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Abstract— This paper presents a new design procedure for
the adaptive stabilization (regulation) via state feedback for
discrete-time nonlinear systems in parametric strict-feedback
form. The algorithm utilizes discrete-time adaptive backstep-
ping in the controller construction together with a new method
for the parameter estimator design. This approach provides
a recursive construction which guarantees boundness of the
closed-loop trajectories and global convergence to the origin
of the state of the closed-loop system. The performance of the
proposed method are illustrated by simulations.

I. INTRODUCTION

Adaptive control techniques have been extensively re-
ported in the literature for continuous-time nonlinear sys-
tems, see for example [1], [2], [3]. Likewise for discrete-time
systems there are several results. Lyapunov-based designs are
reported in [4], [5]. A preliminary study proposing a ”look-
ahead” adaptive backstepping design for a class of discrete-
time strict-feedback systems without using Lyapunov func-
tions has been presented in [6], see also [7]. In [8], [9] a re-
cursive design scheme different from standard backstepping
has been proposed. Finally, [10] considers direct adaptive
control for systems with matched uncertainties and [11]
describes a periodic adaptive control approach. Most of the
recent works deal with the robust adaptive control problems.
The problem is studied for systems in strict-feedback form
perturbed by a class of nonlinear uncertainties in [12], where
local stability is proved without using Lyapunov functions.
This method is improved in [13]. A robust backstepping
adaptive controller design for nonlinear discrete-time systems
in parametric-strict-feedback form without overparametriza-
tion is given [14], [15]. In [16], [17] robust asymptotic and
output tracking adaptive control problems are considered for
strict feedback SISO systems. Finally, in [18] some results on
the robust control of first-order nonlinear systems with both
parametric and non-parametric uncertainties are presented,
and in [19], [20], [21] the solution to some discrete-time
adaptive control problems for a class of strict feedback
systems with unknown control directions are developed.

In this paper an adaptive controller design via state-feedback
for the adaptive regulation of linearly parametrised discrete-
time systems in feedback form is presented. The novelty
of the method is that it allows for stable dynamics to be
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assigned to the parameter estimation error, extending the idea
introduced in [3], [22] for continuous-time systems to the
discrete-time setting.

By analogy to the continuous-time method, the discrete-time
parameter estimation error dynamics include a free function
which allows to “shape” the parameter estimation error
dynamics, which can be regarded as linear time-varying.

The rest of the paper is organized as follows. In Section II
preliminary results on the estimator and adaptive control
design for a class of linearly parametrized nonlinear systems
are given. The main results are presented in Section III.
Finally, the method is applied to the problem of wing rock
elimination in high-performance aircrafts and simulation
results are presented in Section IV.

In the sequel, the notation x+i (k) = xi(k+1), x−i (k) = xi(k−
1), A+m(x1, ..,xn) = A(x+m

1 , ..,x+m
n ) and A−m(x1, ..,xn) =

A(x−m
1 , ..,x−m

n ), where A(x1, ..,xn) ∈ℜn→ℜp is used. Note
that when convenient the index k is omitted.

II. PRELIMINARY RESULTS
Consider a class of discrete-time nonlinear systems described
by the equation

x+ = f0(x)+ f1(x)θ +g(x)u, (1)

where x(k) ∈ℜn is the state vector, u(k) ∈ℜm is the control
vector, θ ∈ℜp is a vector of constant parameters and f0, f1
and g are mappings of appropriate dimensions, with f0(0) =
0 and f1(0)= 0, and the problem of designing a discrete-time
adaptive state feedback control law of the form

θ̂
+ = α(x, θ̂), u = υ(x, θ̂), (2)

such that all trajectories of the closed-loop system are
bounded and

lim
k→∞

x(k) = 0. (3)

Additionaly, we may require that the equilibrium (x, θ̂) =
(0,θ) be stable. To solve this problem define the parameter
estimation error z= θ̂−θ + β̆ (x−,x) with β̆ (x−,x)= β (x−)x.
Note that z+ = θ̂+−θ +β (x)x+, hence

z+− z = θ̂
+− θ̂ +β (x)x+−β (x−)x

= θ̂
+− θ̂ +β (x) f1(x)θ +

β (x)( f0(x)+g(x)u)−β (x−)x (4)

= θ̂
+− θ̂ +β (x) f1(x)[θ̂ +β (x−)x− z ]+

β (x)( f0(x)+g(x)u)−β (x−)x.
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Selecting the update law as

θ̂+ = θ̂ −β (x) f1(x)[θ̂ +β (x−)x ]−
β (x)( f0(x)+g(x)u)+β (x−)x,

(5)

yields the parameter estimation error dynamics

z+ = [I−β (x) f1(x)]z. (6)

Note that if the function β (x) is such that

σ̄ [I−β (x) f1(x)]< 1, (7)

then the parameter estimation error converges to zero. This
observation motivates the following preliminary result.

