→ s′

represents the timed transition s
δ,f−−→ 〈loc(s), f(δ)〉 followed

by the discrete transition 〈loc(s), f(δ)〉 e−→ s′.
A run is a sequence

r = s0
δ0,f0−−−→ s′0

e0−→ s1
δ1,f1−−−→ s′1

e1−→ s2 · · · sn · · · (1)

2Timed transitions of duration zero can be disabled by adding a clock
variable t to the automaton and requesting that each discrete transition
happens when t > 0 and resets t to 0 when taken.

4754

of alternating timed and discrete transitions, such that either
the sequence is infinite, or it ends with a timed transition of
the type sn

∞,f−−−→. If the run r is finite, we define len(r) = n
to be the length of the run, otherwise we set len(r) = ∞.
The above run is non-Zeno if for all δ ≥ 0 there exists i ≥ 0
such that

∑i
j=0 δj > δ. We denote by States(r) the set of

all states visited by r. Formally, States(r) is the smallest
set containing all states 〈loc(si), fi(δ)〉, for all 0 ≤ i ≤
len(r) and all 0 ≤ δ ≤ δi. Notice that the states from which
discrete transitions start (states s′i in (1)) appear in States(r).
Moreover, if r contains a sequence of one or more zero-time
timed transitions, all intervening states appear in States(r).

b) Zenoness and well-formedness: A well-known prob-
lem of real-time and hybrid systems is that definitions like
the above admit runs that take infinitely many discrete
transitions in a finite amount of time (i.e., Zeno runs), even
if such behaviors are physically meaningless. In this paper,
we assume that the hybrid automaton under consideration
generates no such runs. This is easily achieved by using an
extra variable, representing a clock, to ensure that the delay
between any two transitions is bounded from below by a
constant. We leave it to future work to combine our results
with more sophisticated approaches to Zenoness known in
the literature [3], [6].

Moreover, we assume that the hybrid automaton under
consideration is non-blocking, i.e., whenever the automaton
is about to leave the invariant there must be an uncontrol-
lable transition enabled. Formally, for all states s in the
invariant, if all activities f ∈ Adm(s) eventually leave the
invariant, then there exists one such activity f and a time
δ ∈ span(f, loc(s)) such that s′ = 〈loc(s), f(δ)〉 is in the
invariant and there is an uncontrollable transition e ∈ Edgu

such that s′ e−→ s′′. The well-formedness condition ensures
that the system can always evolve in some way, be it a timed
step or an uncontrollable transition. If a hybrid automaton is
non-Zeno and non-blocking, we say that it is well-formed. In
the following, all hybrid automata are assumed to be well-
formed.

c) Strategies: A strategy is a function σ : S →
2Edgc∪{⊥}\∅, where ⊥ denotes the null action. As customary
in this context, our strategies are non-deterministic and
memoryless (or positional). A strategy can only choose a
transition which is allowed by the automaton. Formally, for
all s ∈ S, if e ∈ σ(s) ∩ Edgc, then there exists s′ ∈ S such
that s e−→ s′. Moreover, when the strategy chooses the null
action, it should continue to do so for a positive amount of
time, along each activity that remains in the invariant. If all
activities immediately exit the invariant, the above condition
is vacuously satisfied. This ensures that the null action is
enabled in right-open regions, so that there is an earliest
instant in which a controllable transition becomes mandatory.

Notice that a strategy can always choose the null action,
even if the system is on the boundary of the invariant,
because, in our interpretation, it is not the responsibility of
the controller to ensure that the invariant is not violated.

We say that a run like (1) is consistent with a strategy σ
if for all 0 ≤ i < len(r) the following conditions hold:

• for all δ ≥ 0 such that
∑i−1
j=0 δj ≤ δ <

∑i
j=0 δj , we

have ⊥ ∈ σ(r(δ));
• if ei ∈ Edgc then ei ∈ σ(s′i).

We denote by Runs(s, σ) the set of runs starting from the
state s and consistent with the strategy σ.

d) Safety control problem: Given a hybrid automaton
and a set of states T ⊆ InvS , the safety control problem asks
whether there exists a strategy σ such that, for all initial states
s ∈ InitS and all runs r ∈ Runs(s, σ), it holds States(r) ⊆
T . We call the above σ a winning strategy.

III. SAFETY CONTROL

In this section, we consider a fixed LHA and we present
a sound and complete semi-algorithm to solve the safety
control problem.

