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Abstract— In this paper we propose a distributed algorithm for solv-
ing linear programs with combinations of local and global constraints
in a multi-agent setup. A fully distributed and asynchronous algorithm
is proposed. The computation of the local decision makers involves
the solution of two distinct (local) optimization problems, namely a
local copy of a global linear program and a smaller problem used to
generate ”problem columns”. We show that, when running the proposed
algorithm, all decision makers agree on a common optimal solution,
even if the original problem has several optimal solutions, or detect
unboundedness and infeasibility if necessary.

I. INTRODUCTION

A reliable decision making by distributed agents is a core

requirement for all envisioned self-organizing, networked systems.

Numerous applications, ranging from sensor networks to robotic

systems, need the possibility to solve optimization and decision

problems, while the problem information is distributed throughout

the network.

Distributed optimization in multi-agent systems has recently

attained significant attention in the literature, see e.g. [1], [2], [3]

for general convex programming. Several contributions also deal

explicitly with distributed linear programs, including [4], [5]. Of

particular relevance to this work is the work of Notarstefano and

Bullo [6], see also [7], which proposes the constraints consensus

as distributed algorithm for solving abstract optimization problems

(including dual linear programs). Building on this work, we have

proposed in [8] the Distributed Simplex as a primal algorithm for

solving distributed linear programs in primal form. The actual paper

complements our previous work.

The contributions of this paper are as follows. We propose an

asynchronous algorithm which solves distributed linear programs

with a particular structure. We are concerned with problems where

several agents supervise their own decision variables, which are

required to be contained within (bounded or unbounded) polyhedra.

The agents should find an agreement and adjust their decision

variables such that the sum of their individual costs is minimized

while a set of global equality constraints (involving decision

variables of all agents) are satisfied. We propose an algorithm in

which each agent has internally a two-stage structure. Each agent

treats internally two optimization problems: a local version of the

full problem and a sub-problem which is used to generate new

problem columns. Our algorithm adapts here the column generation

idea from the classical Danzig Wolfe decomposition. The different

agents exchange asynchronously primal information concerning
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M. Bürger and F. Allgöwer are with the Institute for Sys-
tems Theory and Automatic Control, University of Stuttgart, Pfaf-
fenwaldring 9, 70550 Stuttgart, Germany, {mathias.buerger,
frank.allgower}@ist.uni-stuttgart.de.

Giuseppe Notarstefano is with the Department of Engineering,
University of Lecce, Via per Monteroni, 73100 Lecce, Italy,
giuseppe.notarstefano@unile.it.

only their local copies of the original problem, while the sub-

problems remain private. This gives rise to a novel fully distributed

algorithm without coordination unit. The novel algorithm can be

seen as a generalization of the Distributed Simplex algorithm, we

have presented in [8]. We prove that our algorithm can detect

infeasibility or unboundedness of the problem if necessary. If

instead a finite optimal basis exists, we show that all agents will

agree on a common optimal basis in finite time. We also point out

that it can in general not be predicted, on which optimal solution

the agents agree if the optimal solution is not unique.

The remainder of the paper is organized as follows. We present

the problem setup in § II, including the original optimization

problem and the multi-agent system. In § III the classical decom-

position and column generation method is reviewed. The main

result of this paper is presented in § IV, where we combine the

Distributed Simplex algorithm with the column generation idea,

to propose an asynchronous distributed algorithm. We prove the

correctness of the new algorithm.

II. PROBLEM STATEMENT

We study a multi-agent decision problem where distributed

decision makers, equipped with individual costs and constraints,

have to adjust their decisions in a way that is aligned with a coupling

constraint, involving all the decision variables.

A. Distributed Linear Programs

We are given a group of N decision makers, in the following

called agents. Each agent i ∈ {1, . . . , N} supervises a vector of

decision variables xi ∈ R
ni . It aims to minimize an individual

linear cost

cT
i xi,

ci ∈ R
ni , while keeping the decision variable within the non empty

polyhedron

xi ∈ Xi.

