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Abstract— A new approach to position control based on
microstepping with nonlinear torque modulation in permanent
magnet stepper motors is explored in this paper. The proposed
method consists of nonlinear torque modulation, a commutation
scheme, and a nonlinear current tracking controller. Previous
microstepping control methods that guarantee the desired
currents have relatively large position tracking errors due to
their mechanical dynamics. A method of nonlinear torque
modulation is designed to solve this problem. We propose
a commutation scheme that is equivalent to microstepping
in which the desired currents have time-varying amplitudes
with π

2 electrical phase advance. The nonlinear controller in
the electrical dynamics is developed to guarantee the desired
current derived by the commutation scheme. The proposed
control method is in the form of field oriented control (FOC)
even though direct quadrature transformation so that the
zero direct current is kept to maximize the torque. Thus, the
efficiency of the energy consumption of the proposed method
is better those that of previous microstepping control methods
for guarantees of the desired currents. The performance of
the proposed position control method was validated through
simulations.

I. INTRODUCTION

Microstepping is used to improve the resolution and

increase the motion stability of permanent magnet stepper

motors (PMSMs). Microstepping is a control method for

two phase PMSMs in which the desired currents, two si-

nusoidal inputs that are shifted 90 degrees, are given to

a PMSM for position tracking. Regulation of the desired

currents is important in microstepping. Several feedback

control methods have been studied in order to improve

the current tracking performance of microstepping [1] -

[4]. Generally, microstepping with current proportional and

integral (PI) feedback loops is used to maintain desired

currents in industrial applications [1]. However, the PI con-

trollers cannot efficiently compensate for the effects of both

back-emfs and the inductances. Microstepping with current

PI and feedforward was proposed to improve the tracking

performance of the desired currents [2]. Position feedback

by resolvers or encoders built into PMSMs was previously

used to improve microstepping in industrial applications [5].
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Recently, Lyapunov-based controller was developed to guar-

antee the exponential convergence of the currents to the de-

sired currents using full state feedback [3]. In [4], Lyapunov-

based control with a nonlinear observer was implemented

using only position feedback, and the stability of the closed-

loop was presented. Since the electrical dynamics is much

faster than the mechanical dynamics in PMSM, the posi-

tion tracking error in the nonzero velocity appears due to

the mechanical dynamics although the desired currents are

guaranteed.

In order to improve the position tracking performance,

various methods have been researched to control position of

PMSM using direct quadrature (DQ) transformation, which

makes mechanical dynamics linear [6] - [9]. A technique

of exact feedback linearization using full state-feedback was

proposed with extensions to the partial state-feedback in [6].

A field weakening control with state feedback was proposed

for high speed operation [7]. A nonlinear adaptive controller

for PMSMs with unknown parameters was presented to

guarantee asymptotic tracking of a reference trajectory [8].

In [9], a conventional servo compensator-based controller

was presented to improve transient performance. Although

all of the methods improve the position tracking performance

of PMSM, these method were not designed based on two

phase frame.

We present a new approach to position control based on

microstepping with nonlinear torque modulation in PMSMs.

The proposed method includes nonlinear torque modulation,

a commutation scheme, and a nonlinear current tracking

controller. We study why the torque modulation is required

to improve the position tracking performance of microstep-

ping [4]. The latter is implemented to guarantee delivery of

the desired current derived by the commutation scheme. The

least lower bound of absolute steady-state position tracking

error during a period of constant velocity is estimated

when the desired current is regulated by conventional mi-

crostepping with feedback control. This steady-state position

tracking error is the limitation of conventional microstepping

with the feedback control appeared due to the mechanical

dynamics of PMSM. Nonlinear torque modulation is pro-

posed to overcome this problem. A commutation scheme

implementing field oriented control (FOC) is developed to

construct the desired current profile for torque generation

even though DQ transformation is not used. FOC maintains

zero direct current to maximize torque. Therefore, the energy

efficiency of the proposed method is superior to those of

previous microstepping control methods for the regulation of

the desired currents. This commutation scheme is found to
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be equivalent to microstepping control, in which the desired

currents have time-varying amplitudes with π
2 electrical

phase advance. We demonstrate that, in contexts without

step-out, the required torque and quadrature are almost

identical regardless of the type of control method used. The

performance of the proposed position control method was

validated through simulations.

