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Abstract— In this paper a new consensus based algorithm
for decentralized recursive estimation of parameters in linear
discrete-time stochastic errors-in-variables MIMO systems is
proposed. One starts from a multi-agent setting, in which an
agent has access only to a subset of noisy input-output variables.
The proposed algorithm consists of two stages. The first stage
is based on a combination of local stochastic approximation
algorithms for estimating input-output covariance functions
based on locally available measurements and a dynamic first
order consensus scheme. At the second stage each agent
utilizes a stochastic approximation algorithm with expanding

truncations for generating all system parameter estimates on
the basis of current estimates of the matrices in the modified
Yule-Walker equations obtained at the first stage. In the
given convergence analysis it is proved that the estimates of
the covariance functions and the overall parameter estimates
converge almost surely to their true values under appropriate
assumptions concerning system properties and the multi-agent
network topology.

I. INTRODUCTION

Theory and practice of complex and large scale systems

has been focused on decentralized methods for control and

estimation, e.g., [1], [2]. Considering a dynamic system as an

interconnection of subsystems, which may be either physical

entities of mathematical abstractions, it is possible to achieve

reduction of dimensionality in control and estimation prob-

lems, as well as to increase robustness and reliability (see,

e.g., [1]). In many real life situations designers of control

systems are faced with inherent decentralized information

structure constraints, leading to different types of decentral-

ized design or decentralized implementation.

A lot of attention has been paid recently to networked con-

trol systems, multi-agent systems and sensor networks, e.g.,

[3]. Many efficient methodologies have been theoretically

developed and applied in practice. It has been found that one

of very successful methodologies for getting efficient com-

promises between decentralization and global functioning of

large scale systems is based on dynamic consensus schemes,

e.g., [4]–[8]. Within the framework of decentralized methods

for large scale systems, consensus has been applied to state

estimation, optimization and control, e.g., [9]–[13].
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Decentralized identification of dynamic systems has not

been yet considered in the literature from a general stand-

point (to the best of the authors’ knowledge). The main

problem is the contradiction between decentralized data

acquisition implied by the information structure constraints,

on the one side, and the overall interconnectedness between

the model variables and functioning of the system as a whole,

on the other.

The concept of decentralized identification of a given

multivariable large scale system developed in this paper starts

from a multi-agent setting in which an agent has access

only to a subset of noisy input and output measurements, in

accordance with the given information structure constraints.

The task of every agent is to obtain estimates of the overall

system parameters in real time, without recurring to any type

of centralized strategy or fusion center. The contradiction

between the global nature of the task and local constraints is

resolved by introducing communications between the agents,

implementing a dynamic consensus strategy.

It will be assumed that the system to be identified is repre-

sented by a linear MIMO (multiple input - multiple output)

model with the input generated by a MIMO ARMA model

[14], [15]. The assumed measurement setting represents a

generalization of the basic errors-in-variables identification

problem [16], [17]. The starting point is to construct an

algorithm in which the agents recursively estimate a set

of input - output covariance functions using a dynamic

consensus scheme by algorithms of stochastic approximation

type, applying the methodology from [9]–[11], and extending

the idea presented in [18]. The obtained current covariance

estimates are then used within a stochastic approximation

scheme with expanding truncations in order to generate

recursively estimates of the overall system model parameters

using the modified Yule-Walker equations [14], [18], [19].

The paper is organized as follows. Section II contains the

problem formulation and the proposed algorithm definition,

while Section III is devoted to the convergence analysis.

II. PROBLEM DEFINITION AND ALGORITHM

FORMULATION

Consider a linear dynamic MIMO system described by

A(z)y(t) = B(z)u(t), (1)

where t is a discrete time instant, z stands for the backward

shift operator, y(t) ∈ Rn and u(t) ∈ Rm are the input

and output vectors, respectively, while A(z) = I + A1z +
· · · + Aνaz

νa and B(z) = B1z + · · · + Bνbz
νb , where
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Ai = diag{a
[i]
1 , . . . , a

[i]
n }, i = 1, . . . , νa, and Bi = [b

([i]
jk ],

i = 1, . . . , νb, j = 1, . . . , n, k = 1, . . . ,m.

The input u(t) is assumed to be a MIMO ARMA process

generated by

P (z)u(t) = Q(z)ε(t), (2)

where P (z) = I + P1z + · · · + Pνpz
νp and Q(z) =

I + Q1z + · · · + Qνqz
νq , Pi = diag{p

[i]
1 , . . . , p

[i)]
n }, i =

1, . . . , νp, and Qi = [q
[i]
jk], i = 1, . . . , νq, j = 1, . . . ,m, k =

1, . . . ,m. The sequence {ε(t)} is assumed to be composed

of i.i.d. m-dimensional zero mean random vectors satisfying

E{ε(t)ε(t)T } = Rε and E{‖ε(t)‖4} < ∞.