Note that the constraint sets Xi are not necessarily bounded. In

particular they might be restricted in some directions, while they are

unbounded in other directions. We require the agents, furthermore,

to adjust their decision variables xi in a way that satisfies the

coupling constraints

N
X

i=1

Aixi = b0,

where b0 ∈ R
d and Ai ∈ R

d×ni . While satisfying the coupling

constraints the agents should minimize the global cost, which we

interpret simply as the sum of all individual cost functions. We

therefore consider in this study the distributed linear program

OP : φ := min
xi∈Xi

N
X

i=1

cT
i xi (1)

s.t.
N

X

i=1

Aixi = b0. (2)

This formulation of a distributed linear program extends the

formulation we studied in our previous work [8]. We allow now

explicitly for the individual constraints xi ∈ Xi, which might
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eventually consist of a large number of additional equality or

inequality constraints. In the following we will develop an algorithm

to solve problems of the form OP within multi-agent systems. The

proposed algorithm, relying on the Distributed Simplex algorithm

we presented in [8], handles the constraints xi ∈ Xi in a ”local”

manner. The computation and communication model of the multi-

agent system is introduced in the next section.

B. Communication Network and Distributed Algorithm

We present shortly some definitions which are relevant to the

paper, including graph theory and asynchronous algorithms. Let

Gc = ({1, . . . , N}, Ec) denote a directed, static graph (digraph).

The set {1, . . . , N} are the nodes of the graph, corresponding to

unique identifiers of the agents. The set Ec ⊂ {1, . . . , N}2 denotes

the set of edges connecting two nodes. A digraph is said to be

strongly connected if, for every pair of nodes (i, j) ∈ {1, . . . , N}×
{1, . . . , N}, there exists a path of directed edges that goes from i to

j. The maximum distance between any pair of agents (i, j) in the

graph, is the diameter diam(Gc) of the graph Gc. We consider in

particular time-dependent digraphs of the form Gc(t) = (V, E(t)),

t ∈ R≥0, where t represents the universal time. The graph Gc(t)
models the communication in the network in the sense that at time

t there is an edge from node i to node j if and only if agent i
transmits information to agent j at time t. We impose the following

assumption on the connectivity of the communication graph Gc.

Assumption 2.1 (Periodically Strong Connectivity): There exists

a positive and bounded constant Tc such that for every time instant

t ∈ R≥0, the digraph GTc

c (t) := ∪Tc

τ=tGc(τ) is strongly connected.

The agents in the network perform a distributed algorithm [9] to

solve the optimization problem. In what follows, the superscript [i]
denotes that a quantity belongs to agent i. A distributed algorithm

consists of: (1) the set W , called the set of states w[i], (2) the set

Σ, called the communication alphabet including the null element,

(3) the map MSG : W × (1, . . . , N) → Σ, called message function,

and (4) the map STF : W × ΣN → W , called the state transition

function. We denote t
[i]
k the time instants at which agent i updates

its internal state. In this sense k is a counter for updates performed

by an agent. Between two discrete updates, the state is constant

w[i](t) = w(t
[i]
k ) for all t

[i]
k ≤ t < t

[i]
k+1. The evolution of the

distributed algorithm is then as follows. The algorithm starts at

t = 0 and each agent initializes its state to w[i](0). Each agent

performs two actions repeatedly: (i) the ith agent sends to each

of its outgoing neighbors in the communication graph a message

computed as MSG(w[i](t
[i]
k )); (ii) whenever it receives information

from its in-neighbors, it updates its state w[i](t
[i]
k+1) according to

the state transition function. Each agent performs these two actions

at its own speed and independent of the speed of the other agents.

No synchronization is required in the network. Following [10], we

say that the algorithm is partially asynchronous since it performs

asynchronously, but Tc imposes a global bound on the time allowed

to pass between consecutive state updates.

III. A REVIEW ON COLUMN GENERATION

The problem OP has a very characteristic structure. Without the

coupling constraint (2) the problem would fall into several indepen-

dent problems. Each problem could then be solved independently

of the others.

One of the best known techniques for handling those almost

separable optimization problems is known as the ”Dantzig-Wolfe

Decomposition” [11], [12], [13]. The basic idea of the decompo-

sition is that a large-scale linear program of a form OP can be

decomposed into a coordinating master program MP and several

smaller sub-problems SPi. The original linear program can then

be solved by alternately solving the master program and the sub-

problems. We review the idea here.