II. MATHEMATICAL MODEL OF PERMANENT MAGNET

STEPPER MOTOR AND MICROSTEPPING PERFORMANCE

ANALYSIS

A. Mathematical Model

The dynamics of a PMSM can be represented in the state-

space such that [7]

θ̇ = ω

ω̇ =
1

J
[−Kmia sin(Nrθ)+Kmib cos(Nrθ)−Bω− τl ]

i̇a =
1

L
[va−Ria +Kmω sin(Nrθ)]

i̇b =
1

L
[vb−Rib−Kmω cos(Nrθ)]

(1)

where va, vb and ia, ib are the voltages [V] and currents

[A] in phases A and B, respectively. ω is the rotor (angular)

velocity [rad/s], θ is the rotor (angular) position [rad], B is

the viscous friction coefficient [N·m·s/rad], J is the inertia of

the motor [Kg·m2], Km is the motor torque constant [N·m/A],

R is the phase winding resistance [Ω], L is the phase winding

inductance [H], Nr is the number of rotor teeth, and τl is

the load torque. Since detent torque in a PMSM does not

significantly affect the torque produced by the motor, it can

therefore be ignored [1]. In addition, the magnetic coupling

between the phases is also ignored, as well as the variation

in inductance due to magnetic saturation. Furthermore, an

ideal sinusoidal flux distribution is assumed.

B. Microstepping Performance Analysis

In this subsection, the load torque perturbation, denoted

by τL, is, for analysis purposes, assumed to be zero in this

subsection. In [3], it was proven that if inputs vd
ams , vd

bms
of

in conventional microstepping are given to the PMSM (1) as

vd
ams = Vmax cos(Nrθ d), vd

bms
= Vmax sin(Nrθ d) (2)

where θ d is the static desired position, Vmax is the am-

plitude of the microstepping input, then the states of the

PMSM (1) locally asymptotically converge to equilibrium

points [θ d , 0, idams , idbms
], i.e.

lim
t→∞

θ(t) = θ d , lim
t→∞

ω(t) = 0, lim
t→∞

ia(t) = idams
, lim

t→∞
ib(t) = idbms

.

(3)

where idams
= vd

ams
R , idbms

=
vd

bms
R are the desired currents. Gener-

ally, various feedback controller in the current-loop is used

to guarantee the desired current such as PI controller, PI

and feedforward controller, nonlinear controller, etc [1] -

[4]. In PMSM (1), the current dynamics is much faster

than the mechanical dynamics. Therefore, a position tracking

error appears although the feedback controller guarantees the

desired currents idams , idbms
during nonzero velocity period.

That will be shown in next Proposition.

Proposition 1: Consider the PMSM (1). Suppose that the

desired currents idams , idbms
are guaranteed, and that there is no

step-out. If the desired velocity is a constant, i.e. θ d = ωd
maxt

where ωd
max is the desired velocity, then the absolute steady-

state position tracking error in the constant velocity period

is greater than or equal to
∣∣∣ RBωd

max
KmVmaxNr

∣∣∣. ♦
Proof: If ia = idams

, ib = idbms
, PMSM (1) becomes

θ̇ =ω

ω̇ =
1

J
[
KmVmax

R
sin(Nrθ d−Nrθ)−Bω].

(4)

Since the position θ is close to the desired position θ d ,

PMSM (4) can be approximated as

θ̇ =ω

ω̇ =
1

J
[
KmVmax

R
(Nrθ d−Nrθ)−Bω].

(5)

From (5) we obtain the transfer functions from the desired

position θ d to the position θ as

Θ(s)
Θd(s)

=
G(s)

1+G(s)
(6)

where G(s) = KmVmaxNr
Rs(Js+B) . The constant velocity period in a

desired trajectory, θ d(t) can be regarded as a ramp input,

ωd
max×t. From (6), the absolute steady-state position tracking

error for the ramp input is obtained as

|θe(∞)|= |θ d(∞)−θ(∞)|

= lim
s→0

∣∣∣∣s 1

1+G(s)
ωd

max

s2

∣∣∣∣ =
∣∣∣∣ RBωd

max

KmVmaxNr

∣∣∣∣ . (7)

The absolute steady-state position tracking error (7) is ob-

tained under assumption that the currents are equal to the

desired currents. Therefore, the actual absolute steady-state

position tracking error during the constant velocity period is

greater than or equal to
∣∣∣ RBωd

max
KmVmaxNr

∣∣∣.∣∣∣ RBωd
max

KmVmaxNr

∣∣∣ is the least lower bound of microstepping

with feedback control of the electrical dynamics during the

constant velocity period. This is a limitation of microstepping

with feedback control for regulation of the desired current.