A compact representation of (1) and (2) is given by

G(z)z(t) = S(z)ε(t), where G(z) =

[

A(z) −B(z)

0 P (z)

]

=

I +G1z + · · ·+Gνz
ν and S(z) =

[

0
Q(z)

]

= S0 + S1z +

· · ·+ Sνz
ν , while ν = max(νa, νb, νp, νq) [14], [15].

Set Yj(t − 1) = [yj(t − 1) · · · yj(t − νa)]
T , Uk(t − 1) =

[uk(t − 1) · · ·uk(t − νb)]
T , ϕj(t) = [Yj(t)

T
...U1(t)

T · · ·
Um(t)T ]T , and

θyj = [−a
[1]
j · · · − a

[νa]
j

...b
([1]
j1 · · · b

[νb]
j1

... · · ·
...b
([1]
jm · · · b

[νb]
jm ],

θuk = [−p
[1]
k

... · · ·
... − p

[νp]
k ],

j = 1, . . . , n, k = 1, . . . ,m. Let, also, Φ(t) =
diag{ϕ1(t), . . . , ϕn(t)}, Ψ(t) = diag{U1(t), . . . , Um(t)},
θy = diag{θy1 , . . . , θ

y
n}, θ

u = diag{θu1 , . . . , θ
u
m}. From (1)

and (2) we have

z(t) =

[

y(t)

u(t)

]

= θTZ(t− 1) +

[

0
Q(z)ε(t)

]

, (3)

where θ = diag{θy, θu} is the parameter matrix and Z(t) =
diag{Φ(t),Ψ(t)}.

Assume that N autonomous agents perform input-output

measurements in such a way that every agent has access

to a subset of input/output variables contaminated by local

additive measurement noises. Let the index sets S
(i)
u =

{m
(i)
1 , . . . ,m

(i)

σ
(i)
u

} ⊆ {1, . . . , n}, S
(i)
y = {l

(i)
1 , . . . , l

(i)

σ
(i)
y

} ⊆

{1, . . . ,m}, (σ
(i)
u ≤ m, σ

(i)
y ≤ n) determine the indices of

the components of the vectors u(t) and y(t) accessible to the

i-th agent (the index sets can be overlapping). Accordingly,

define the vector z(i)(t) (derived from z(t) in (3)), which

contains as its nonzero components the measurements ac-

quired by the i-th agent, as

z(i)(t) =

[

y(i)(t)

u(i)(t)

]

=





[y(t) + ξ(i)(t)]I(i)y (t)

[u(t) + η(i)(t)]I(i)u (t)



 , (4)

where ξ(i)(t) and η(i)(t) are measurement noise vectors,

while I
(i)
y (t) = diag{I

(i)
y,1(t), . . . , I

(i)
y,n(t)} and I

(i)
u (t) =

diag{I
(i)
u,1(t), . . . , I

(i)
u,m(t)}, where {I

(i)
y,j(t)} and {I

(i)
u,k(t)},

j = 1, . . . , n, k = 1, . . . ,m, are random binary sequences

independent from the system variables such that, for all t,

P{I
(i)
y,j(t) = 1} > 0 when j ∈ S

(i)
y and P{I

(i)
u,k(t) = 1} > 0

when k ∈ S
(i)
u ; otherwise, P{I

(i)
u,j(t) = 1} = 0 and

P{I
(i)
u,k(t) = 1} = 0. Randomness of I

(i)
y (t) and I

(i)
u (t)

is introduced in order to model intermittent measurements.

The input and output measurement noise vector se-

quences {η(i)(t)} = {[η
(i)
1 (t) · · · η

(i)
m (t)]T } and {ξ(i)(t)} =

{[ξ
(i)
1 (t) · · · ξ

(i)
n (t)]T }, i = 1, . . . , N , are assumed to be

i.i.d. zero mean sequences mutually independent and in-

dependent from {ε(t)}, satisfying E{ξ(i)(t)ξ(i)(t)T } =

R
(i)
ξ , E{η(i)(t)η(i)(t)T } = R

(i)
η , E{‖ξ

(i)
j (t)‖4} < ∞ and

E{‖η
(i)
k (t)‖4} < ∞, for all t.