A. The Synthesis Algorithm

We start by defining some preliminary operators. For a
set of states A and x ∈ {u, c}, let Prem

x (A) (for may
predecessors) be the set of states where some discrete
transition belonging to Edgx is enabled, which leads to A.
Analogously, let PreM

x (A) = Prem
x (A)\Prem

x (A) (the must
predecessors) be the set of states where all enabled discrete
transitions belonging to Edgx lead to A, and there is at least
one such transition enabled.

The following theorem provides a fixed-point charac-
terization for the safety control problem, in terms of the
controllable predecessor operator, defined below.

Theorem 1: The answer to the safety control problem for
safe set T ⊆ InvS is positive if and only if

InitS ⊆ νW . T ∩ CPre(W),

where ν denotes the largest fixed point and CPre is the
controllable predecessor operator below.

Controllable predecessor operator: For a set of states
A, the operator CPre(A) returns the set of states from which
the controller can ensure that the system remains in A during
the next joint transition. This happens if for all activities
chosen by the environment and all delays δ, one of two
situations occurs:
• the systems stays in A up to time δ, while all uncon-

trollable transitions enabled up to time δ (included) also
lead to A, or

• there exists a time δ′ < δ, such that the system stays in
A up to time δ′, all uncontrollable transitions enabled up
to time δ′ (included) also lead to A, and the controller
can issue a transition at time δ′ leading to A.

To improve readability, for a set of states A, an activity f ,
and a time delay δ ≥ 0 (including infinity), we denote by
While(A, f, δ) the set of states from which following the
activity f for δ time units keeps the system in A all the time,
and any uncontrollable transition taken meanwhile also leads
into A. Formally,

While(A, f, δ) =
{
s ∈ S

∣∣∣∀0 ≤ δ′ ≤ δ :
〈loc(s), f(δ′)〉 ∈ A \ Prem

u (A)
}
.

4755

We can now formally define the CPre operator and prove
Theorem 1.

CPre(A) =
{
s ∈ S

∣∣∣∀f ∈ Adm(s), δ ∈ span(f, loc(s)) :

s ∈While(A, f, δ) or ∃0 ≤ δ′ < δ :

s ∈While(A, f, δ′) and 〈loc(s), f(δ′)〉 ∈ Prem
c (A)

}
.

B. Computing the Predecessor Operator

In this section, we show how to compute the value of the
predecessor operator on a given set of states A, assuming that
we can compute the following basic operations on arbitrary
polyhedra G and G′: the Boolean operations G∪G, G∩G,
and G; the topological closure cl(G) of G; finally, for a
given location l ∈ Loc, the pre-flow of G in l:

G↙l= {u ∈ Val(X) | ∃δ ≥ 0, c ∈ Flow(l) : u+ δ · c ∈ G}.
Notice that, for two polyhedra P and P ′, if P ⊆ P ′ then
P ↙l⊆ P ′ ↙l (monotonicity), and (P↙l) ↙l= P ↙l
(idempotence). All of the above operations are provided
by standard polyhedra libraries, except for the pre-flow
operation. An algorithm for exactly computing the pre-flow
of general polyhedra is presented in [5].

In the following, we proceed from the basic components
of CPre to the full operator. Given a set of states A and
a location l, we denote by A �l the projection of A on l,
i.e. {v ∈ Val(X) | 〈l, v〉 ∈ A}. For all A ⊆ InvS and
x ∈ {u, c}, it holds:

Prem
x (A) = InvS ∩

⋃
(l,µ,l′)∈Edgx

µ−1(A�l′),

where µ−1(Z) is the pre-image of Z w.r.t. µ. We also
introduce the auxiliary operator RWAm (may reach while
avoiding). Given a location l and two sets of variable valua-
tions U and V , RWAm

l (U, V) contains the set of valuations
from which the flow of the system may reach U while
avoiding V ∩ U . Notice that on a dense time domain this is
not equivalent to reaching U while avoiding V : If an activity
avoids V in a right-closed interval, and then enters U ∩ V ,
the first property holds, while the latter does not. Formally,
we have:

RWAm
l (U, V) =

{
u ∈ Val(X)

∣∣∣∃f ∈ Adm(〈l, u〉), δ ≥ 0 :

f(δ) ∈ U and ∀ 0 ≤ δ′ < δ : f(δ′) ∈ V ∪ U
}
.

An algorithm for effectively computing RWAm is presented
in the next section, while the following lemma states the
relationship between CPre and RWAm. Intuitively, consider
the set Bl of valuations u such that from state 〈l, u〉 the
environment can take a discrete transition leading outside
A, and the set Cl of valuations u such that from 〈l, u〉 the
controller can take a discrete transition into A. We use the
RWAm operator to compute the set of valuations from which
there exists an activity that either leaves A or enters Bl, while
staying in the invariant and avoiding Cl. These valuations do
not belong to CPre(A), as the environment can violate the
safety goal within (at most) one discrete transition.