Furthermore, the constant amplitude Vmax in the microstep-

ping inputs (2) results in degradation of energy efficiency.

III. CONTROLLER DESIGN

The proposed method consists of three elements: i.e.,

nonlinear torque modulation, commutation scheme, and the

current tracking controller. In this section, the design of the

proposed method is presented, and the proposed method is

analyzed in comparison to microstepping and FOC.
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A. Nonlinear Torque Modulation

The mechanical dynamics of PMSM is

θ̇ =ω

ω̇ =
1

J
[−Kmia sin(Nrθ)+Kmib cos(Nrθ)−Bω− τl ].

(8)

In the context of mechanical dynamics, the torque τ is the

input as follows

θ̇ =ω

ω̇ =
1

J
[τ−Bω− τl ]

(9)

where τ = −Kmia sin(Nrθ) + Kmib cos(Nrθ). The tracking

error of the mechanical dynamics is defined as

eθ = θ d−θ , and eω = ω∗−ω (10)

where where θ d is the desired position profile and ω∗ is yet

to be defined. The tracking error dynamics of the mechanical

dynamics is given by

ėθ =ωd−ω

ėω =ω̇∗− 1

J
[τ−Bω− τl ].

(11)

Lemma 1: Consider the tracking error dynamics (11). If

the nonlinear torque modulation is designed by

ω∗ =ωd + k1(θ d−θ)

τ =k2(ω∗−ω)+(θ d−θ +Bω + Jω̇∗ + τl)
(12)

where k1, k2 are positive constant and ωd = θ̇ d is the desired

velocity, then the origin of the tracking error dynamics (11)

is exponentially stable. ♦
Proof: For stability analysis, a Lyapunov candidate

function V1 is defined as

V1 =
1

2
e2

θ +
J
2

e2
ω . (13)

The derivative of V1 with respect to time is given by

V̇1 =eθ ėθ + Jeω ėω

=eθ (ωd−ω)+ eω(Jω̇∗− τ +Bω + τl).
(14)

With the control input (12), V̇1 becomes

V̇1 =−k1e2
θ − k2e2

ω < 0. (15)

Therefore, the origin of the tracking error dynamics (11) is

exponentially stable.

Remark 1: The physical meaning of ω∗ in (12) is as

follows: If θ d > θ , then ω∗ > ωd for θ to catch up with

θ d . And if θ d < θ , then ω∗ < ωd for θ to keep pace with

θ d . ♦

B. Commutation Scheme

In the mechanical dynamics (8), torque τ is generated by

the current such that

τ =−Kmia sin(Nrθ)+Kmib cos(Nrθ). (16)

The nonlinear torque modulation (12) is designed under the

assumption that the torque τ is the input in (8). The actual

input of the mechanical dynamics (8), however, is not torque

τ but represents the currents ia, ib. In order to generate the

torque (12), we propose a new commutation scheme defined

as

ida =− τ
Km

sin(Nrθ), idb =
τ

Km
cos(Nrθ). (17)

where ida , idb are the desired currents. The commutation

scheme (17) is analyzed compared with the desired currents

idams , idbms
in microstepping (2). From the following relation-

ships

ida =− τ
Km

sin(Nrθ) =
τ

Km
cos(Nrθ +

π
2

) =
τ

Km
cos(Nrθ d

ms),

idb =
τ

Km
cos(Nrθ) =

τ
Km

sin(Nrθ +
π
2

) =
τ

Km
sin(Nrθ d

ms).

(18)

(Nrθ + π
2 ) can be regarded as the desired electrical posi-

tion Nrθ d
ms in the context of microstepping. Therefore, the

proposed commutation scheme (17) is equivalent to the mi-

crostepping in which the desired currents have time-varying

amplitudes with π
2 electrical phase advance. Note that the de-

sired position θ d
ms in the commutation scheme is not the same

as desired position θ d in nonlinear torque modulation (12).

However θ d
ms is the same as θ d in microstepping (2). The

desired currents generated by the commutation scheme (17)

is illustrated in Fig. 1.