According to (3), we introduce also Y
(i)
j (t), U

(i)
k (t),

ϕ
(i)
j (t), Φ(i)(t), Ψ(i)(t) and Z(i)(t), i = 1, . . . , N , j =

1, . . . , n, k = 1, . . . ,m as the ”noisy” versions of Yj(t),
Uk(t), ϕj(t), Φ(t), Ψ(t) and Z(t), respectively. Similarly,

we construct Ỹ
(i)
j (t), Ũ

(i)
k (t), ϕ̃

(i)
j (t), Φ̃(i)(t), Ψ̃(i)(t) and

Z̃(i)(t) in the same way as Y
(i)
j (t), U

(i)
k (t), ϕ

(i)
j (t), Φ(i)(t),

Ψ(i)(t) and Z(i)(t), i = 1, . . . , N , j = 1, . . . , n, k =

1, . . . ,m, but with Ỹ
(i)
j (t) = [y

(i)
j (t) · · · y

(i)
j (t − µ)]T and

Ũ
(i)
k (t) = [u

(i)
k (t) · · ·u

(i)
k (t−µ)]T instead of Y

(i)
j (t), U

(i)
k (t),

respectively, where µ is a selected integer.

We assume that A(z) and P (z) are stable matrices,

so that {z(t)} is a stationary and ergodic sequence with

E{‖z(t)‖2} < ∞, and

E{z(t)z(t− τ)T } = Rzz(τ) =

[

Ryy(τ) Ryu(τ)

Ruy(τ) Ruu(τ)

]

(5)

where Ryy(τ) = [ryykl (τ)]n×n = E{y(t)y(t − τ)T },

Ryu(τ) = [ryukl (τ)]n×m = E{y(t)u(t− τ)T } and Ruu(τ) =
[ruukl (τ)]m×m = E{u(t)u(t − τ)T }. Introduce λ such that

µ ≥ λ > νq , so that we obtain, after multiplying (3) with

Z̃(t − 1 − λ) from the right and taking the mathematical

expectation, the following modified Yule-Walker equations

W = θTG, (6)

where W = E{z(t)Z̃(t − 1 − λ)T } and G = E{Z(t −
1)Z̃(t − 1 − λ)T } [18], [19]. Solving (6) one obtains, in

general, θ̂ = WG+ + θ0(I −GG+), where θ0 is any matrix

with appropriate dimensions; the necessary and sufficient

condition for uniquely defining θ from (6) is non-degeneracy

of G (A+ stands for the pseudoinverse of a matrix A), [18].

Based on the exposed formal setting we formulate the

problem of distributed identification of the system repre-

sented by (1) and (2) as the problem of estimating the

parameter matrix θ in (3) in real time by all the agents

using only local measurements described in (4), by allowing

inter-agent communication of local (partial) identification

results (not of measurements themselves), without recurring

to any type of fusion center. The formulated problem belongs

to system identification problems of errors-in-variables type

(see, e.g., [16]); the problem is, however, specific, due to the

given information structure constraints.

Estimation of the correlation functions between the mea-

sured input-output variables represents a firm starting point
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for the formulated identification task, since it can be done

locally irrespective of the functioning of the rest of the

system (see also, e.g., [20]). By interchanging the local

correlation function estimates between the agents using the

available communication links one can circumvent the given

information structure constraints and get a model of the

system as a whole. Once an estimate of input/output correla-

tion functions is available to all the agents, they can locally

estimate all the system parameters by using, for example, the

above formulated modified Yule-Walker equations (6).

We propose the following distributed recursive algorithm

based on stochastic approximation for estimating the un-

known parameter matrix θ in (3) by all N agents:

Ḡ(i)(t) = G(i)(t− 1)+

+
1

t
[Z(i)(t− 1)Z̃(i)(t− λ− 1)T − G̃(i)(t− 1)], (7)

vec{G(i)(t)} =

N
∑

j=1

CG
ij (t) vec{Ḡ

(j)(t)}, (8)

W̄ (i)(t) = W (i)(t− 1)+

+
1

t
[z(i)(t)Z̃(i)(t− λ− 1)T − W̃ (i)(t− 1)], (9)

vec{W (i)(t)} =

N
∑

j=1

CW
ij (t) vec{W̄

(j)(t)}, (10)

θ(i)(t) = θ̄(i)(t− 1)I[‖θ̄(i)(t−1)‖≤M(σ(i)(t−1))], (11)

θ̄(i)(t− 1) = θ(i)(t− 1)+

+
1

t
G(i)(t)[W (i)(t)T −G(i)(t)T θ(i)(t− 1)], (12)

