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Abstract— A sparse estimator with close ties with the LASSO
(least absolute shrinkage and selection operator) is analysed.
The basic idea of the estimator is to relax the least-squares
cost function to what the least-squares method would achieve
on validation data and then use this as a constraint in the
minimization of the ℓ1-norm of the parameter vector. In a linear
regression framework, exact conditions are established for when
the estimator is consistent in probability and when it possesses
sparseness. By adding a re-estimation step, where least-squares
is used to re-estimate the non-zero elements of the parameter
vector, the so called Oracle property can be obtained, i.e. the
estimator achieves the asymptotic Cramér-Rao lower bound
corresponding to when it is known which regressors are active.
The method is shown to perform favourably compared to other
methods on a simulation example.

I. INTRODUCTION

One long standing problem in estimation is model selec-
tion. In linear regression this amounts to selecting appro-
priate regressors among a large set of candidate regressors.
The brute force approach of comparing all possible subsets
using some cross-validation method leads to combinatorial
complexity. It is also problematic to analyse the statistical
power of this approach.

Many approaches have been suggested to overcome these
problems. In Forward Selection regressors are added one
by one according to how statistically significant they are
[1]. Forward stepwise selection and LARS (Least Angle
Regression) [2] are refinements of this idea. Backwards
elimination is another approach with a long history. Here
regressors are removed one by one. Another class of meth-
ods employ all regressors but use thresholding to force
insignificant parameters to become zero [3]. Another class
of methods that can handle all regressors at once use
regularization, i.e. a penalty on the size of the parameter
vector is added to the cost function. This approach has
close ties with Bayesian estimation. Ridge regression is a
classical regularization method where penalty is proportional
to the squared 2-norm of the parameter vector. While this
method “pulls” parameters towards zero, it does not generate
sparse estimates, i.e. even though parameters may be small
they are generically non-zero. However, the regularization
can be chosen so that sparse estimates are obtained in a
one-shot procedure. The LASSO (least absolute shrinkage
and selection operator) is one of the early contributions to
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this field, and has been of tremendous influence1 [5]. This
algorithm performs minimization under a constraint of the
ℓ1-norm of the parameter vector 𝜃 ∈ ℝ

𝑛. More precisely the
criterion is

min
𝜃
𝑉𝑁 (𝜃)

s.t. ∥𝜃∥1 ≤ 𝑐
(1)

Above 𝑉𝑁 (𝜃) is the least-squares cost function based on 𝑁
samples. For linear regression problems the above problem
is convex. In fact, one way of viewing (1) is as a convex
relaxation of the combinatorial complexity problem of min-
imizing 𝑉𝑁 (𝜃) under a constraint of the support of 𝜃.

Using a Lagrange multiplier we see that the LASSO is
equivalent to

min
𝜃
𝑉𝑁 (𝜃) + 𝜆∥𝜃∥1 (2)

for some 𝜆 > 0. Thus the LASSO can be interpreted as ℓ1-
regularization of the identification criterion. In a Bayesian
framework, (2) corresponds to a Laplacian prior.

The reason why (1) gives a sparse estimate is linked
to the close relationship between the ℓ1-norm and the so
called ℓ0-norm, ∥𝜃∥0 (the number of non-zero entries in 𝜃).
With ∥ ⋅ ∥1 in (1) replaced by ∥ ⋅ ∥0, (1) corresponds to an
exhaustive search over all parameters with an upper bound
of the number of non-zero parameters.

Integral to many of the approaches is the use of cross-
validation or some information criterion, e.g. the Akaike
Information Criterion (AIC) or generalized cross-validation
(GCV). For example, such methods can be used to determine
the constant 𝑐 in (1). This means solving (1) and then
evaluating the performance of the estimate using, e.g., GCV,
for different values of 𝑐 and then picking the best 𝑐. While
different search strategies for the best 𝑐 can be deviced, a
drawback is that it is necessary to solve (1) multiple times.
For large problems this can be restrictive. In this contribution
we turn the problem “upside down” and then appeal to AIC
to come up with a good way to choose the design parameter
(that corresponds to 𝑐 in (1)). We provide an asymptotic
analysis of the proposed estimator. In [6] the finite sample
properties of this type of estimator is studied. In [7], a
related approach for selecting the regularization parameter
for the LASSO is proposed, based on the interpretation of
the LASSO as a Maximum a Posteriori estimator, and the
use of the Minimum Description Length criterion.