A. Extensive Problem Representation

The method utilizes the fact that the polyhedron Xi can be

uniquely represented as the polytope, formed by the convex com-

bination of its extreme points, plus the polyhedral cone, formed by

its extreme rays [14]. Let the polyhedron be generated by a finite

number of half spaces, i.e. Xi = {xi ∈ R
ni |Dixi ≤ bi}. The

extreme points x
p
i of the polyhedron are all points in Xi which

cannot be represented as mid points of a line segment joining

two other points of Xi. The rays of the polyhedron xr
i are the

homogeneous solutions, i.e. Dix
r
i = 0. A ray xr

i is an extreme

ray if there are not two rays xr1
i and x

r2

i (x
r2

i 6= αx
r1

i ) such that

xr
i = 1

2
(xr1

i + x
r2

i ). We define the index set of all extreme points

PI and extreme rays RI , respectively. We can now represent the

polyhedron in an alternative form.

Theorem 3.1: [14] Let Xi be nonempty then it can be represented

as

Xi = {ξ ∈ R
ni | ξ =

X

p∈Pi

λipx
p
i +

X

r∈Ri

λirx
r
i ;

X

λip = 1, λip, λir ≥ 0},

where {xp
i } and {xr

i } are the extreme points and extreme rays of

Xi respectively. �

This result allows to write any vector xi ∈ Xi as

xi =
X

p∈Pi

x
p
i λip +

X

r∈Ri

x
r
i λir,

X

p∈Pi

λip = 1, (3)

where x
p,r
i ∈ R

ni and λip, λir ∈ R. We can combine this idea with

the optimization problem. In particular the cost and the coupling

constraints can be rewritten as

cT
i xi =

X

p∈Pi

cT
i x

p
i λip +

X

r∈Ri

cT
i x

r
i λir,

and

Aixi =
X

p∈Pi

Aix
p
i λip +

X

r∈Ri

Aix
r
i λir.

Defining cip := cT
i x

p
i (cir := cT

i xr
i ) and Aip := Aix

p
I (Air :=

Aix
r
i ), the cost of one agent can be represented as

cT
i xi =

X

p∈Pi

cipλip +
X

r∈Ri

cirλir. (4)

The coupling constraint can be similarly represented. Note that

cip ∈ R (Aip ∈ R
d), while ci ∈ R

ni (Ai ∈ R
d×ni ).

Now we are ready to re-state the optimization problem OP in the

extensive form:

min φ :=
N

X

i=1

{
X

p∈Pi

cipλip +
X

r∈Ri

cirλir} (5)

s.t.
N

X

i=1

{
X

p∈Pi

Aipλip +
X

r∈Ri

Airλir} = b0 (6)

X

p∈Pi

λip = 1, λip ≥ 0, λir ≥ 0, i ∈ {1, . . . , N} (7)

We call this problem in extensive form the master program (MP ).

The master program is exactly equivalent to OP , in the sense that:

(i) an optimal point in MP is an optimal point in OP ; (ii) MP
is unbounded if and only if OP is unbounded; and (iii) MP is

infeasible if and only if OP is infeasible [13].

The new problem formulation does not necessarily seem to be

favorable. The problem has been significantly blown up. While the

original problem had n =
PN

i=1 ni decision variables, the new

problem has n′ =
PN

i=1(|Pi| + |Ri|) decision variables. Since

the number of extreme points and extreme rays can be extremely

5912



large, the master problem might have a huge number of decision

variables. The benefit of the extensive representation lies in the

gained structure of the problem. As commonly done in linear

programming, we can group the problem information of MP into

columns. A column of MP takes always the form 1

hiκ = [ciκ A
T
iκ e

T
iκ]T . (8)

Note that this representation is equivalent to hiκ =
[cT

i xκ
i , (Aix

κ
i )T , eiκ]T where xκ

i is an extreme point or extreme

ray, respectively. We say the column hiκ is generated by xiκ.

The vector eiκ ∈ R
N is an all zero vector, with only a single

entry, [eiκ]i = 1, if the corresponding xκ
i is an extreme point.

Note that hiκ ∈ R
1+d+N . Concerning the problem structure,

we want to point out that the number of constraints in MP
is significantly reduced compared to OP , leading to a (often

favorable) problem with a large variables-to-constraints ratio. The

Distributed Simplex algorithm [8] is best suited for problems of

this structure. However, the drawback still remains in the huge

number of columns. It is obviously not computationally effective

to compute a-priori all the extreme points and extreme rays of

all sets Xi. To handle this problem, a column generation method

is used to compute online new (and only relevant) columns. We

review the idea here.

B. Column Generation

To streamline the notation, we will use in the following bold

letters to denote the problem data of the master problem, e.g., c
T =

[c11, c12, . . .] and

A =

»

A11 A12 . . .
e11 e12 . . .