σ(i)(t) = σ(i)(t− 1) + I[‖θ̄(i)(t−1)‖>M(σ(i)(t−1))], (13)

where:

- G(i)(t), W (i)(t) and θ(i)(t) are the current estimates of

G, W and θ in the model (3) generated by the i-th agent at

the instant t (the initial values G(i)(0), W (i)(0) and θ(i)(0)
are arbitrary and finite almost surely),

- G̃(i)(t) and W̃ (i)(t) are obtained from G(i)(t) and

W (i)(t) by inserting zeros at those places where the elements

of Z(i)(t)Z̃(i)(t− λ)T and z(i)(t+ 1)Z̃(i)(t− λ)T , respec-

tively, are equal to zero, as a consequence of the fact that

the corresponding instantaneous values of the indices I
(i)
y,j(.)

and I
(i)
u,k(.) are equal to zero (accessibility of measurements,

intermittent observations),

- vec{A} denotes the column vector obtained by concate-

nating all the column vectors of A,

- I[A] denotes the indicator of an ω-set: I[A] = 1 if ω ∈ A
and I[A] = 0 if ω /∈ A,

- M(σ(i)(t)) is a monotonically increasing function to be

specified later;

- matrices CG
ij (t) and CW

ij (t), defining communications

between the agents, are assumed to be given by CG
ij (t) =

Jij(t)C̄
G
ij (t) and CW

ij (t) = Jij(t)C̄
W
ij (t), where C̄G

ij (t) and

C̄W
ij (t) are diagonal matrices with positive elements (see,

e.g., [9]–[11]), while Jii(t) = 1, i = 1, . . . , N and {Jij(t)},

i, j = 1, . . . , N , i 6= j, are scalar random binary sequences

satisfying P{Jij(t) = 1} > 0 for (i, j) ∈ E ⊂ {1, . . .N} ×
{1, . . . , N}, where the set E specifies the communication

structure constraints, i.e., the existing communication links

between the agents (pair (i, j) denotes the directed link from

the agent j to the agent i); otherwise, P{Jij(t) = 1} = 0;

-
∑N

j=1 C
G
ij (t) = I and

∑N
j=1 C

W
ij (t) = I for all t and i.

The algorithm consists formally of two main parts, the first

consisting of two consensus based stochastic approximation

algorithms for estimating covariance matrices G and W in

(6) (algorithms (7) and (8)), and the second representing a

recursive algorithm for final estimation of the model parame-

ters θ in (6) using the currently available covariance estimates

(algorithm (9)). The algorithm represents an extension to the

decentralized multi-agent case of the algorithm proposed in

[18] for centralized errors-in-variables identification.

In this way, the whole algorithm extends the idea of com-

bining recursive state and parameter estimation algorithms

with the first order consensus scheme (presented in [9]–[11])

to the problem of system identification. Recall that recursions

of stochastic approximation type with consensus have been

discussed from a general standpoint in [21], proposed for

distributed optimization in [4] and applied to parameter

estimation in linear static regression models in [11].

It will be adopted that the communication links between

the agents with positive communication probabilities are

represented by a directed graph G = {N , E}, where N is the

node set, and E the edge set. Correspondingly, it is possible

to compose the overall communication (consensus) matrix

Cnet(t) = [CGW
ij (t)], i, j = 1, . . . , N , where CGW

ij (t) =
diag{CG

ij (t), C
W
ij (t)}, which has zero blocks almost surely

for (i, j) ∈ Ē = {1, . . .N}×{1, . . . , N}−E . Matrices C̄G
ij (t)

and C̄W
ij (t) in CG

ij (t) and CW
ij (t) are assumed to be such

that Cnet(t) is a row stochastic matrix for any realization

of Jij(t), i, j = 1, . . . , N (concrete ways of generating

realizations of Cnet(t) corresponding to the realizations of

the N × N binary matrix J(t) = [Jij(t)] are discussed in

[10]). Having in mind that (7) and (8) consist of independent

recursions for estimating elements of G and W in (6),

Cnet(t) can be decomposed into the corresponding number

of N ×N row stochastic consensus matrices.

III. CONVERGENCE ANALYSIS

The key arguments for the convergence of the proposed

identification algorithm are related to the estimation of the

correlation functions in the schemes generating matrices

G(i)(t) and W (i)(t) in (7) and (8). Our analysis will be

initially concentrated on one arbitrarily selected element

of either G or W ; the obtained results can be directly

generalized to all the elements of G and W .

