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Abstract— Particularly attractive for small satellites, the use
of magnetic torquers for attitude control is still a difficult
problem. Indeed, equations are naturally time-varying and
suffers from controllability issues. In this paper, a generic
model, taking different kinds of pointing and different kinds of
actuators into account, is proposed, linearized and then discreti-
zed. Recent studies demonstrate how combining magnetorquers
and reaction wheels is attractive. Following this line, latest LMI
synthesis techniques for static periodic controller are applied
in this paper to the attitude control problem of a spacecraft
equipped with both actuation systems. Simulation results are
provided, showing the performance of the obtained control law.

I. INTRODUCTION

The use of magnetic torquers, also called magnetorquers,

for spacecraft attitude control of satellites has been a chal-

lenging issue for the scientific community for decades ([11]

- [15]) and constitutes more than ever, an active area of

research. Complexity of the associated control problem and

recent advent of small satellites missions which frequently

resort to this kind of actuators, for cheapness, efficiency,

reliability and weight reasons, explain this renewed interest.

These actuators generate control torques which lie in the

orthogonal plane of the local geomagnetic field vector. As

this field is not uniform, due to the rotation of the satellite

around the earth, the synthesis models are naturally periodic

at the orbital frequency. Even if it has been proved recently

in [9] that using these actuators solely, stabilization can

be achieved for inertial pointing of a spacecraft, the time-

varying nature of the problem as well as controllability

issues will always lead to closed-loop performance limita-

tions which are not acceptable when operating in mission

mode. Therefore, modern spacecraft are usually endowed

with magnetorquers and some type of mechanical actuator,

such as reaction wheels. Typically, the latter are used for fine

attitude control while the magnetic torquers are responsible

for momentum dumping of reaction wheels. Thus, recent

studies propose control laws intending to make both actuators

working together in concert, see e.g. [3] and [7].
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The set of models available in the literature and taking

magnetorquers into account is very heterogeneous depending

on the kind of pointing or actuators considered. Further-

more, derivation of linear discrete-time model is very briefly

documented, see e.g. [14] and [18]. Therefore, this paper

contributes to the modelling effort by proposing a unifying

model including, on the first hand, different choices of

pointing, inertial or geocentric, traditionally associated with

star and Earth observation missions, and, on the other hand,

different choices of actuation, magnetorquers and/or reaction

wheels. Moreover, challenging issues of the linearization

stage are discussed.

In the literature, the problem of attitude control by means

of magnetorquers has been tackled in the field of non-linear

([7] - [9]) and linear control ([10] - [17]). In the latter,

among techniques specifically designed for periodic time-

varying models, two major trends emerge depending on the

kind of tools used : Periodic Riccati equations, see [10],

and Linear Matrix Inequalities (LMI). Relying on efficient

numerical algorithms and offering more flexibility in taking

constraints of robustness and performance into account, the

latter has become a matter of primary interest.

The main contribution of this study is to apply the latest

LMI synthesis techniques for static periodic controller on

the attitude control problem of a spacecraft equipped with

magnetorquers and reaction wheels. As in [18], the obtained

control law aims to minimize an H2 criterion. Here, closed

loop performance is improved by adding reaction wheels

whereas in [18], magnetorquers solely are considered. Mo-

reover, the paper initiates a more ambitious work which aims

at dealing with uncertainties by designing a robust periodic

control law.

Notations : The transpose of a matrix A is denoted AT . 1

stands for identity matrix and 0 for the zero matrix with

appropriate dimensions. For a real square matrix A, we

define He {A} = A+AT . The convex hull of the collection

of N elements A1, · · · , AN is denoted by co {A1, · · · , AN}.

S
n denotes the set of symmetric matrices of Rn×n.

II. DYNAMIC AND KINEMATIC NON-LINEAR EQUATIONS

A. Frames definition depending on the pointing case

In order to derive dynamic and kinematic equations, the

following frames are defined (see Fig 1) :

– FI : Earth-Centered Inertial (ECI) frame, located at the

earth center ;

– FB : Body-fixed frame located at the center of mass of

the satellite and along its principal axis ;
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Fig. 1. Inertial, body-fixed and reference frames

– FR : Reference frame located at the center of mass of

the satellite and independent of its attitude.