�� θ

�
� ��� θ

��

	�

�

�

τ

( )��� �� �
� 	� �β ( )�� 	� �α

Fig. 1. Desired currents (17)

Remark 2: From (18), the commutation scheme (17) is

equivalent to microstepping in which desired currents have

time-varying amplitudes with π
2 electrical phase advance.

Since the desired electrical position Nrθ d
ms is always ahead

of the present electrical position Nrθ since π
2 , PMSM does

not step out unless the inputs are saturated. ♦

917



C. Nonlinear Current Tracking Controller

The electrical dynamics in the PMSM (1) is

i̇a =
1

L
[va−Ria +Kmω sin(Nrθ)]

i̇b =
1

L
[vb−Rib−Kmω cos(Nrθ)]

(19)

Decreases of current and phase lags appear in the electrical

dynamics due to the effects of back-emf and inductance.

Therefore, our nonlinear controller is designed to guarantee

the desired currents (17).

Let us define the tracking error of the electrical dynamics

as

ea = ida− ia, and eb = idb− ib. (20)

The tracking error dynamics of the electrical dynamics is

given by

ėa =i̇da−
1

L
[va−Ria +Kmω sin(Nrθ)]

ėb =i̇db−
1

L
[vb−Rib−Kmω cos(Nrθ)].

(21)

Lemma 2: Consider the tracking error dynamics (21). If

nonlinear current tracking controller is given to the electrical

dynamics (19) as

va =(Ria−Kmω sin(Nrθ))+L(i̇da + k3ea),

vb =(Rib +Kmω cos(Nrθ))+L(i̇db + k3eb),
(22)

then the origin of the tracking error dynamics (21) is expo-

nentially stable. ♦
Proof: A Lyapunov candidate function, V2 is defined

as

V2 =
1

2
e2

a +
1

2
e2

b. (23)

Differentiating V2 with respect to time yields

V̇2 =ea(i̇da− i̇a)+ eb(i̇db− i̇b)

=ea(i̇da−
1

L
(va−Ria +Kmω sin(Nrθ))

+ eb(i̇db−
1

L
(vb−Rib−Kmω cos(Nrθ)).

(24)

Substituting the control law (22) in (24) gives us

V̇2 =−k3(e2
a + e2

b) < 0. (25)

Therefore, the origin of the tracking error dynamics (21) is

exponentially stable.

The nonlinear current tracking controller (22) guarantees

the exponential convergences of the currents to the desired

currents (17).

IV. PERFORMANCE ANALYSIS OF THE PROPOSED

METHOD AND ANALYSIS OF THE CLOSED-LOOP

STABILITY

A. Performance Analysis of the Proposed Method

In this section, we study the relationship between mi-

crostepping and FOC. The DQ transformation [12] for the

currents is defined as[
id
iq

]
=

[
cos(Nrθ) sin(Nrθ)
−sin(Nrθ) cos(Nrθ)

][
ia
ib

]
(26)

where id is the direct current and iq is the quadrature current,

respectively. Applying the DQ transformation to the desired

currents in microstepping (2), the desired currents id
ams , idbms

become

iddms
=

Vmax

R
cos(Nrθ d−Nrθ), idqms

=
Vmax

R
sin(Nrθ d−Nrθ).

(27)

where iddms
and idqms

are the desired direct and quadrature

currents in microstepping (2). In PMSM, the torque τ =
−Km(ia sin(Nrθ)+ ib cos(Nrθ)) is equivalent to the quadra-

ture current Kmiq. Therefore, in order to improve energy

efficiency, it is necessary to guarantee zero direct current.
Proposition 2: Consider the PMSM (1). Suppose that

ia = ida and ib = idb . Then the zero direct current is maintained

by the proposed method. ♦
Proof: Applying the DQ transformation to the desired

currents in (17), the desired currents become

idd = 0, idq =
τ

Km
(28)

where idd and idq are the desired direct and quadrature currents

in microstepping (2).
Therefore, if ia = ida and ib = idb , then id = 0, iq = τ

Km
.

From Proposition 2, it is apparent that the proposed control

is in the form of FOC, even though DQ transformation is

not used.
Remark 3: From Remark 2 and Proposition 2, FOC is

equivalent to microstepping, in which the desired currents

have time-varying amplitudes with π
2 electrical phase ad-

vance in the proposed method. ♦
Now we study the desired quadrature current id

q for PMSM

not to prevent step-out during the constant velocity period.