We conclude this introduction by observing that ℓ1-
regularization is closely related to compressive sensing [8].

The outline of the paper is as follows. In Section II the
method is introduced together with the assumptions that

1A procedure similar to the LASSO is the nonnegative garrote [4].
However, as mentioned in [5], this latter method may perform poorly in
overfit or highly correlated settings, while the LASSO and its variants can
overcome these issues.
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will be used. Section III contains the main results which
cover consistency, sparseness and efficiency. The method is
illustrated on a numerical example in Section IV, where it is
also compared with the LASSO. Conclusions are provided
in Section V.

Due to reasons of space, the proofs have been removed.
The interested reader is referred to the technical report [9]
for the full details of the proofs.

Notation

𝑋⊙𝑌 denotes the Hadamard or element-wise multiplica-
tion between two matrices 𝑋 and 𝑌 of the same dimensions.
Furthermore, ∥𝑥∥2𝑊 := 𝑥𝑇𝑊𝑥 for 𝑊 = 𝑊𝑇 > 0 and
∥𝑥∥22 := 𝑥𝑇𝑥. Cond(𝐴) is the condition number of a
matrix 𝐴 in the 2-norm, i.e., Cond(𝐴) := ∥𝐴∥∥𝐴−1∥ where
∥𝐴∥ denotes the maximum singular value of 𝐴. Notice that
Cond(𝐴) = Cond(𝐴−1) ≥ 1. The vector containing the
signs of a vector 𝑥 is denoted Sgn [𝑥]. The pseudo-inverse
of a matrix 𝑋 is denoted 𝑋†.
𝑋𝑁

𝑝−→ 𝑋 denotes convergence in probability [10]. Fur-
thermore, 𝐴𝑁 = 𝑂𝑝(𝐵𝑁 ) means that, given an 𝜀 > 0, there
exists a constant 𝑀(𝜀) > 0 and an 𝑁0(𝜀) ∈ ℕ such that
for every 𝑁 ≥ 𝑁0(𝜀), 𝑃{∣𝐴𝑁 ∣ ≤ 𝑀(𝜀)∣𝐵𝑁 ∣} ≥ 1 − 𝜀.
Similarly, 𝐴𝑁 = 𝑜𝑝(𝐵𝑁 ) means that 𝐴𝑁/𝐵𝑁

𝑝−→ 0, and
𝐴𝑁 ≍𝑝 𝐵𝑁 means that, given an 𝜀 > 0, there are constants
0 < 𝑚(𝜀) < 𝑀(𝜀) < ∞ and an 𝑁0(𝜀) ∈ ℕ such that for
every 𝑁 ≥ 𝑁0(𝜀), 𝑃{𝑚(𝜀) < ∣𝐴𝑁/𝐵𝑁 ∣ < 𝑀(𝜀)} ≥ 1− 𝜀.

In general, all asymptotic statements (of the form 𝑦𝑁 → 𝑦)
are with respect to the number of data samples 𝑁 tending
to infinity.