Attitude regulation has to be understood here as the control

problem which consists in aligning the frame FB with FR by

means of actuators. The frame FR is usually chosen to be the

pointing target. Thus, it may correspond to FI in the case of

star-pointing control system ([7], [9]) and to a local orbital

frame for geocentric pointing ([1],[15]). The angular velocity

of FR with respect to FI is denoted ωR/I and considered to

be a given constant vector.

B. Dynamic and kinematic equations

Let us consider the case of a rigid satellite equipped with

magnetorquers creating a torque Tm and reaction wheels

whose axes (expressed in the body-fixed frame FB as all

quantities of (1) and (2)) are the columns of the matrix

XW . Classical dynamic equations are derived by applying

the principle of angular momentum conservation :

ḣs = Tw (1)

Jω̇B/I + ω×

B/I

(
JωB/I +XWhs

)
= T

[B]
ext −XWTw + Tm (2)

where Tw and hs refer respectively to the torques applied by

the wheels and their angular momentum, ωB/I , the angular

velocity of the satellite with respect to the inertial frame, and

T
[B]
ext , the external torques. Finally, J stands for the inertia

matrix. Furthermore, we define for g = [gx, gy, gz]
T

g× =





0 −gz gy
gz 0 −gx
−gy gx 0



 (3)

such that (g×)
T
= −g× and g×g = 0.

Attitude of the satellite w.r.t. the reference frame FR is

characterized by the quaternion qB/R = [ǫT η]TB/R ∈ R
4

subject to the unit norm constraint qT q = 1. In [8], the

following relationship is stated :

q̇B/R =
1

2

[

−
(
ωB/R

)×
ωB/R

−
(
ωB/R

)T
0

]

· qB/R (4)

which represents the attitude kinematic.

C. Magnetorquers

Use of magnetorquers, generating a magnetic moment

M considered as a control variable, creates a torque Tm,

expressed in FB as the following :

Tm =
(

M [B]
)×

B[B] = −
(

B[B]
)×

M [B] (5)

where B[B] refers to the geomagnetic field viewed by the

satellite. Hence, at a given time, Tm lies in the orthogonal

plane of the local geomagnetic field vector, image of the ma-

trix
(
B[B]

)×
. Nevertheless, over a whole orbit, the direction

of B(t) varies and the reachable torque space becomes R
3

[15].

Using CB/R, which stands for the rotation matrix of FB

w.r.t. FR, B[B] can be decomposed as :

B[B](t) = CB/R ·B[R](t) (6)

This relationship brings in light the dual dependence of B[B]

with respect to attitude, via CB/R, and to its position along

the orbit, via B[R](t). The former induces a coupling between

kinematics and dynamics while the latter makes the model

pseudo-periodic at the orbital period.

B[R](t) is assumed to be given, because it may be

estimated on board or computed using the International

Geomagnetic Reference Field (IGRF) which gives access to

the local magnetic field at any point in space [16].

D. Disturbances

As emphasis is put on attitude control, orbital perturba-

tions are neglected and the orbit is assumed to be circular of

period ω0.

Predominant for low orbits, where magnitude of the geo-

magnetic field is sufficient to use magnetorquers, disturbance

torques such as gravity gradient, aerodynamic drag and ma-

gnetic torques disturbance, due to the interaction of current

loops with the magnetic field, can be modeled as periodic at

one or two times the orbital frequency ω0 (see [2]) :

T
[I]
ext(t) =





T0x + T1x sin(ω0t + ϕ1x) + T2x sin(2ω0t + ϕ2x)
T0y + T1y sin(ω0t + ϕ1y) + T2y sin(2ω0t + ϕ2y)
T0z + T1z sin(ω0t + ϕ1z) + T2z sin(2ω0t + ϕ2z)



 (7)

For simplicity, these torques are expressed in FR using the

given angular velocity ωR/I .