For analysis, an Assumption 1 is made:
Assumption 1: eθ and eω can be ignored since eθ and

eω are very small during the constant velocity period. ♦
Proposition 3: Consider the PMSM (1) under Assump-

tion 1. Then in order to prevent step-out during the con-

stant velocity period, the approximated required torque is

Bωd + τL and the approximated desired quadrature current

is Bωd+τL
Km

. ♦
Proof: With Assumption 1, θ = θ d , ω = ωd = ω∗.

During constant velocity period, ω̇ should be almost zero in

order to prevent step-out. Therefore, From (9), we obtain the

approximated torque

τ ≈ Bωd + τL. (29)

Since idq = τ
Km

,

idq ≈
Bωd + τL

Km
. (30)

Remark 4: From Proposition 3, we conclude that the

required torque and quadrature current are almost identical

regardless of the type of control method used. ♦
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B. Analysis of the Closed-loop Stability

Since the proposed method (12), (22) are separatively

designed, the stability of closed-loop should be proven. Let

us define new errors as

em =
[

eθ
eω

]
, ee =

[
ea
eb

]
. (31)

The error dynamics of the closed-loop becomes

ėm = Amem +Bm(θ)ee (32)

ėe = Aeee (33)

where Am =
[−k1 1

−1 −k2

]
, Bm(θ) =[

0 0

−Km sin(Nrθ)
J

Km cos(Nrθ)
J ,

]
, Ae =

[−k3 0

0 −k3

]
.

Theorem 1: Consider the error dynamics of the closed-

loop(32), (33). If k1, k2, and k3 are positive constants, the

origins of (32), (33) are asymptotically stable. ♦
Proof: If k1, k2, and k3 are positive constants, Am and

Ae are Hurwitz. We define Vm as

Vm =
1

2
eT

mem (34)

V̇m is given by

V̇m =−1

2
eT

mQmem + eT
mBm(θ)ee (35)

where Qm =
[

k1 0

0 k2

]
. Bm(θ) is bounded. If we define

Bm(θ)ee as the input and em as the output in (32), (35) is

eT
m︸︷︷︸

out put

Bm(θ)ee︸ ︷︷ ︸
input

= V̇m + eT
mQmem︸ ︷︷ ︸

>0

. (36)

Equation (36) shows that the relationship between em and

Bm(θ)ee is strictly output passive [13]. And ėm = Amem is

zero-state observable since Am is Hurwitz. Therefore, (32) is

bounded input bounded output (BIBO) stable. By defining

the Lyapunov candidate function, Ve, as

Ve =
1

2
eT

e ee, (37)

we obtain

V̇e =−k2eT
e Qeee (38)

where Qe =
[

k3 0

0 k3

]
. Thus the origin of (33) is exponen-

tially stable and the origin of (32) is asymptotically stable.

V. SIMULATION RESULTS

Simulations were performed to evaluate the performance

of the proposed controller. The proposed method was com-

pared with Lyapunov-based control in microstepping [4] such

as

vd
ams =Vmax cos(Nrθ d),

vd
bms

=Vmax sin(Nrθ d),

va =Ria−Kmω sin(Nrθ)+L(v̇d
ams

+ρ(vd
ams
−Ria)),

vb =Rib +Kmω cos(Nrθ)+L(v̇d
bms

+ρ(vd
bms
−Rib)).

(39)

TABLE I

PARAMETERS OF PMSM AND CONTROLLER GAINS

Parameter Value Parameter Value

L 40 mH R 14.8 Ω
J 8×10−5 kg·m2 Km 0.5 N·m /A

Nr 50 B 5×10−3 N·m·s/rad

τL 0.01 k1 0.01

k2 0.01 k3 30000

Vmax 6.5 ρ 30000
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Fig. 5. Voltages and current tracking performances of Lyapunov-based
control

The parameters of PK266-01B PMSM made by Oriental

motor [15], the proposed method, and Lyapunov-based con-

troller listed in Table I were used. Since the electrical

dynamics is faster than the mechanical dynamics, k3 should

be bigger than k1 and k2. The desired position and velocity

profiles shown in Figs. 2 were used. During the constant

velocity period, ωd = 13.13 rad/s. Figure 3 indicates the

position tracking errors of both the proposed method and

Lyapunov-based control. The steady-state position tracking

error of Lyapunov-based control during the constant velocity

period was 0.0088 rad, and increased more than 0.0070 rad

rad according to (7) due to the electrical dynamics and

the load torque. DC offset position error was detected in

the final position due to load torque. However, the steady-

state position tracking error of the proposed method during

the constant velocity period was only 0.00095 rad. The

proposed method overcomes the limitations associated with

microstepping. Since the nonlinear controller compensated

0 0.5 1 1.5 2

−20

−10

0

10

20

Time [second]