II. THE METHOD AND ITS MOTIVATION

A. Data and model

Assumption 2.1 (Data): The data is generated by the lin-
ear regression

𝑌𝑁 = 𝛷𝑁𝜃
𝑜 + 𝐸𝑁 (3)

where 𝜃𝑜 ∈ ℝ
𝑛, 𝐸𝑁 ∼ N(0, 𝜎2𝐼𝑁 ) (where 𝜎2 > 0),

𝛷𝑁 ∈ ℝ
𝑁×𝑛 and 𝑌𝑁 ∈ ℝ

𝑁 . Furthermore, we assume
without loss of generality that 𝜃𝑜 = [𝜃𝑜𝑇1 𝜃𝑜𝑇2 ]𝑇 , where
𝜃𝑜𝑖 ∈ ℝ

𝑛𝑖 (𝑖 = 1, 2) and 𝜃𝑜2 = 0. We emphasize that this
is for notational convenience only; the results below hold
regardless of the distribution of zeros in 𝜃𝑜. The regressor
matrix 𝛷𝑁 is deterministic2 and satisfies

lim
𝑁→∞

𝑁−1𝛷𝑇
𝑁𝛷𝑁 =: 𝛤 > 0. (4)

The corresponding model is

𝑌𝑁 = 𝛷𝑁𝜃 + 𝐸𝑁 (5)

where 𝜃 ∈ ℝ
𝑛 is unknown (which also means that 𝜃𝑜2 = 0 is

a priori unknown).

2This assumption implies that 𝛷𝑁 cannot contain autorregressive terms
(i.e., past values of the output).

B. The method

Denote the least-squares criterion by

𝑉𝑁 (𝜃) :=
1

𝑁
(𝑌𝑁 − 𝛷𝑁𝜃)

𝑇 (𝑌𝑁 − 𝛷𝑁𝜃). (6)

The method we propose for estimating a sparse 𝜃 consists
of three steps:

i) First compute the ordinary least-squares estimate, 𝜃𝐿𝑆
𝑁

say, for the model (5), i.e.

𝜃𝐿𝑆
𝑁 =

(
𝛷𝑇
𝑁𝛷𝑁

)−1
𝛷𝑇
𝑁𝑌𝑁 .

ii) Obtain a sparse estimate 𝜃𝑁 solving

min
𝜃
∥𝜃∥1

s.t. 𝑉𝑁 (𝜃) ≤ 𝑉𝑁 (𝜃𝐿𝑆
𝑁 )(1 + 𝜀𝑁 )

(7)

where 𝜀𝑁 > 0. The choice of 𝜀𝑁 will be discussed later.
iii) Finally, re-estimate the non-zero elements of 𝜃𝑁 using

ordinary least-squares. More precisely, eliminate the
columns of 𝛷𝑁 in (5) that correspond to zeros in

𝜃𝑁 and then compute the least-squares estimate of
a 𝜃 of reduced dimension based on the model (5).
Thresholding is used to determine which parameters are
zero.

When Steps i) and ii) are used, we call this method
SPARSEVA (SPARSe Estimation based on VAlidation), the
estimate is denoted 𝜃𝑁 . When also Step iii) is used, we
call the method SPARSEVA-RE, indicating that the non-
zero parameters are re-estimated (using least-squares); the

corresponding estimate is denoted 𝜃𝑅𝐸
𝑁 .

For Step ii) we will also consider the following criterion:

min
𝜃

∥𝑤𝑁 ⊙ 𝜃∥1
s.t. (1 + 𝜀𝑁 )𝑉𝑁 (𝜃𝐿𝑆

𝑁 ) ≥ 𝑉𝑁 (𝜃),
(8)

where 𝑤𝑁 ∈ ℝ
𝑛
+ is given by 𝑤𝑁𝑖 := 1/∣𝜃𝐿𝑆

𝑁𝑖 ∣𝛾 (𝑖 =
1, . . . , 𝑛), where 𝛾 > 0 is arbitrary. We denote the method
obtained from Step i) and (8) by A-SPARSEVA (Adaptive

SPARSEVA) and the corresponding estimate by 𝜃𝐴𝑁 ; the
method when all three steps is in this case denoted A-

SPARSEVA-RE and the corresponding estimate by 𝜃𝐴−𝑅𝐸
𝑁 .

This adaptive version is inspired by the adaptive LASSO
[11].

We notice that both (7) and (8) are convex for linear
regression problems.