We say that a set of states A ⊆ S is polyhedral if for all
l ∈ Loc, the projection A �l is a polyhedron. We can now
state the following lemma, whose proof is omitted and can
be found in [4].

Lemma 1: For all polyhedral sets of states A ⊆ InvS , we
have CPre(A) =⋃
l∈Loc

{l}×
(
A�l \RWAm

l

(
Inv(l)∩

(
A�l∪Bl

)
, Cl∪Inv(l)

))
where Bl = Prem

u

(
A
)
�l and Cl = Prem

c (A)�l.

C. Computing the RWAm Operator

In this section, we consider a fixed location l. Given two
polyhedra G and G′, we define their boundary to be

bndry(G,G′) = (cl(G) ∩G′) ∪ (G ∩ cl(G′)).

We can compute RWAm by the following fixpoint charac-
terization.

Theorem 2: For all locations l and sets of valuations U ,
V , and W , let τ(U, V,W) =

U ∪
⋃

P∈[[V]]

⋃
P ′∈[[W]]

(
P ∩

(
bndry(P, P ′) ∩ P ′↙l

)
↙l
)
. (2)

We have RWAm
l (U, V) = µW . τ(U, V,W).

Roughly speaking, τ(U, V,W) represents the set of points
which either belong to U or do not belong to V and can
reach W along a straight line which does not cross V . We
can interpret the fixpoint expression µW . τ(U, V,W) as an
incremental refinement of an under-approximation to the de-
sired result. The process starts with the initial approximation
W0 = U . One can easily verify that U ⊆ RWAm

l (U, V).
Additionally, notice that RWAm

l (U, V) ⊆ U ∪ V . The
equation refines the under-approximation by identifying its
entry regions, i.e., the boundaries between the area which
may belong to the result (i.e., V), and the area which already
belongs to it (i.e., W). That is, let P ∈ [[V]] and P ′ ∈ [[W]],
let b = bndry(P, P ′), we call R = b∩P ′↙l an entry region
from P to P ′, and also an entry region of W . The set R
contains the points of b that may reach P ′ by following the
flow of the system. Hence, the system may move from P to
P ′ through R. Moreover, the set R′ = P ∩R↙l contains the
points of P that can move to P ′ through R. Any point in
V that may reach an entry region (without reaching V first)
must be added to the under-approximation, since it belongs
to RWAm

l (U, V).
The following theorem states the termination of the fix-

point procedure defined in Theorem 2.
Theorem 3: The fixpoint procedure for RWAm defined in

Theorem 2 terminates in a finite number of steps.
Notice that [[V]] and [[U]] are finite sets of convex polyhe-

dra, therefore so is the number of initial entry regions of [[U]].
Intuitively, the fixpoint procedure of Theorem 2 applies the
refinement steps according to a breadth-first policy, starting
from the initial entry regions. In other words, at every
iteration each entry region discovered so far is employed in a
refinement step. It can be proved (see [4]) that the number of

4756

V

V

U

flow directions

(a) Wong-Toi

flow direction

U

V

P

(b) HoneyTech

Fig. 1. Mistakes in previous fixpoint characterizations.

different entry regions is finite and that every possible entry
region is discovered after a number of iterations bounded by
the size of [[V]]. Therefore, after at most |[[V]]|+1 iterations
of the procedure, the fixpoint is reached.

D. Previous Algorithms

In the literature, the standard reference for safety control
of linear hybrid systems is [15]. The model and the abstract
algorithm are essentially the same as ours. As to the com-
putation of CPre, they introduce an operator flow avoid ,
which corresponds to our RWAm operator. They propose to
compute RWAm

l (U, V) using the following fixpoint formula
(see the proof of Lemma 3.3 in [15]):⋃
U ′∈[[U]]

⋂
V ′∈[[V]]

(
µW .U ′∪

⋃
P∈[[V ′]]

(
cl(P)∩V ′∩(W ∩ P)↙l

))
(3)

A simple example, however, shows that (3) is different from
(in particular, larger than) RWAm

l (U, V) when V is non-
convex. Consider the example in Figure 1(a), where U is the
gray area on top and V is the union of the two white boxes.
Formula (3) treats the two convex parts of V separately.
As a consequence, the result is the area covered by stripes.
However, the correct results should not include the area
within the thick border (in red-colored stripes), because any
point in that region cannot prevent hitting one of the two
convex parts of V .