–

.

The matrix A includes now also the convexity constraints. The

vector c and the matrix A have a large number of entries and

columns, respectively. Therefore, we will never work with the

complete vector or matrix, but only with subsets of them. Let

H be a set of columns {hik} of MP , then cH and AH denote

the subvector and submatrix, respectively, which correspond to the

columns in H. A basis of the master problem B is a set of d + N
columns {hiκ} such that the corresponding constraint matrix AB

is invertible. A basis corresponds always to a feasible solution in

the sense that a feasible vector of decision variables λiκ can be

computed from B with λiκ nonzero only if hiκ ∈ B.

Assume now, that a basis B for the problem MP is known. The

dual solution corresponding to the basis B is
»

y
π

–

= (A−1
B )T

cB ,

where y ∈ R
d is the Lagrange multiplier which belongs to the

coupling constraint (6) and π = [π1, . . . , πN ]T ∈ R
N are the

multipliers corresponding to the convexity constraints (7). Given

a new, non-basic column hiκ = [ciκ, AT
iκ, eT

iκ]T , we ask now,

when this column can improve the basis. Therefore, we consider

the reduced cost of the column:

riκ = ciκ − y
T
Aiκ − π

T
eiκ. (9)

A column hiκ can improve the basis if the reduced cost is negative,

riκ < 0.2 Given the full problem information, this decision could

be made directly. If, however, the problem is given in the extensive

form (5), and the column data is not explicitly available, the reduced

cost is used to construct a new column. Applying the inverse

1To simplify the notation, we replace the indices p and r with one index
κ. Whether κ refers to a particular extreme point of an extreme ray becomes
clear from the context.

2It can be directly verified that, if riκ < 0, increasing the value of λiκ

from zero to a positive value decreases the overall cost φ.

MP

SP1 SP2 SPN

(y1, π1) h1κ (y2, π2) h2κ (yN , πN ) hNκ

. . .

Fig. 1. Decomposition structure and information flow for the classical
Dantzig-Wolfe decomposition.

coordinate change and writing riκ in the original x-coordinates

gives

riκ = cT
i x

κ
i − y

T Aix
κ
i − π

T
eiκ,

where the last term has the particular structure

γiκ := π
T
eiκ =

(

πi if xκ
i is an extreme point,

0 if xκ
i is an extreme ray.

This allows the conclusion that increasing the corresponding vari-

able λiκ in the master program, which is equivalent to including the

column hiκ, generated by xκ
i in the basis B, decreases the overall

cost φ if and only if

(cT
i − y

T Ai)x
κ
i ≤ γiκ.

The extreme points and rays are not explicitly known. We know,

however, that the solution xκ
i of the linear optimization problem

SPi zi := max
xi

(cT
i − y

T Ai)xi s.t xi ∈ Xi. (10)

is an extreme point if xκ
i is finite. If SPi is unbounded it is

unbounded along an extreme ray [12], which we call in this case

also xκ
i . Note that SPi is a linear program, that can be solved by

several algorithms. Once we have obtained the optimal value zκ
i and

the optimal solution or extreme ray xκ
i , respectively, we can decide

whether the basis can be improved by including the column gen-

erated by xκ
i . Including the column hiκ = [cT

i xκ
i , (Aix

κ
i )T , eiκ]T

in the basis improves the optimal value φ if and only if zκ
i < γiκ.

Note that γiκ takes a characteristic structure: for an extreme point

γiκ = πi and for and extreme ray γiκ = 0.

This idea allows to generate new columns for the master program

MP by solving the linear sub-problems SPi. The classical Dantzig

Wolfe Decomposition would now proceed as follows. At first, a

central coordination unit solves the master program MP for an

initial set of columns and determines the corresponding multipliers

(y, π1, . . . , πN ); the multipliers are then transmitted to the sub-

problems SPi, which use it to generate columns. Then with the

new column information the central unit solves again the master

problem. This structure is illustrated in Figure 1.

In this work we take an alternative approach to the problem. We

aim for an algorithm without any coordinating unit. We utilize the

column generation idea to develop a Two-Stage Distributed Sim-

plex algorithm for linear programs with local constraints.