C. Discussion of the method

The idea behind SPARSEVA is based on Akaike’s Infor-
mation Criterion AIC. Let 𝑉 𝑣𝑎𝑙

𝑁 (𝜃) denote the same least-
squares cost function as 𝑉𝑁 (𝜃) but using a fresh validation
data set (with the same 𝛷𝑁 but with a different realization
of the noise 𝐸𝑁 ). Then, for linear regression problems, c.f.
[12], it is easily shown that

E𝑣𝑎𝑙

[
E𝑒𝑠𝑡

[
𝑉 𝑣𝑎𝑙
𝑁 (𝜃𝐿𝑆

𝑁 )
]]

=

(
1 +

2𝑛

𝑁

)
E𝑒𝑠𝑡

[
𝑉𝑁 (𝜃𝐿𝑆

𝑁 )
]
(9)

where E𝑒𝑠𝑡[⋅] (E𝑣𝑎𝑙[⋅]) denotes expectation with respect to
the noise in estimation (validation) data set.
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The relation (9) suggests that a way to perform model
selection without using a validation data set is to minimize(

1 +
2𝑛

𝑁

)
𝑉𝑁 (𝜃𝐿𝑆

𝑁 )

with respect to 𝑛, the number of estimated parameters. This
is Akaike’s AIC criterion for model selection.

In view of this, with the choice 𝜀𝑁 = 2𝑛/𝑁 , (7) can
be seen as a way to estimate a sparse (due to the ℓ1-norm)
model such that its performance is similar to that of the least-
squares estimate on validation data. Thus, unlike the LASSO,
there is a natural choice of the “regularization” parameter 𝜀𝑁
for SPARSEVA. This is the motivation for introducing (7).

It should be noted that the criterion

min
𝜃
∥𝜃∥1

s.t. 𝑉𝑁 (𝜃) ≤ 𝜀
(10)

has been used before for signal recovery in a compressive
sensing context [13, 14], i.e. when the number of observa-
tions 𝑁 is less than the number of estimated parameters 𝑛.
Our contributions lie in the suggestion to use 𝜀 according to
(7), in particular with 𝜀𝑁 chosen according to the AIC-rule
𝜀𝑁 = 2𝑛/𝑁 , an asymptotic (in 𝑁 ) analysis, and the adaptive
version (8) inspired by [11].

III. MAIN RESULTS

In this section we present the main technical results.

A. Consistency

In regards to consistency we have the following result.
Theorem 3.1 (Consistency of (A-)SPARSEVA): Under

Assumption 2.1, and 𝜃𝑜 ∕= 0, SPARSEVA and A-SPARSEVA

are consistent in probability (i.e.3, 𝜃
(𝐴)
𝑁

𝑝−→ 𝜃𝑜) if and only if

𝜀𝑁 → 0. In particular, ∥𝜃(𝐴)
𝑁 − 𝜃𝑜∥2 = 𝑂𝑝(𝑁

−1/2 +
√
𝜀𝑁 ).

Proof: See [9].
Corollary 3.1 (Exact order of consistency): Subject to

the assumptions of Theorem 3.1, if 𝜀𝑁 → 0 but 𝑁𝜀𝑁 →∞,

then ∥𝜃(𝐴)
𝑁 − 𝜃𝑜∥2 ≍𝑝

√
𝜀𝑁 .

Proof: See [9].

B. Sparseness

Since 𝑉𝑁 (𝜃) is quadratic, the constraint in (7) is an
ellipsoid. The solution to (7) will be on the boundary of
the smallest ℓ1-ball that intersects this ellipsoid, see Figure
1.a. When the ellipsoid has the shape as in Figure 1.a, then,
as can be seen, the solution will be sparse. However, with a
more tilted ellipsoid as in Figure 1.b, the solution will not
be sparse. The shape of the ellipsoid is determined by the
regressor matrix 𝛷𝑁 .

Various measures to ensure sparsity have been suggested,
e.g. [15, 16]. The adaptive SPARSEVA (8) is inspired by
[11]. We now establish the exact conditions on 𝜀𝑁 for the
adaptive SPARSEVA to generate sparse estimates.