Notice that it is virtually impossible to avoid non-convex
V ’s. Even if all guards and invariants in the input automaton
are convex, a non-convex V may arise as soon as more than
one controllable transition is enabled from the same location.

In [7], Deshpande et al. report about an implementation of
Wong-Toi’s algorithm in the tool HONEYTECH, obtained as
an extension of HyTech. The fixpoint formula that is meant
to capture RWAm

l (U, V) is the following:

µW .U∪
⋃

P∈[[V]]

(
P∩
(
cl(W) ∩ cl(P) ∩ V ∩W↙l

)
↙l
)

(4)

Compared to (3), formula (4) correctly treats the case of
non-convex V . However, it suffers from another issue, per-
taining the distinction between topologically open and closed
polyhedra. Consider the example in Figure 1(b), where U is
the gray box, V is the white box, and dashed lines represent
topologically open sides of polyhedra. The result of applying
formula (4) is the area covered by stripes. This area includes
the thick solid line that starts from a corner of V . Indeed, if
W is the union of U and the striped region and P ∈ [[V]], the
thick line is exactly cl(W) ∩ cl(P) ∩ V ∩W↙l. However,
this line does not belong to RWAm

l (U, V), because all its
points cannot avoid hitting V before eventually reaching U .

IV. EXPERIMENTS WITH PHAVER+

We implemented the procedure showed in the pre-
vious section on the top of the open-source tool
PHAVer [8]. A binary pre-release of our implemen-
tation, that we call PHAVer+, can be downloaded
at http://people.na.infn.it/mfaella/phaverplus.
The experiments were performed on an Intel Xeon
(2.80GHz) PC.

Truck Navigation Control (TNC): This example is de-
rived from [7]. Consider an autonomous toy truck, which
is responsible for avoiding some 2 by 1 rectangular pits.
The truck can take 90-degree left or right turns: the possible
directions are North-East (NE), North-West (NW), South-
East (SE) and South-West (SW). One time unit must pass
between two changes of direction. The control goal consists
in avoiding the pits. Figure 3(a) shows the hybrid automaton
that models the system: there is one location for each
direction, where the derivative of the position variables (x
and y) are set according to the corresponding direction. The
variable t represents a clock (ṫ = 1) that enforces a one-
time-unit wait between turns.

Figure 2 shows the three iterations needed to compute the
fixpoint in Theorem 1, in the case of two pits. The safe set
is the white area, while the gray region contains the points
wherefrom it is not possible to avoid the pits.

The input safe region T is the area outside the gray boxes
1 and 2 in Figure 2(a). The first iteration (Figure 2(b))
computes CPre(T) and extends the unsafe set to those points
(areas 3, 4, and 5) that will inevitably flow into the pits,
before the system reaches t = 1 and the truck can turn. The
second iteration (Figure 2(c)) computes CPre(CPre(T)) and
extends the unsafe set by adding the area 6: those points may
turn before reaching the pits, but after the turn they end up
in CPre(T) anyway (for instance, if turning left, they end
up in area 4 of Figure 2(d)). The third iteration reaches the
fixpoint.

4757

1

2

(a) The pits to avoid (i.e., T).

1

2

3

4
5

(b) CPre(T), SW direction.

1

2

3

4
5

6

(c) CPre(CPre(T)), SW di-
rection.

1

2

3

4
5

6

(d) CPre(T), SE direction.

Fig. 2. Evolution of the fixpoint in the case of two pits. All figures are
cross-sections for t = 0. Dashed arrows represent flow direction.

We tested our implementation on progressively larger
versions of the truck model, by increasing the number of pits.
We also considered a version of TNC with non-deterministic
continuous flow, allowing some uncertainty on the exact
direction taken by the vehicle. Using an exponential scale,
Figure 3(b) compares the performance of our tool (solid line
for deterministic model, dashed line for non-deterministic) to
the performance reported in [7] (dotted line). We were not
able to replicate the experiments in [7], since HONEYTECH
is not publicly available.

NW NE
ẋ = −1
ẏ = 1
ṫ = 1

ẋ = 1
ẏ = 1
ṫ = 1

SW SE
ẋ = −1
ẏ = −1
ṫ = 1

ẋ = 1
ẏ = −1
ṫ = 1

〈t ≥ 1, t := 0〉

〈t ≥ 1, t := 0〉

〈t ≥ 1, t := 0〉

〈t ≥ 1, t := 0〉

〈t ≥ 1, t := 0〉〈t ≥ 1, t := 0〉

〈t ≥ 1, t := 0〉

〈t ≥ 1, t := 0〉

(a) Hybrid Automaton for TNC.