Assume that ρ(i)(t) represent the current estimate of, e.g.,

ryykl (τ) generated by the i-th agent for some k and l, and τ
satisfying (6). Then, according to (7) and (8), we have for
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i = 1, . . . , N

ρ̄(i)(t) = ρ(i)(t− 1) + 1
t
I
(i)
k (t− 1)I

(i)
l (t− τ)

×[y
(i)
k (t− 1)y

(i)
l (t− τ − 1)− ρ(i)(t− 1)], (14)

ρ(i)(t) =
∑N

j=1 cij(t)ρ̄
(j)(t), (15)

where cij(t) are scalar coefficients of the form cij(t) =

Jij(t)c̄ij(t) satisfying
∑N

j=1 cij(t) = 1 for all t, according

to (7) and (8). Properties of c̄ij(t) follow directly from the

properties of either C̄G
ij (t) or C̄W

ij (t).

For vector R(t) = [ρ(1)(t) · · · ρ(N)(t)]T we have

R(t) =C(t)R(t− 1) +
1

t
C(t)Γ(t)

× [Y D(t− 1)Y (t− τ − 1)−R(t− 1)], (16)

where C(t) = [cij(t)], i, j = 1, . . . , N , Γ(t) =

diag{I
(1)
k (t − 1)I

(1)
l (t − τ − 1), . . . , I

(N)
k (t − 1)I

(N)
l (t −

τ − 1)}, Y D(t) = diag{y
(1)
k (t), . . . , y

(N)
k (t)} and Y (t) =

[y
(1)
l (t) · · · y

(N)
l (t)]T . The consensus matrix C(t) is a ran-

dom row-stochastic matrix for all t, while Γ(t) models the

availability of measurements.

We will analyze convergence of (16) under the following

assumptions:

A1) The set N ∗ ⊂ N containing all the nodes of the graph

G which have the indices i corresponding to the condition

P{I
(i)
k (t)}P{I

(i)
l (t)} > 0 is nonempty, and each node in N

is reachable from at least one node from N ∗.

A2) For all (i, j) ∈ E and all t, P{Jij(t̄) = 1} = 1 for

some t̄ ∈ [t, t+ T1], T1 < ∞.

A3) For all i ∈ N ∗ and all t, P{I
(i)
k (t̄)I

(i)
l (t̄− τ) = 1} =

1 for some t̄ ∈ [t, t+ T2], T2 < ∞.

Remark 1: Assumption A1) ensures that the measure-

ments necessary for generating the estimates are available

to every agent. Assumption A2) defines an upper bound on

the intervals between two successive inter-agent communica-

tions, and Assumption A3) an upper bound on the intervals

between two successive measurements.

Lemma 1: Let Assumption A1) be satisfied. Then,

E{C(t)} is cogredient (amenable by permutation transfor-

mations) to

C̄ =











C̄1 · · · 0

0 C̄2 · · ·

0 · · · C̄κ 0

D̄1 · · · D̄κ C̄0











, (17)

where C̄0 is an β0 × β0 matrix, 0 ≤ β0 < N , C̄i are

irreducible βi × βi matrices satisfying 0 < βi < N , D̄i

are β0 × βi matrices, i = 1, . . . , κ, and 1 ≤ κ ≤ |N ∗| (|.|
denotes cardinality of a given set).

The proof of the lemma can be derived by construction;

details can be found in [11]. One can easily see that

E{J(t)} has the same structure of positive elements as

C̄, i.e., E{C(t)} ∼ E{J(t)}. The number of irreducible

components κ in C̄ and the dimension of C̄0 depend on the

adopted network topology. Consequently, the structure of C̄

allows updating of the correlation coefficient estimates for

all the nodes.

Lemma 2: Let the l-th power of C̄ in (17) be represented

as

C̄l =

[

diag{C̄l
1, . . . , C̄

l
k} 0

D̄[l] C̄l
0

]

, (18)

where D̄[l] =
[

D̄
[l]
1 · · · D̄

[l]
k

]

. Then:

(a) for each j for which C̄j 6= 0 there exists an integer lj
such that for l ≥ lj the block matrix D̄

[l]
j contains at least

one row whose all elements are positive;

(b) there exists an integer l
′

such that for l ≥ l
′

each row

of D̄[l] contains at least one entire row of some of the blocks

D̄
[l]
j , j ∈ {1, . . . , k}, whose all elements are positive.

The proof of this lemma can be derived using the results

in [11].

Theorem 1: Let the Assumptions A1) – A3) be satisfied.