Theorem 3.2 (Sparseness of the adaptive SPARSEVA):

Under Assumption 2.1, and in addition 𝜀𝑁 → 0 and 𝜃𝑜 ∕= 0.
Then, A-SPARSEVA (8) satisfies the sparseness property

(i.e., 𝜃𝐴𝑁 = [(𝜃𝐴1
𝑁 )𝑇 (𝜃𝐴2

𝑁 )𝑇 ]𝑇 , with 𝜃𝐴𝑖
𝑁 ∈ ℝ

𝑛𝑖 (𝑖 = 1, 2),

where 𝑃{𝜃𝐴2
𝑁 = 0} → 1) if 𝑁𝜀𝑁 → ∞. If 𝑁𝜀𝑁 → ∞

3The notation 𝜃
(𝐴)
𝑁

refers either to 𝜃𝑁 or 𝜃𝐴
𝑁

, depending on the context.
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Fig. 1. The geometry of (7). In a) a sparse solution (𝜃2 = 0) is obtained
but not in b).

does not hold, A-SPARSEVA does not have the sparseness
property.

Proof: See [9].

Remark 3.1: It can be shown that when the regressors are
orthonormal, i.e. 𝑁−1𝛷𝑇

𝑁𝛷𝑁 = 𝐼 , then Theorem 3.2 holds
also for SPARSEVA.

C. Adaptive SPARSEVA and the Oracle property

From the preceeding results, the adaptive SPARSEVA
possesses the sparseness property if and only if 𝜀𝑁 is chosen
such that 𝜀𝑁 → 0 and 𝑁𝜀𝑁 → ∞. On the other hand, by
Corollary 3.1, such a choice of 𝜀𝑁 gives rise to a non efficient

estimator (since the order of convergence of 𝜃𝐴𝑁 to 𝜃𝑜 would

be
√
𝜀𝑁 , strictly larger than 𝑁−1/2). One way to overcome

this efficiency-sparseness tradeoff is to add Step iii) (see
Section II) so that the non-zero parameters are re-estimated
using least-squares. Our next result shows that the estimator
obtained from the third step of the adaptive SPARSEVA is
asymptotically normal and efficient.

Theorem 3.3 (The Oracle property): Consider the
assumptions in Theorem 3.2 and that 𝑁𝜀𝑁 →∞. Then

√
𝑁(𝜃𝐴−𝑅𝐸

𝑁 − 𝜃𝑜) ∈ 𝐴𝑠𝑁(0,𝑀†)
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where 𝑀 is the information matrix when it is known which
elements of 𝜃𝑜 are zero.

Proof: See [9].
Remark 3.2: We remark that it is clear from the proof

of Theorem 3.3 that such result holds if we replace the

use of 𝜃𝐴𝑁 as an estimator of the location of the non-
zero components of 𝜃𝑜 by any other consistent estimator
of such components. For example, Remark 3.1 implies that
Theorem 3.3 holds for SPARSEVA-RE when the regressors
are orthonormal.

IV. NUMERICAL EXAMPLES

A. Example I

In this section we will illustrate SPARSEVA and compare
it with other methods using Example 4.1 in [15]. In this
example

𝜃𝑜 =
[
3 1.5 0 0 2 0 0 0

]𝑇
.

The noise is zero mean, unit variance white Gaussian noise.
The regressors are mutually independent, with each regressor
being a realization of the output of a first order filter with
pole in 0.5 subject to a zero mean Gaussian white input.
Each regressor is normalized to have variance 1.