P
ha

se
 A

 v
ol

ta
ge

 [V
]

(a) Phase A voltage

0 0.5 1 1.5 2

−20

−10

0

10

20

Time [second]

P
ha

se
 B

 v
ol

ta
ge

 [V
]

(b) Phase B voltage

0 0.5 1 1.5 2

−0.2

−0.1

0

0.1

0.2

0.3

Time [second]

P
ha

se
 A

 c
ur

re
nt

 [A
]

 

 

i
a
d

i
a

(c) Tracking performance of phase A current

0 0.5 1 1.5 2

−0.2

−0.1

0

0.1

0.2

0.3

Time [second]

P
ha

se
 B

 c
ur

re
nt

 [A
]

 

 

i
b
d

i
b

(d) Tracking performance of phase B current

Fig. 6. Voltages and current tracking performances of proposed method
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for the load torque by torque modulation (12), the position

error of the final position was zero. τ was derived by

nonlinear torque modulation (12) and is shown in Fig. 4.

During the constant velocity period, τd was 0.089, which

is very close to the value of 0.088 obtained by (29). The

torque increased during the acceleration period and decreased

during the deceleration period. Although the acceleration is

zero during the constant velocity period, the desired torque

is not zero due to friction, load torque, and tracking errors

of position and velocity. Figures 5 and 6 voltages and

current tracking performances of both methods. In Lyapunov-

based control, the voltages were increased to compensate

for the effects of back-emfs and inductances as shown in

Figs. 5 (a) and (b). Therefore, Figs. 5 (c) and (d) show

that the desired current was maintained. When the proposed

method was used, the voltages followed the torque τ as

shown Figs. 5 (a), (b). During the acceleration period, the

amplitudes of the voltages were increased to compensate for

the effects of back-emfs and inductances in the proposed

method. However, at the outset of the deceleration period the

phase voltage inputs were decreased due to friction and back-

emfs. The phase voltage inputs increased again so that the

position would converge to the desired position. The current

tracked the desired currents well, as shown in Figs. 6 (c)

and (d). In addition, the currents used in the proposed

method were reduced compared to those used in Lyapunov-

based control. Since the magnitudes of the desired currents

vary with time in the proposed method, i.e., the desired

torque, the phase currents of the proposed method are unable

to accurately track the desired phase currents during the

acceleration and deceleration periods. Therefore, the absolute

position tracking error increased during the acceleration and

deceleration periods as shown in Fig. 3. Figure 7 shows

the direct and quadrature currents of both methods. The

quadrature currents of both methods were almost identical,

as predicted by Remark 4. Furthermore, during the constant

velocity period, the quadrature current was 0.0175, which

is very close to the value of 0.0174 calculated by (30). In

Lyapunov-based control, since |Nrθ d − Nrθ | < π
2 , id was

always positive (27). On the other hand, id was maintained

to be near zero by the proposed method. Consequently, the

power of the proposed method was smaller that that of

Lyapunov-based control, even though the position tracking

performance of the proposed method was better that that of

Lyapunov-based control as shown in Fig. 8.

VI. CONCLUSIONS

We present a new approach to achieve position control

in PMSMs that is based on microstepping with torque

modulation. Nonlinear torque modulation was proposed to

achieve the desired torque. A commutation scheme was

developed to determine the desired current profile for the

desired torque. A nonlinear current tracking controller was

designed to guarantee that the desired current would be

derived by the commutation scheme. FOC is proposed even

though DQ transformation is not used. FOC is equivalent

to microstepping control if the desired currents have time-

varying amplitudes with π
2 electrical phase advance. Our

simulation results showed that the proposed method im-

proves the position tracking performance of microstepping.

FOC was achieved by the proposed method even though

DQ transformation was not used. Furthermore, the energy

efficiency of the proposed method is superior to that of

previous microstepping control methods and guarantees the

achievement of of the desired currents.
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