E. State space model representation

State space equations corresponding to the vector X =
[

ωT
B/I qTB/R hT

s

]T

are pseudo-periodic at the orbital per-

iod :

ω̇B/I = J−1
(

−ω×

B/I

(

JωB/I + XWhs

)

+ CB/RT
[R]
ext(t)

−XWTw − CB/R

(

B[R](t)
)

×

CT
B/RM [B]

)

(8)

q̇B/R =

[

−ω×

B/I
+ CB/Rω×

R/I
CT

B/R ωB/I − CB/RωR/I

−ωT
B/I + ωT

R/IC
T
B/R 0

]

·

1
2 qB/R

(9)

ḣs = Tw (10)
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where CB/R is a function of qB/R according to the general

relationship provided by [8]

C (q) =
(
η2 − ǫT ǫ

)
1 + 2ǫǫT − 2ηǫ× (11)

Inputs are composed of Tw and M [B], for control, and

T
[R]
ext , for external disturbances.

III. CONTROL DESIGN

A. Control objectives and comparisons with existing studies

The control law aims at ensuring the best achievable

attitude performance despite disturbances and modeling un-

certainties, while controlling the angular momentum of the

wheels which tends to diverge because of the DC component

of the disturbing torque. Consequently, the equilibrium

sought is such that the axis of the spacecraft are aligned with

the reference frame and the angular momentum of the wheels

remains around an average value chosen to avoid critical

cases, e.g. saturation, non linear dynamics when wheels stop,

frequencies exciting flexible modes, etc. Hence, the desired

trajectory, denoted tr, is defined by







(
ωB/R

)

tr
= 0

(
qB/R

)

tr
=

[
0 0 0 1

]T

(hs)tr = (hs)eq =
[
(h1s)eq (h2s)eq (h3s)eq

]T
(12)

where (hs)eq corresponds to half of the maximum of hs.

In [5], the problem of robust stabilization of linear

discrete-time systems via a periodic state-feedback control

law is tackled along with the minimization of the worst-

case H2 norm of the uncertain closed-loop system. Hence,

when applied to the problem of this paper, in addition to

control the attitude, the obtained control law guarantees that

hs not only remains bounded, since it is part of the state

vector, but also is kept as close as possible to a predefined

trajectory. Furthermore, unlike in [18] where another periodic

H2 synthesis theorem is proposed, uncertainties are explicitly

taken into account in the design procedure.

Both [7] and [13] also deals with spacecraft endowed

with magnetorquers and mechanical actuators which are

considered under a general formulation. The retained control

strategy consist in solving a conventional attitude control

problem first and then allocating the desired torque by giving

priority to the magnetic actuators. However, this approach

has not been retained in this paper for two reasons : first,

when applied to reactions wheels, it can not be ensure that

divergence of hs is avoided. Second, the knowledge about

the time variation of the model is only taken into account

when torques are distributed but not in the design process.

B. Synthesis model

In order to use the design theorem proposed in [5], the

model is first linearized and then discretized. Furthermore,

for control purpose, it is assumed that B[R](t) is periodic.

a) Linear state space: Under the assumption of small

angles between FB and FR, the model is linearized around

tr on which states of the obtained model are

(X)tr =
[

ωT
B/I ǫTB/R hT

s

]T

tr
=

[

ωT
R/I 0 (hs)

T
eq

]T

(13)

where, dynamics of ηB/R has been omitted, as it is usually

done in the literature (see e.g. [1]). Indeed, when dealing with

small angles, there is no risk of singularities and therefore η
can always be recovered from the knowledge of ǫ using the

norm constraint qT · q = 1.

Inputs expression on tr is established such that (Ẋ)tr = 0.

Then, using (1) and (8), one gets :

{

(Ts)tr = 0
(

B[R](t)
)

×

(M [B])tr = T
[R]
ext − ω×

R/I

(

JωR/I + XW (hs)tr
) (14)

Unfortunately, the condition on
(
M [B]

)

tr
is not verified

in any case since the matrix
(
B[R](t)

)×
is singular. It means

that there is no explicit expression of (M [B])tr and M [B] =
δM + (M [B])tr cannot be computed. One way to overcome

this problem is to add artificially a constant external torque,

Ta, to the non-linear model, in order that (M [B])tr = 0

and that tr becomes an equilibrium. From (14), expression

of Ta in FB is obviously T
[R]
ext − ω×

R/I

(
JωR/I +XWhseq

)
.