Then

‖R(t)− ryykl (τ)1‖ = o(t−δ)

with probability one, where 0 < δ < 1
2 and 1 = [1 · · · 1]T1×N .

Proof: Denoting R̃(t) = R(t)−ryykl (τ)1 and e(t−1) =
Y D(t− 1)Y (t− τ − 1)− ryykl (τ)1, we obtain from (16)

R̃(t) = C(t)(I−
1

t
Γ(t))R̃(t−1)+

1

t
C(t)Γ(t)e(t−1). (19)

After iterating back to the initial condition, one obtains

R̃(t) = Φ(t, τ)R̃(τ−1)+
t

∑

j=τ−1

1

j
Φ(t, j+1)C(j)Γ(j)e(j−1),

(20)

where Φ(t, s) = C(t)(I − 1
t
Γ(t)) · · ·C(s)(I − 1

s
Γ(s)) for

t ≥ s, with Φ(t, t+ 1) = I .

a) In order to analyze the first term at the right hand

side of (20), assume first, for the sake of simplicity, that

E{C(t)} can be represented by a matrix cogredient to

the structure (17), with κ = 1 and C̄0 = 0, i.e., that

E{C(t)} is irreducible and also primitive, having in mind

that it is aperiodic by positiveness of its diagonal elements

(by assumption, Jii(t) = 1, i = 1, . . . , N ). In this case,

by Assumption A2), at almost every realization of the

sequence {C(t)}, for each t large enough there exists such

a τ1 > 0 that Π(t, t − τ1) = C(t) · · ·C(t − τ1) ≻ 0
(A ≻ 0 denotes that all the elements of a matrix A are

positive). This conclusion follows directly from the fact that

primitiveness of E{C(t)} implies that there exists such a

positive integer l that (E{C(t)})l ≻ 0, [22]. This essentially

structural property of nonnegative matrices is easily extended

to the products Π(t, t − τ1) utilizing elementary properties

of products of realizations of matrices C(t) which have

positive diagonals and positive elements located at some of

the places of positive elements in E{C(t)}. Coming back to

the definition of Φ(t, τ), we immediately conclude that on

almost every realization of the sequence {C(t)}, for each t
large enough, there exists such a τ2 > 0 that Φ(t, t− τ2) =
C(t)(I − 1

t
Γ(t)) · · ·C(t − τ2)(I − 1

t−τ2
Γ(t)) ≻ 0 (matrix

I− 1
t
Γ(t) is diagonal with positive elements at the diagonal).
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Moreover, Assumption A3) implies that for each t large

enough there exists such a T2 > 0 that (at least one) element

Γii(s) = 1, where t ≤ s < t− T2, for some node i defined

by the index set S
(i)
y . This, in turn, implies that for each t

large enough there exists such a τ3 > 0 that Φ(t, t− τ3) ≻ 0
and, at the same time that Φ(t, t − τ3) ≺ Π(t, t − τ3) in

such a way that Φ(t, t − τ3) is obtained after multiplying

at least one element in each row of Π(t, t − τ3) by the

term 1 − 1
t−τ3

. One such term corresponds to one node

having access to measurements; in the case of more nodes

having access to measurements, more elements of Π(t, t−τ3)
become multiplied by analogous terms.

In the case of a general structure of E{C(t)} which is

cogredient to (17) (Lemma 1), we can apply Lemma 2 and

conclude that at almost every realization of the sequence

{C(t)}, for each t large enough there exists such a τ4 > 0
that Π(t, t − τ4) is cogredient to a matrix similar to C̄l,

where C̄l is defined in (18), in which C̄l
i ≻ 0, i = 1, . . . , κ

and D̄
[l]
j , j ∈ {1, . . . , k} satisfy assertion b) of Lemma 2

(recall that matrices C̄i are primitive). The last statement

follows directly form the fact that Lemma 2 is concerned

with structural properties, rather than with particular values

of the elements of the matrices in (18), so that the properties

of the powers of E{C(t)} can be directly transferred to the

properties of similar matrices resulting from the products of

the realizations of C(t) (as above).