SPARSEVA is compared to the following methods: LS-
ORACLE is the least-squares estimate of the three non-zero
parameters. This is the ideal estimator and from the Cramér-
Rao lower bound no other unbiased estimator can perform
better. LASSO-GCV is the LASSO where the regularization
parameter 𝜆 in (2) is chosen according to generalized cross-
validation [5], i.e. the 𝜆 that minimizes

𝑉𝑁 (𝜃𝑁 )/(1− 𝑝(𝜆)/𝑁)2

is chosen. Here 𝑝(𝜆) is the number of effective parameters
defined as

𝑝(𝜆) = Tr
{
𝛷𝑁

(
𝛷𝑇
𝑁𝛷𝑁 + 𝜆𝑊 †

)−1
𝛷𝑇
𝑁

}

𝑊 = Diag(∣𝜃𝑁𝑖∣).
Four variants of SPARSEVA are included: SPARSEVA-
AIC/BIC where the constraint 𝜀𝑁 is chosen as AIC (𝜀𝑁 =
2𝑛/𝑁 ) and BIC (𝜀𝑁 = 𝑛 log𝑁/𝑁 ). A-SPARSEVA-
AIC/BIC are the two corresponding adaptive versions. No-
tice that the BIC choice for 𝜀𝑁 satisfies the condition for
sparseness (see Theorem 3.2).

Figure 2 shows the MSE (Mean-Squared Error) of the
parameter estimate as a function of the sample size for
100 Monte-Carlo simulations. Re-estimation is used for the
SPARSEVA-methods. The threshold for determining which
parameters are zero and non-zero, respectively, was (some-
what arbitrarily) set to 10−5. Also re-estimation was tried
for LASSO-GCV but was found to perform worse than no
re-estimation and has therefore not been included. It can
be seen that above 𝑁 = 70, the adaptive SPARSEVA with
BIC constraint achieves the Oracle property and performs as
well as LS-ORACLE. Figure 3 shows the average number
of correctly estimated zero parameters, and we see that this
estimator has the best ability to determine where the zero
elements are located. However, from Figure 2 it can be seen
that for small sample sizes the performance of this estimator
is worse than almost all other estimators. From Figure 4,
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LS−ORACLE
LASSO−GCV
SPARSEVA−AIC−RE
SPARSEVA−BIC−RE
A−SPARSEVA−AIC−RE
A−SPARSEVA−BIC−RE

Fig. 2. Example I: MSE as a function of the sample size 𝑁 .
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Fig. 3. Example I: Percentage of correctly identified zero elements as a
function of the sample size 𝑁 .

which shows the average number of correctly estimated non-
zero parameters, it is clear that this is due to that this
estimator has problems to identify which elements of 𝜃𝑜 are
non-zero for small sample sizes.

B. Example II

In this section we will consider a more extreme case than
in Section IV-A. We will consider the following dynamical
finite impulse response model

𝑦𝑡 =

𝑛−1∑
𝑘=0

𝜃𝑘𝑢𝑡−𝑘 + 𝑒𝑡

where 𝑛 = 20. The true system can be described by this
model with 𝜃𝑘 = 𝛿𝑘 (𝛿𝑘 is Kronecker’s delta function) and
{𝑒𝑡} being Gaussian white noise with variance 1. The input
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Fig. 4. Example I: Percentage of correctly identified non-zero elements as
a function of the sample size 𝑁 .

{𝑢𝑡} is given by

𝑢𝑡 = 0.5𝑢𝑡−1 + 𝑤𝑡

where {𝑤𝑡} is zero mean white noise. The variance of 𝑤𝑡 is
such that the input has unit variance.

We are thus in the situation where all parameters are zero
except the first one. Figure 5 shows the MSE (Mean-Squared
Error) of the parameter estimate as a function of the sample
size for 50 Monte-Carlo simulations. The included methods
are: least-squares oracle, Lasso with GCV, SPARSEVA-RE-
AIC and A-SPARSEVA-RE-AIC. For the small sample sizes
used the BIC versions of SPARSEVA perform very poorly
in this example. The non-zero element is not detected in any
of the realizations.

The threshold for determining which parameters are zero
and non-zero, respectively, was (somewhat arbitrarily) set to
10−5 as in the previous example.

Figure 6 shows the average number of correctly estimated
zero parameters. Figure 7 shows the average number of
correctly estimated non-zero parameters.