1 2 3 4 5 6
Number of Obstacles

Time (sec.)

102

10

105

104

103

0

PHAVer+ (det case)

PHAVer+ (ndet case)

HoneyTech (det case)

7 8 9

(b) Computation time as a function of the
number of pits.

Fig. 3. Hybrid Automaton and performance for TNC.

Because of the different hardware used, only a qualitative
comparison can be made: going from 1 to 6 pits (as the
case study in [7]), the run time of HONEYTECH shows an
exponential behavior, while our tool exhibits an approxi-
mately linear growth, as shown in Figure 3(b), where the
performance of PHAVer+ is plotted up to 9 pits.

V. CONCLUSIONS

We revisited the problem of automatically synthesizing
a switching controller for an LHA w.r.t. safety objectives.
The synthesis procedure is based on the RWAm operator,
for which we presented a novel fixpoint characterization and
formally proved its termination.

To the best of our knowledge, this represents the first
sound and complete procedure for the task in the literature.
We extended the tool PHAVer with our synthesis procedure
and performed a series of promising experiments. An account
of the challenges involved in the implementation is presented
in [5].

REFERENCES

[1] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli. Effective
synthesis of switching controllers for linear systems. Proceedings of
the IEEE, 88(7):1011–1025, 2000.

[2] E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of
hybrid systems. In Computer Aided Verification, volume 2404 of Lect.
Notes in Comp. Sci., pages 746–770. Springer, 2002.

[3] A. Balluchi, L. Benvenuti, T. Villa, H. Wong-Toi, and A. Sangiovanni-
Vincentelli. Controller synthesis for hybrid systems with a lower
bound on event separation. Int. J. of Control, 76(12):1171–1200, 2003.

[4] M. Benerecetti, M. Faella, and S. Minopoli. Automatic synthesis of
switching controllers for linear hybrid automata. Technical report,
Università di Napoli “Federico II”, 2011. Available on arXiv.

[5] M. Benerecetti, M. Faella, and S. Minopoli. Towards efficient exact
synthesis for linear hybrid systems. In GandALF 11: 2nd Int. Symp.
on Games, Automata, Logics and Formal Verification, volume 54 of
Elec. Proc. in Theor. Comp. Sci., 2011.

[6] L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, and
M. Stoelinga. The element of surprise in timed games. In CONCUR
03: Concurrency Theory. 14th Int. Conf., volume 2761 of Lect. Notes
in Comp. Sci., pages 144–158. Springer, 2003.

[7] R.G. Deshpande, D.J. Musliner, J.E. Tierno, S.G. Pratt, and R.P.
Goldman. Modifying HYTECH to automatically synthesize hybrid
controllers. In Proc. of 40th IEEE Conf. on Decision and Control,
pages 1223–1228. IEEE Computer Society Press, 2001.

[8] G. Frehse. PHAVer: Algorithmic verification of hybrid systems past
hyTech. In Proc. of Hybrid Systems: Computation and Control
(HSCC), 8th International Workshop, volume 3414 of Lect. Notes in
Comp. Sci., pages 258–273. Springer, 2005.

[9] T.A. Henzinger. The theory of hybrid automata. In 11th IEEE Symp.
Logic in Comp. Sci., pages 278–292, 1996.

[10] T.A. Henzinger, B. Horowitz, and R. Majumdar. Rectangular hybrid
games. In CONCUR 99: Concurrency Theory. 10th Int. Conf., volume
1664 of Lect. Notes in Comp. Sci., pages 320–335. Springer, 1999.

[11] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? In Proc. of the 27th annual ACM symposium
on Theory of computing, STOC ’95, pages 373–382. ACM, 1995.

[12] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete
controllers for timed systems. In 12th Annual Symp. on Theor. Asp. of
Comp. Sci., volume 900 of Lect. Notes in Comp. Sci. Springer, 1995.

[13] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of
discrete-event processes. SIAM Journal of Control and Optimization,
25:206–230, 1987.

[14] C.J. Tomlin, J. Lygeros, and S. Shankar Sastry. A game theoretic
approach to controller design for hybrid systems. Proc. of the IEEE,
88(7):949–970, 2000.

[15] H. Wong-Toi. The synthesis of controllers for linear hybrid automata.
In 36th IEEE Conf. on Decision and Control, pages 4607 – 4612, San
Diego, CA, 1997. IEEE Computer Society Press.

4758