IV. TWO-STAGE DISTRIBUTED SIMPLEX ALGORITHM

We consider now a multi-agent system with all the computation

and communication restrictions described in § II-B. Our objective is

to develop a distributed algorithm for solving the distributed linear

program with local constraints OP . The new algorithm significantly

generalizes our previous result in [8].
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A. Distributed Simplex

The Distributed Simplex algorithm is designed to solve dis-

tributed linear programs in multi-agent systems. It considers linear

programs with only coupling constraints, and without the local

constraints xi ∈ Xi and is particularly well suited for problems

with few constraints and many decision variables.
Before presenting the algorithm, we want to comment shortly on

the problem of degeneracy in distributed linear programming. The

issue is discussed more explicitly in [8]. Numerous linear programs

happen to have more than one optimal solution. These problems

are said to be dual degenerate. In distributed linear programming

this becomes a critical issue which cannot be ignored. Indeed, any

distributed algorithm has to ensure that all agents compute the

same optimal solution. In [8] we proposed to use a lexicographic

comparison for ensuring this. Lexicographic comparisons allow to

define a unique ordering on vectors.
Definition 4.1 (Lex-positivity): If v = (v1, . . . , vr) is a vector,

then it is said to be lex-positive (v ≻ 0) if v 6= 0 and the first

non-zero component of v is positive. �

For two vectors, v and u, we say that v ≻ u if v − u ≻ 0. The

lexicographic minimum of a set of vectors {v1, . . . , vr}, denoted

lexmin, is the element vi, such that vj � vi for all j 6= i.
For the same set of vectors, lexsort{v1, . . . , vr} refers to the

lexicographically sorted set of these vectors.
In [8] we used lexicographic ordering intensively to develop

the Distributed Simplex algorithm, as a multi-agent version of

the Simplex. Informally the Distributed Simplex algorithm can be

described as follows. Each agent keeps a local version of the central

problem in its memory, which is built from the limited information

it has available. For this local problem, the agent computes a (locally

optimal) basis B
[i], which represents also its internal state.

Distributed Simplex Algorithm: Each agent consecutively

performs the following tasks:

(i) it transmits irregularly, but at least after a time

interval of maximal length Tc, its basis to all its

out-neighbors;

(ii) whenever it acquires a basis from one of its in-

neighbors, it sorts all columns in its memory ac-

cording to a lexicographic ordering and

(iii) it performs a Simplex algorithm with particular

pivot rules to update its local basis.3

The algorithm uses the lexicographic ordering in the following

sense. The computing agents perform two steps before updating the

basis: (i) they sort the columns in their memory lexicographically

(lexsort), (ii) they compute a lexicographically perturbed reduced

cost. The reader is referred to [8] for details and the precise

definition of the reduced cost. The relevant fact here is that this

particular definition of the reduced cost ensures that all agents

finally compute, out of all optimal bases, the unique basis which is

lexicographically minimal.
Let us shortly discuss the problem data involved in step (ii) of

the Distributed Simplex : (1) the current basis of the agent B
[i], (2)

the columns received from the neighbors and (3) the permanent

columns of the agent, i.e. the columns of the original problem

which correspond to the decision variables of that particular agent.

It is crucial for the correct convergence of the algorithm, that each

agent considers its permanent columns in this step. The private

information must be repeatedly evaluated. Based on this idea, we

will now propose a new algorithm.

B. Two-Stage Distributed Simplex with Local Constraints

Consider now a problem of the form OP , including nontrivial

local constraints xi ∈ Xi.

3Primal degeneracy, and therefore cycling of the algorithm is prevented
by a classical perturbation.

Let us first point out that we could interpret OP as a distributed

linear program in the sense of [8], if we consider the local

constraints xi ∈ Xi as global constraints. Then we could use the

Distributed Simplex directly for solving this problem. However, the

number of constraints forming the sets Xi might be extremely large

and such a practice would require us to handle many coupling con-

straints. This would lead to extremely complex local computations

and a significant overhead of data exchange between the agents.

We prefer to work in the following with the extensive problem

formulation MP , instead of OP , since it has the preferred high

columns-to-constraints ration. The large optimization problem MP
is distributed to the individual agents and an algorithm inspired by

the Distributed Simplex is proposed to solve it.

The idea of the new algorithm is as follows. Each agent i ∈
{1, . . . , N} knows its own problem data ci, Ai,Xi and the right-

hand side of the coupling constraint b0. The agent builds its own

local version of the master program MPi. The basis of this local

master program is denoted by B
[i] and the corresponding value of

the program by φ
[i]
B . The basis B

[i] is the internal state of the agent i
during the evolution of the algorithm. To initialize its local program

MPi, each agent creates artificial columns with a very high cost, to

complete an initial basis (big-M method). The artificial columns will

be eventually dropped during the evolution of the algorithm. Given

a basis B
[i] for the master program MPi the agent can compute

the dual solution (y[i], π[i]) and exactly define its subproblem SPi.