V. CONCLUSIONS

In the numerical examples the adaptive version of the
method performs most favourably. On these examples, the

“AIC” choice 𝜀𝑁 = (1 + 2𝑛/𝑁)𝑉𝑁 (𝜃𝐿𝑆
𝑁 ) seems to give

a good balance between sparsity and model fit. Thus, this
method has the potential to provide a good estimate in one
shot. This is an attractive property for large scale problems
where the possiblity to optimize the design parameter may
be restricted.

When the focus is on sparseness, the “BIC” choice 𝜀𝑁 =
(1 + 2 log(𝑁)/𝑁)𝑉𝑁 (𝜃𝐿𝑆

𝑁 ) ensures this property.
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function of the sample size 𝑁 .

REFERENCES

[1] S. Weisberg, Applied Linear Regression. New York:
Wiley, 1980.

[2] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani,
“Least angle regression,” Annals of Statistics, vol. 32,
no. 2, pp. 407–451, 2004.

[3] D. Donoho and I. Johnstone, “Ideal spatial adaptation
by wavelet shrinkage,” Biometrika, vol. 81, no. 3, pp.
425–455, 1994.

[4] L. Breiman, “Better subset regression using the nonneg-
ative garrote,” Technometrics, vol. 37(4), pp. 373–384,
1995.

[5] R. Tibshirani, “Regression shrinkage and selection via
the LASSO,” Journal of the Royal Statistical Society.

Series B, vol. 58, no. 1, pp. 267–288, 1996.
[6] R. Toth, B. S. Sanandaji, K. Poolla, and T. L. Vin-

cent, “Compressive system identification in the linear

2829



30 40 50 60 70 80 90 100 110 120 130
50

60

70

80

90

100

110
Percentage of correctly identified non−zero elements

N

 

 

LASSO−GCV
SPARSEVA−AIC
A−SPARSEVA−AIC

Fig. 7. Example II: Percentage of correctly identified non-zero elements
as a function of the sample size 𝑁 .

time-invariant framework,” in Proceedings 40th IEEE

Conference on Decision and Control, Orlando, Florida,
USA, December 2011, submitted.

[7] A. Panahi and M. Viberg, “Maximum a posteriori based
regularization parameter selection,” in Proceedings of

the 2011 IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP’11), Prague,
Czech Republic, May 22-27, pp. 2452–2455.

[8] D. Donoho, “Compressed sensing,” IEEE Transactions

on Information Theory, vol. 52, no. 4, pp. 1289–1306,
2006.

[9] C. R. Rojas and H. Hjalmarsson, “Sparse
estimation based on a validation criterion,”
http://www.ee.kth.se/˜crro/sparseva.pdf, 2011, technical
Report.

[10] E. L. Lehmann, Elements of Large-Sample Theory.
Springer, 1999.

[11] H. Zou, “The adaptive Lasso and its oracle properties,”
Journal of the American Statistical Association, vol.
101(476), pp. 1418–1429, 2006.

[12] L. Ljung, System Identification: Theory for the User,
2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1999.

[13] E. Candès, J. Romberg, and T. Tao, “Stable signal re-
covery from incomplete and inaccurate measurements,”
Communications on pure and applied mathematics,
vol. 59, pp. 1207–1223, 2006.

[14] A. Gurbuz, J. McClellan, and W. Schott Jr, “Compres-
sive sensing for subsurface imaging using ground pen-
etrating radar,” Signal Processing, vol. 89, pp. 1959–
1972, 2009.

[15] J. Fan and R. Li, “Variable selection via nonconcave
penalized likelihood and its oracle properties,” Journal

of the American Statistical Association, vol. 96, no. 456,
pp. 1348–1360, 2001.

[16] H. Wang and C. Leng, “Unified LASSO estimation by
least squares approximation,” Journal of the American

Statistical Association, vol. 102, no. 478, pp. 1039–
1048, 2007.

2830