Coming back to the definition of Φ(t, τ) in (20), we

immediately conclude that at almost every realization of the

sequence {C(t)}, for each t large enough there exists such a

τ5 > 0 that Φ(t, t− τ5) = C(t)(I− 1
t
Γ(t)) · · ·C(t− τ5)(I−

1
t−τ5

Γ(t − τ5)) ≻ 0. Having in mind general properties of

Γ(t), we realize that there are at least κ positive diagonal

elements of E{Γ(t)} and that their indices are such that

at least one such element corresponds to each irreducible

component of Φ(t, t − τ5). Having in mind the important

property from assertion b) in Lemma 2 applied to almost all

realizations of Φ(t, 1), one concludes that for t large enough

there exists such a T > 0 that Φ(t, t− T ) ≺ Π(t, t− T ), in

such a way that at least one element in each row of Π(t, t−T )
becomes multiplied by the term 1− 1

t−T
in order to generate

Φ(t, t− T ).
Consequently, we have that

‖Φ(t, τ)‖∞ ≤ (1−
ks
sT

) · · · (1−
k1
T
) ≤ exp(−

1

T

s
∑

i=1

ki
i
),

(21)

where s = [ t−τ
T

] and 0 < ki < 1, i = 1, . . . , s, so that we

conclude that limt→∞ ‖Φ(t, τ)‖∞ = 0 almost surely for any

fixed τ , [23].

b) In order to analyze the second term at the right hand

side of (20), we will construct the following state model

x(t) = Fx(t− 1) + Lε(t), z(t) = Hx(t), (22)

where F =











−G1 I · · · 0 0

...
−Gν 0 · · · 0 I
0 0 · · · 0











, L = [ST
0 · · ·ST

ν ]
T and H =

[I
...0

... · · ·
...0].

Assuming, for the sake of clarity of presentation, that the

required measurements are always available, we have further

from (4) that y
(i)
k (t) = hkx(t) + ξ

(i)
k (t) where hk, k =

1, . . . , n, is the corresponding transformation derived from

(22) and ξ
(i)
k (t) the measurement noise. Consequently,

Y D(t− 1)Y (t− τ − 1) = hkx(t− 1)x(t− τ − 1)hT
l 1+

+Ξk(t)x(t)
T hT

k + Ξl(t− τ)x(t − τ)T hT
l +

+ΞD
k (t)Ξl(t− τ), (23)

where Ξk(t) = [ξ
(1)
k (t) · · · ξ

(N)
k (t)]T and ΞD

l (t) =

diag{ξ
(1)
l (t) · · · ξ

(N)
l (t)}. Furthermore, the term x(t)x(t −

τ)T can be represented using [18], p. 1237, in the following

convenient form following from (22):

x(t)x(t − τ)T = F t−τx(τ)x(0)TFT (t−τ)+ (24)
∑t−τ−1

s=0 F t−sx(s)ε(s + 1)TLTFT (t−τ−1−s)+
∑t−τ−1

s=0

∑s+τ−1
j=s F t−1−jLε(j + 1)×

ε(s+ 1)TLTFT (t−τ−1−s)+
∑t−τ−1

s=0 F t−τ−1−sε(τ + 1 + s)x(s)TFT (t−τ−s)+
∑t−τ−1

s=0 F t−τ−1−sLε(τ + s+ 1)×

ε(s+ 1)TLTFT (t−τ−1−s).

Using (24) we conclude that e(t−1) consists of several terms

involving the measurement noise on one side, and the input

noise on the other side, and that all these terms are in the

form of martingale difference sequences (except the one that

depends on the initial condition, see [18], [23]).

Having in mind that a detailed analysis of all terms

requires a lot of space and a very cumbersome notation, take,

for example, the most important part of the third term at the

right hand side of (24) containing only ε(s + 1)ε(s + 1)T ,

s = 0, . . . , t− τ − 1. In such a way we obtain the term

e1(t− 1) = hk[

t−τ−1
∑

s=0

F t−sLS(s+ 1)LTFT (t−τ−1−s)]hT
l 1,

(25)

where S(s+1) = ε(s+1)ε(s+1)T −Rε, which represents a

part of e(t−1). Coming back to (20), we introduce e1(j−1)
in the second term from the right hand side and obtain

α1(t) =
∑t−τ−1

s=0

∑t
j=τ+1+s

1
j
Φ(t, j + 1)C(j)Γ(j)1

×hkF
j−sLS(s+ 1)LTFT (j−τ−1−s)hT

l . (26)

As {S(t)} is a zero mean i.i.d. sequence with E{||S(t)||2} <
∞ according to the adopted assumptions, we can apply to

(26) Theorem B.6.1 from [23], dealing with weighted sums

of martingale difference sequences. We obtain that almost

surely

‖α1(t)‖ = (27)

O(

t−τ−1
∑

s=0

[

t
∑

j=τ+1+s

1

j2
‖Φ(t, j + 1)‖2‖F‖2(j−s)]

1
2 ) =

O(
t

∑

s=0

[
1

j2
exp(−c

t
∑

i=1

1

i
)]

1
2 ) →t→∞ 0,
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where c > 0, having in mind that maxi{|λi(F )|} < 1 (see

[23], Lemma 3.1.1).