The algorithm evolves then according to the next rules, including

the communication (C) and two internal stages of computation (S-

I), (S-II).

Two-Stage Distributed Simplex: Each agent repeats the

following tasks:

(C) it transmits irregularly, but at least after a time

interval of maximal length Tc, its basis to all its

out-neighbors;

(S-I) whenever it acquires a basis from one of its in-

neighbors, it sorts the received columns and its basis

columns according to a lexicographic ordering and

performs a Simplex algorithm with the particular

pivot rules. It updates its local basis of MPi and

determines the dual variables (y[i], π[i]) for this

basis;

(S-II) it generates a new column by solving the problem

SPi using the information (y[i], π
[i]
i ) and eventually

updates its basis.

The structure and the information flow of the algorithm are

illustrated in Figure 2. We want to emphasize that the Two-Stage

Distributed Simplex algorithm is a fully distributed algorithm with-

out any coordination unit and requires only partially asynchronous

communication.

The name ”Two-Stage Distributed Simplex” emphasizes the

structure of the algorithm. The internal computations performed

by one agent deal with two optimization problems, the local master

program MPi and the sub-problem SPi.

We have to adapt the algorithm only slightly to deal with an

eventual unboundedness of the optimization problem OP . It is

known [13] that the master program MP is unbounded exactly

if the original program OP is unbounded. The same holds for the

local master programs MPi. If during the evolution of the algorithm

one agent detects unboundedness, it sets it basis B
[i] = null and

transmits this signal to all his neighbors. If an agent receives a

null signal it also sets its basis to null. This allows the full

network to detect unboundedness.

In the following table we provide a pseudo code of the algorithm.

5914



MP1

SP1

MP2

SP2

MPN

SPN

B
[1]

B
[2]

B
[2]

B
[i]

B
[j]

B
[N ]

. . .

Fig. 2. Structure and information flow for the novel Two-Stage Dis-
tributed Simplex algorithm.

Problem data: MP,Gc

Algorithm: Two-Stage Distributed Simplex

Message alphabet: Σ = {hiκ} ∪ {null}

Processor state: B
[i] % basis of MPi

Initialization: B
[i] := BM % big-M method

function MSG(B[i], j)

return all h[i] contained in B
[i] but not in BM .

function STF(B[i], y)
% executed by agent i, with yj := MSG(B[j], i) = B

[j]

if yj 6= null for all j ∈ NI(i) then

% STAGE I
H

tmp ← lexsort{B[i] ∪
`

∪j∈NI (i) yj

´

}

(B[i], y[i], π[i])← Simplex (Htmp, B
[i]) % solve MPi

% STAGE II
B

[i] ← solve SPi(y
[i], π

[i]
i ) % generate new column

else
B

[i] ← null % program is unbounded
end if

We want to comment shortly on communication and information

storage requirements of the algorithm.

Remark 4.2 (Size of exchanged messages): The agents

exchange the bases B
[i] of their local master programs MPi. At

each time instant, this basis B
[i] is the optimal basis with respect

to all the information available to the agents. A basis consists

of several columns hiκ. The following information needs to be

transmitted to characterize hiκ exactly: the problem data ciκ, Aiκ,

the index of the corresponding agent i, and a marker indicating

whether the column is generated by an extreme point or an extreme

ray. A column requires therefore a vector of d + 1 (eventually)

rational numbers, one identifier for an agent and one additional

bit. �

Remark 4.3 (Private processing of local constraints): For a re-

construction of the original primal solution x∗
i , each agent must

store the extreme points or extreme rays of the columns it generates.

However, for each agent it suffices to know this information for

its own columns, since it only needs to reconstruct its part of the

optimal solution x∗
i (and not the complete vector x∗). Therefore,

this information can remain private and needs not to be exchanged

with other agents at any time. �

We can now prove that our new algorithm solves the problem

OP correctly.

Theorem 4.4 (Two-stage Distributed Simplex analysis):

Consider the distributed linear program OP in (1) and a

multi-agent system with communication network as described in

Section II-B running the Two-Stage Distributed Simplex algorithm.