Addition of Ta, makes the linearization trajectory tr an

equilibrium for zero inputs but does not, by itself, solve the

control problem since a controller is still necessary to reach

this trajectory. Unacceptable from the practical point of view,

this artificial torque Ta will be treated later on as a virtual

constant perturbation.

By means of (11), derivation of (8), (9) and (10) leads to

the following linear state space model :

δẊ = A(t)δX + E(t)

[
δTw

δM

]

(15)

with

A(t) =







J−1R 2J−1
(

T
[R]
ext(t)

)

×

−J−1ω×

R/I
XW

1
2 · 1 −ω×

R/I
0

0 0 0






(16)

R =
(

J · ωR/I + XW · hseq

)

×
− ω

×

R/I · J (17)

E(t) =







−J−1XW −J−1
(

B[R](t)
)

×

0 0

1 0






(18)

This formulation encompasses those proposed in [10], [14]

and [17] established in the particular case of a geocentric

pointing taking into account the gravity gradient torque.

b) Model discretization: Adding a zero-order hold, of

period Ts, at the input of a continuous-time periodic model

{Ac(t), Ec(t), Cc(t), Fc(t)} of period T = NTs, leads to

the following discrete-time model :

{
x(tk + Ts) = Akx(tk) + Eku(tk)
y(tk) = Ckx(tk) + Fku(tk)

(19)

where state-space matrices are N -periodic (i.e.

(A,E,C, F )k+N = (A,E,C, F )k). The relationship
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between these two models stems from analytical integration

of continuous-time state-space considering u(t) to be frozen

for a duration Ts :

Ak = Φ (tk + Ts, tk) Bk =
∫ tk+Ts
tk

Φ (tk + Ts, τ)Bc(τ)dτ

Ck = Cc(tk) Dk = Dc(tk)
(20)

where Φ(t, t0) refers to the state-transition matrix, solution

of Φ̇ (t, t0) = A(t)Φ (t, t0).
Based on Nyquist-Shannon sampling theorem the choice

of the sampling period for time-invariant models discretized

with zero-order hold is a well understood problem. However,

the case of time-varying models is more tricky. Indeed,

the reliability of this choice depends on the quality of the

solving of (20) on the first hand, and, as for every linearized

model, on how close stays the resulting linear model to the

linearization trajectory, on the other hand. This requirement

is particularly critical because the expression of the field

B[R](t) has been calculated analytically for this trajectory

tr. For the closed-loop system, divergence from tr can be

due, not only to the effect of disturbances but also to the fact

that, u(t) remains constant between tk and tk+1, which is

the assumption leading to (20). The choice of Ts is discussed

in section IV.

C. Controller synthesis

Let the linear uncertain discrete-time time-varying system

Σ(λ) defined by the following state-space realization :

[
xk+1

zk

]

=

[
Ak(λ) Bk(λ) Ek(λ)
Ck(λ) Dk(λ) Fk(λ)

]

︸ ︷︷ ︸

Mk(λ)





xk

wk

uk



 (21)

where xk ∈ R
n is the state vector, uk ∈ R

m is the control

vector, wk ∈ R
mw is the disturbance vector, zk ∈ R

pz is the

controlled output vector and λ ∈ Λ is a vector of parametric

uncertainties. For each k, the parameter-dependent system

matrix Mk(λ) belongs to the convex polytope Mk =

co
{

M
[1]
k , · · · ,M

[L]
k

}

where

M
[i]
k =

[

A
[i]
k B

[i]
k E

[i]
k

C
[i]
k D

[i]
k F

[i]
k

]

(22)

The sequence of polytopes {Mk}k∈N is assumed to be N -

periodic.