We can proceed in a completely analogous way with the

analysis of the remaining components of e(t− 1).
Coming back to (20), we conclude that on almost all

sample paths limt→∞ ‖R̃(t)‖ = 0.

c) The last part of the proof is devoted to the convergence

rate of the recursion (20). In order to prove the assertion of

the theorem, divide both sides of (19) by tδ , δ > 0. Denoting

R̃(t)/tδ as R̃δ(t), we obtain for t large enough that

R̃δ(t) = C(t)(I−
1

t
Γδ(t))R̃δ(t−1)+

1

t1−δ
C(t)Γ(t)e(t−1),

(28)

where Γδ(t) = Γ(t) − δI , after using the representa-

tion ( t−1
t
)δ = 1 − δ

t
+ O( 1

t2
). Using the same argu-

ments as above, one can directly show that Φδ(t, s) =
C(t)(I− 1

t
Γδ(t)) · · ·C(s)(I− 1

s
Γδ(s)) satisfies almost surely

‖Φδ(t, s)‖ ≤ exp(−cδ
∑s

i=1
1
i
), where cδ > 0, provided

δ < 1. Furthermore, following the same line of thought as

above, one comes to the basic relation which holds almost

surely for 0 < δ < 1
2

lim
t→∞

‖R̃δ(t)‖ ≤ lim
t→∞

t
∑

s=0

([
1

j2(1−δ)
exp(−cδ

t
∑

i=1

1

i
)]

1
2 = 0

(29)

(see, for example, [23], Lemma 3.1.1). Thus, the result.

Following the above line of thought one can easily prove

the following general result:

Theorem 2: Let Assumptions A1) - A3) be satisfied and

let

A4)
⋃N

i=1(S
(i)
u × S

(i)
u ) = {1, . . . ,m} × {1, . . . ,m};

⋃N
i=1(S

(i)
y × S

(i)
u ) = {1, . . . , n} × {1, . . . ,m}.

Then, for all i = 1, . . . , N ,

‖G(i)(t)−G(λ)‖ = o(t−δ), ‖W (i)(t)−W (λ)‖ = o(t−δ),
(30)

almost surely, where 0 < δ < 1
2 .

The proof is obtained in a straightforward way by applying

the procedure from Theorem 1 to all the estimated correlation

coefficients, elements of matrices G and W . It is to be

noted that the cross correlation functions between the outputs

need not to be estimated, due to the adopted form of the

polynomials A(z) and P (z) in (1) and (2), respectively. In

such a way, the number of the output correlation functions

needed for identifying the system is reduced at the expense

of an increased model order.

This result enables formulating the final convergence re-

sult.

Theorem 3: Assume that Assumptions A1)– A4) hold.

Then θ(i)(t) given by (9) converges almost surely, for all

i = 1, . . . , N , to a limit belonging to the solution set of the

Yule-Walker equation (6).

Proof: The proof is based on the general convergence

theorem for stochastic approximation algorithms with ex-

panding truncations and, concretely, on the results presented

in [18], [23]. Namely, equations (30) obtained as the result of

the above analysis, enable choosing the function M(σ(i)(t−

1)) in (9) in such a way that M(σ(i)(t − 1)) < tγ , where

0 < γ < δ. Following [18], one obtains

∞
∑

t=1

1

t
‖G−G(i)(t)‖‖θ(i)(t−1)‖ ≤

∞
∑

t=1

1

t1+δ−γ
< ∞, (31)

which implies
∑∞

t=1
1
t
n(i)(t) < ∞ (a.s.), where n(i)(t) =

G(i)(t) [W (i)(t)T− G(i)(t))T θ(i)(t−1)]+GGT θ(i)(t−1)−
GWT is the equivalent noise term, i = 1, . . . , N . Hence the

result.
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sus based overlapping decentralized estimator,” IEEE Trans. Autom.

Control, vol. 54, pp. 410–415, 2009.
[10] ——, “Consensus based overlapping decentralized estimation with

missing observations and communication faults,” Automatica, vol. 45,
pp. 1397–1406, 2009.

[11] ——, “Decentralized parameter estimation by consensus based
stochastic approximation,” IEEE Trans. Autom. Control, vol. 56, no. 3,
pp. 531–543, 2011.
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