Then, there exists a finite time instant Tf at which, all agents,

(i) agree on a common optimal solution, if OP has a finite

optimal solution;

(ii) detect unboundedness, if OP is unbounded;

(iii) detect infeasibility, if OP is infeasible. �

Proof: To prove the statement (i), we assume that the problem

OP has a finite optimal solution. We show first that every agent will

eventually determine an optimal solution (which could be distinct

for different agents). Subsequently, we show, using a contradiction

argument, that all agents must converge to the same optimal basis.

Consider the cost of the master program of each agent MPi

at the time instant t, φ
[i]
B (t).4 All agents initialize their problems

such that φ
[i]
B (0) < ∞. Let φ∗ be the minimal value of the master

program MP . A fundamental result in linear programming says

that from any basis, there is a sequence of pivot iterations to an

optimal basis [12]. Thus, as long as φ
[i]
B (t) > φ∗, there exists at

least one column h such that φ{B∪h} < φB . The algorithm offers

two possibilities how such a column h can be included into B
[i].

First, such a column h can be generated by the local sub-

problem SPi. When for B
[i](t) and the corresponding multipliers

(y[i](t), π
[i]
i (t)) the optimal value z

[i]
i (t) < γ[i](t), then φB∪h <

φB , where h is the column generated by the optimal solution x
[i]
i (t)

of SPi. In this case, the basis will improve after a finite time.

Second, if z
[i]
i ≥ γ[i](t), then there must be at least one agent

j such that φ
[i]
B (t) > φ

[j]
B (t). If this is true, there must be two

(eventually other) agents k and l, with φ
[k]
B > φ

[l]
B in the network,

such that (l, k) ∈ Ec(τ), τ ∈ {t, t + Tc}. By the structure of the

algorithm it follows that φ
[k]
B (τ) ≤ φ

[l]
B (t) < φ

[k]
B (t). We can now

use the argumentation presented in [8], or similarly in [6], to show

that under the connectivity assumption 2.1 of the communication

network Gc, there exists a time T such that φ
[i]
B (t+T ) ≤ φ

[j]
B (t) <

φ
[i]
B (t).

In any case, as long as φ
[i]
B (t) > φ∗ there exists a finite time TD

such that φ
[i]
B (t+TD) < φ

[i]
B (t). Since there are only finitely many

bases (and we are using a particular pivot rules to avoid cycling)

there exists T ′
f such that φ

[i]
B (T ′

f ) = φ∗ for all i ∈ {1, . . . , N}.

At this point, any agent knows an optimal solution to the master

program. However, it is still possible that B
[i](T ′

f ) 6= B
[j](T ′

f ) for

some agents i and j in the network.

We show now that there is finite time Tf at which the algorithm

is converged and B
[i](Tf ) = B

[j](Tf ) for all i, j. Convergence of

the algorithm implies that B
[i](Tf ) = B

[i](Tf + τ), τ ≥ 0, for

all agents i ∈ {1, . . . , N}. We note that at the time all agents

have an optimal basis no further columns will be generated by the

sub-problems and, therefore, only the communication between the

agents will be relevant.

Assume, in order to get a contradiction, that the algorithm has

converged and there are two agents i and j such that B
[i](Tf ) 6=

B
[j](Tf ). We can assume without loss of generality that the basis

B
[j](Tf ) has a lexicographically smaller cost than B

[i](Tf ) (see [8]

for the definition), and that agent j directly communicates its basis

to agent i. If agent i receives B
[j](Tf ) from agent j, it computes

the unique lexicographically minimal (and optimal) basis contained

in the union of the two bases, i.e., it preforms the two actions H =
lexsort{B

[i](Tf )∪B
[j](Tf )}, and Simplex (H, B[i](Tf ). The new

basis, computed after these two actions, must be lexicographically

better that B
[i](Tf ) (since already B

[j](Tf ) was lexicographically

better). Therefore the new basis cannot be identical to B
[i](Tf ).

This contradicts the assumption that the algorithm has converged.

We note that, with the same argumentation used previously, each

agent will have a lexicographically better basis within a finite time

interval. Since there is a sequence of pivot iterations, leading from

any basis to another basis, we conclude that the algorithm will

converge. Since there are only finitely many different bases, and no

agent can recompute a worse basis, the algorithm will converge in

4Note that no lexicographically perturbed cost is considered here.
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finite time. Summarizing, We conclude that the algorithm converges

in finite time such that φ
[i]
B = φ

[j]
B = φ∗ and B

[i] = B
[j] for any

two agents i, j.
The proof of the remaining two statements is analogous to the

proof presented in [8] and is therefore omitted here.