In [5], the subsequent Theorem 3.1 is established. It offers

a way to compute a periodic state-feedback control law

which robustly stabilizes Σ(λ) and minimizes the worst-case

H2 norm of the uncertain closed-loop system.

Theorem 3.1: Let Υ be the arbitrary couple of sequences

(
{
A0

k

}

k∈N
,
{
C0

k

}

k∈N
) whose elements belong to R

n×n and

R
pz×n respectively, and define the following optimization

problem :

χsub(Υ) = min
X

[i]
k

∈Sn,Zk∈Spz ,Gk∈Rn×n,Yk∈Rm×n

(

1

N
Trace

N
∑

k=1

Zk

)

(23)

constrained by the Υ dependent LMIs (k ∈ {1 · · ·N}, i ∈
{1 · · ·L})

[

−X
[i]
k+1 +B

[i]
k B

[i]
k

T
0

0 X
[i]
k

]

+He

{[

−A
[i]
k Gk − E

[i]
k Yk

Gk

] [

A0
k
T

−1

]}

≺ 0

(24)

[

−Zk +D
[i]
k D

[i]
k

T
0

0 X
[i]
k

]

+He

{[

−C
[i]
k Gk − F

[i]
k Yk

Gk

] [

C0
k
T

−1

]}

≺ 0

(25)

X
[i]
k ≻ 0 , X

[i]
N+1 = X

[i]
1 (26)

then the N -periodic controller uk = Kk(Υ)xk defined by

Kk(Υ) = YkG
−1
k for k ∈ {1 · · ·N} is such that χsub(Υ) is

a squared guaranteed H2 cost for the uncertain closed-loop

system Σcl(λ), i.e.

χsub(Υ) ≥ max
λ∈Λ

‖Σcl(λ)‖
2
2 (27)

It has been demonstrated in [5] that performance in the

robust case is substantially improved by taking advantage of

the degrees of freedom offered by the choice of Υ.

Note that in the nominal case, there is no need to deal

neither with this sequence nor with the additional variables

Gk. The best achievable result is provided in [6] (based on

Theorem 1 in [5]) which is similar to the design theorem

established in [18].

IV. SIMULATION RESULTS

A. Simulation set-up

Numerical data correspond to the micro-satellite Demeter

designed by CNES, the French space agency [12]. The inertia

matrix is composed of the following diagonal terms : 37.9,

23.1 and 28.7 (kg.m2). The three reaction wheels are such

that XW = 1. In this example, we will assume that on

the trajectory tr, their velocity is nominal and equal to

1400 (rpm). Finally, the circular orbit is characterized by

an altitude of 660 (km), an inclination of 98.23◦ and a local

time of ascending node of 22h15.

The controller is designed in the case of geocentric poin-

ting and, as a first approach, without uncertainties. T
[I]
ext(t),

depicted by Fig. 2, is defined by (7) and T0x = T0y = T0z =
1.0 · 10−7 (N.m), T1x = T1y = T1z = 2.1 · 10−5 (N.m),

T2x = T2y = T2z = 2.1 · 10−5 (N.m), ϕT1x = −ϕT2x =
π/4, ϕT1y = −ϕT2y = −π/4, ϕT1z = 0 and ϕT2z = π/2.

Using the IGRF model, a time history of the geomagnetic

field, expressed in the LVLH, along three orbits is shown in

Fig. 2. If Bx and Bz have an almost periodic behavior, By

is not as regular. Indeed, the x and z axis of the LVLH lie

in the orbital plane while y axis is normal to it. Therefore,

noticing that the orbit is almost polar, variations of Bx and

Bz are due to orbital motion whereas By behavior is affected

by Earth’s spinning which is much slower.
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Fig. 2. Geomagnetic field and external disturbances in LVLH
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Fig. 3. Non-linear and linear models with periodic PD

B. Validation of the linear discrete-time model

As in every spacecraft attitude control problem, the open-

loop model is not stable and, hence, simulations have to

be performed on the closed-loop model. To this end, a first

periodic controller is designed in the nominal case using

theorem 3.1. With this controller, discrete-time linear and

nonlinear models simulation results, displayed by Fig. 3, are

almost similar. This validates the linearization and discreti-

zation stages. However, as previously explained, to have a

fair comparison, the constant external torque Ta is artificially

added when simulating the non-linear model.

C. Implementation of the control strategy

Unacceptable from the practical point of view, this arti-

ficial torque Ta can also be viewed as a virtual constant

perturbation. Hence, as usually done to deal with such an

issue, a digital integrator is added in the feedback loop after

the measurement of ǫB/R.

As already pointed out in [18], use of LMI techniques

for H2 synthesis with periodic models gives rise to heavy
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Fig. 4. Non-linear and linear models with periodic PID

computations. Consequently, and as a first approach, only

the nominal case is treated such that the number of variables

can be lowered down to 6481 for N = 60 and to 21601 for

N = 200. When considering uncertainties in the model, even

if only 2 vertices are considered, if N = 60 (respectively

N = 200) LMI solvers have to manipulate 27001 (90001)

variables constrained by 2 set of 60 (200) LMIs of size 24×
24 and 27×27. Nevertheless, exploitation of sparsity patterns

and structure in those LMIs should allow to derive interesting

results. This issue is under current investigation.

D. Simulation of the non linear closed-loop model

Fig. 4 depicts Euler angles of the closed-loop nonlinear

model without Ta for N = 60 and N = 200. As previously

mentioned, N appears to be an important tuning parameter

since the model for N = 200 converges when the one for

N = 60 does not. On this figure, checkered patterns are due

to the zero-order hold.

As expected, comparing with [18] where magnetorquers

solely are considered, adding reaction wheels improves si-

gnificantly the performance of the control law. Moreover,

Fig. 4 shows that velocity of the reaction wheels remains

between -500 (rpm) and 2000 (rpm). Therefore, fine attitude

regulation is achieved while at the same time avoiding

divergence of the momentum of reaction wheels. This was

the main requirement of the design and it would not have

been possible without the use of both types of actuators.

Thus, Fig. 5 shows that the control effort is shared between

both actuators.

Whatever is the control law, as soon as the desirable

steady-state attitude regulation is reached, control torques

exactly compensate the perturbation torques. This is indeed

what can be seen in Fig. 5 which compares the addition

of every control torques, Tm + Tw, with the sum of the

main disturbances, namely the external torques Text and

gyroscopic torques due to reaction wheels spinning Tg =
ω×

B/IXWhs.

Fig. 6 gives information about the resultant control gains.

It highlights how controllability issue is handled by the
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Fig. 6. Norm of coefficient gains submatrix leading to Tm

synthesis procedure. Indeed, norm of the submatrix of the

controller leading to magnetic torque Tm increases when

magnitude of magnetic field decreases. For instance, around

the polar zones where Bx is almost zero, norm of the gains

devoted to the computation of (Tm)x reaches its highest

value.

V. CONCLUSIONS AND FUTURE WORKS

If attractive results have been recently proposed in the

literature about joint use of magnetorquers and mechanical

actuators, this paper demonstrates that in the particular case

of reaction wheels, controlling both attitude and angular

momentum of these actuators remains an open issue. As far

as the modelling part is concerned, difficulties raised at the

linearization and discretization stages are discussed. Mainly,

it has been shown that the linearization trajectory tr is not

an equilibrium by itself and the use of a zero-order hold may

move the model away from this trajectory.

On the other hand, this paper constitutes the first step of

the application of latest LMI synthesis techniques for robust

static periodic controller on a complex example coming from

the space industry. Indeed, promising simulation results have

been obtained on the nominal case. Future works will be

dedicated to the synthesis of attitude control law robust

to parametric uncertainties, e.g. errors on the estimation of

the geomagnetic field and perturbation torques. Considering

results obtained in [5] on an academic example, significant

improvements are expected as robust requirements are expli-

citly taken into account in the design theorem.

Furthermore, a new promising research axis has been

initiated in [4] by proposing a design procedure leading to

a special kind of dynamical state-feedback controller. Using

this result on this specific demanding applicative set-up is

currently under investigation.
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