To conclude the presentation of the algorithm we point out that

each agent can halt the algorithm execution if the value of the basis

has not changed in a time interval of length (2 diam(Gc) + 1)Tc

[8], and knows therefore in a finite time Tf that it has achieved an

agreement with the other agents on an optimal solution.

It is not obvious a-priori on which optimal basis the agents will

agree. Assume that there are several optimal solutions. We focus

now on the situation where all agents know a optimal solution

φ
[i]
B = φ

[j]
B = φ∗ but have different bases B

[i] 6= B
[j]. Each

agent updates now its basis, based on the column information of

its own basis and the bases received from neighbors. It keeps the

resulting basis in its memory and drops all other columns. Linear

programs do not satisfy the persistency property [6], and therefore

columns might be lost at this point which would be part of the

lexicographically minimal basis. If, however, such a column is

only known by a single agent it will never be retained by the

algorithm. The basis on which the agreement is achieved can then

not contain this column any more. It depends on various parameters,

like e.g. the communication network Gc(t), which columns will be

lost during the evolution of the algorithm and therefore on which

solution an agreement will be achieved. However, it suffices here

to conclude that the agreement basis is an optimal basis. Therefore

the algorithm solves the distributed linear program OP .

C. Discussion

We want to emphasize again that the main difference between

the new Two-Stage Distributed Simplex and our previous

Distributed Simplex algorithm lies in the way the private or local

information is handled. Instead of storing the private information

as columns (previously called ”permanent columns”), it is now

encoded in the sub-problems SPi. The private information is

thus no longer evaluated equally with all other information, in

particular the information received from other agents. Now the

smaller sub-problem SPi is solved to generate a new column

from the local information. In the column generation step no

lexicographic ordering or comparison is required. Purely the

standard problem SPi is solved, which can be done by standard

algorithms. As a consequence the complexity of the local problem,

namely the number of columns on which the lexicographically

perturbed simplex has to be performed, is reduced. It is still

important for the algorithm’s convergence, that the private

information is repeatedly examined, but it has an influence only

until an optimal basis is known and not until the algorithm has

fully converged. If the problem OP is dual-degenerate and is

solved with the two algorithms Two-Stage Distributed Simplex

and the Distributed Simplex (which is ineffective but possible),

the final bases which are computed by the algorithms might be

different, although both are optimal.

Our new algorithm might seem to be close to the Dantzig-Wolfe

decomposition. In fact, it utilizes the same column generation idea.

The important distinction lies in the communication structure of

the algorithms. In the classical Dantzig-Wolfe decomposition the

subproblems are solved independently, after receiving information

from a central coordination unit, which solves the master program.

The master problem transmits dual variables to the subproblems

and receives primal information (i.e., generated columns).
Our approach is clearly distinct from this. We do neither require

a central master problem nor a central coordination unit. In fact,

the former master problem is distributed to the agents, which all

keep their individual local copies. The local computations within

one agent are such that alternating the local master program and the

local sub-problem are solved (therefore it is a two-stage algorithm).

The information exchange between the distributed decision makers

is now only restricted to primal information. No dual variables

are exchanged between the agents. This simple communication

structure together with the only nearest-neighbor communication

requirements and the inherent asynchronous structure, make our

algorithm perfectly suited for multi-agent systems, where commu-

nication structures are unknown a-priori or change over time.

V. CONCLUSIONS

We propose a novel distributed algorithm to solve distributed

linear programs with local constraints within asynchronous multi-

agent systems. We propose a two-stage method, which encodes

private information of an agent in a sub-problem, which is re-

peatedly solved in a local manner. The new algorithm allows to

handle problems with a large number of local constraints, if only the

number of coupling constraints is limited. One can interpret the new

algorithm as a generalization of our previously proposed Distributed

Simplex. It is an optimization algorithm which does not require

any coordination unit and which can perform on asynchronous

communication networks. Instead of alternately communicating

primal and dual information, we only exchange primal information

between the decision makers. We prove that, even if multiple

optimal solutions exist, all agents agree on a common optimal

solution in finite time, if one exists. On which optimal solution

the agreement will be achieved cannot easily be predicted a priori,

but depends on the evolution of the algorithm.
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