Proposition 1: Consider the nonlinear system (1). Suppose
there exists a control law

u = υ(x,θ), (8)

such that the zero equilibrium of the closed-loop system

x+ = f0(x)+ f1(x)θ +g(x)υ(x,θ), (9)

is globally asymptotically stable. Let β (x) be such that

σ̄ [I−β (x) f1(x)]≤ 1, (10)

and such that the trajectories of the system

z+ = [I−β (x) f1(x)]z, (11)

satisfy, for all x,

lim
k→∞

g(x)[υ(x,θ + z)−υ(x,θ)] = 0. (12)

Then all trajectories of the closed-loop system

x+ = f0(x)+ f1(x)θ +g(x)υ(x,θest)

θ̂
+ = θ̂ −β (x) f1(x)[θ̂ +β (x−)x ]− (13)

β (x)( f0(x)+g(x)u)+β (x−)x,

where θest = θ̂ + β (x−)x = θ + z, are bounded and
lim
k→∞

x(k) = 0. �

III. MAIN RESULTS
In this section we consider discrete-time systems described
by the equations

x+1 = x2 +Φ
T
1 (x1)θ ,

x+2 = x3 +Φ
T
2 (x1,x2)θ ,

...
x+i = xi+1 +Φ

T
i (x1, ..,xi)θ , (14)

...
x+n = u+Φ

T
n (x1, ..,xn)θ ,

where xi(k) ∈ ℜ, i = 1, ..,n, are the states, u(k) ∈ ℜ is the
control input, Φi ∈ℜi→ℜp, i = 1, ..,n, are mappings such
that Φi(0) = 0 and θ ∈ℜp is a vector of unknown constant
parameters.

The objective is to design a discrete-time adaptive controller
described by equations of the form (2) such that all closed-
loop trajectories are bounded and

lim
k→∞

(x1(k)− x∗1(k)) = 0, (15)

where x∗1(k) is a given reference signal. This objective is
achieved in two steps, as detailed hereafter.

A. Estimator Design

To begin with we design a stable estimator for the parameter
θ . Let, similarly to Section II,

zi = θ̂i−θ + β̆i, i = 1, ..,n, (16)

where the functions β̆i are defined as

β̆i(x−1 , ..,x
−
i ,xi) = βi(x−1 , ..,x

−
i )xi, (17)

hence
zi = θ̂i−θ +βi(x−1 , ..,x

−
i )xi, (18)

and
z+i = θ̂

+
i −θ +βi(x1, ..,xi)x+i . (19)

As a result

z+i − zi = θ̂
+
i − θ̂i +βi(x1, ..,xi)x+i −βi(x−1 , ..,x

−
i )xi

= θ̂
+
i − θ̂i +βi(x1, ..,xi)[xi+1 +Φ

T
i (x1, ..,xi)θ ]

−βi(x−1 , ..,x
−
i )xi (20)

= θ̂
+
i − θ̂i−βi(x−1 , ..,x

−
i )xi +βi(x1, ..,xi)×

[xi+1 +Φ
T
i (x1, ..,xi)[θ̂i +βi(x−1 , ..,x

−
i )xi− zi]],

and selecting

θ̂
+
i = θ̂i +βi(x−1 , ..,x

−
i )xi−βi(x1, ..,xi)×

[xi+1 +Φ
T
i (x1, ..,xi)[θ̂i +βi(x−1 , ..,x

−
i )xi]], (21)

yields
z+i = [I−βi(x1, ..,xi)Φ

T
i (x1, ..,xi)]zi. (22)

Let
βi = [I +ΦiΦ

T
i ]
−1

Φi, (23)

and note that

[I−βi(x1, ..,xi)Φ
T
i (x1, ..,xi)] = [I +ΦiΦ

T
i ]
−1, (24)
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hence
z+i = [I +ΦiΦ

T
i ]
−1zi, i = 1, ...,n. (25)

Consequently, the following statement holds.

Proposition 2: Consider the system (25). The zero
equilibrium of the system is (uniformly) stable and
ΦT

i (x1(k), ...,xi(k))zi(k) is a l2 signal. In addition, if x j(k),
j = 1, ..., i, is bounded, then

lim
k→∞

Φ
T
i (x1(k), ...,xi(k))zi(k) = 0. (26)

�

B. Controller Design

In this section an adaptive controller solving the
considered control problem is designed.

T heorem 1 : Consider the system (14), and the control law

u = x∗+n
1 −

n

∑
m=1

(Φ
+(n−m)
mest )T

θ
+(n−m)
mest , (27)

where x∗1 is the reference signal to be tracked, θiest =
θ̂i + βi(x−1 , ..,x

−
i )xi, with θ̂i obtained using the up-

date law (21) and βi given by (23); Φ
+(i−m−1)
mest =

Φm(x
+(i−m−1)
1est , ..,x+(i−m−1)

iest ), i = 2, ..,n, with xmest = xm and
x+(i−m−1)

mest , (i−m−1)> 0, estimated (i−m−1)-step future
values of xm obtained by recursively evaluating and utilizing
θ
+k
mest , k = 1, ..,(i−m−1) in equations (14). Then the closed-

loop system is such that all trajectories of the closed-loop
system are bounded and

lim
k→∞

(x1(k)− x∗1(k)) = 0. (28)

Moreover the equilibrium

x̃i = 0, zi = 0, i = 1, ..,n, (29)

where

x̃i = xi− x∗i , i = 1, ..,n,

x∗i = x∗+(i−1)
1 −

i−1

∑
m=1

(Φ
+(i−m−1)
mest )T

θ
+(i−m−1)
mest , i = 2, ..,n,

is Lyapunov stable. �

Remark : The control law u given in (27) consists of “look-
ahead” values x+iest of the state variable xi. Note that

x+i = xi+1 +Φ
T
i (x1, ..,xi)θ , (30)

x+iest = xi+1 +Φ
T
i (x1, ..,xi)θiest . (31)

Hence

x+i − x+iest =−Φ
T
i (x1, ..,xi)zi. (32)

This, straightforwardly, implies

x+m
iest |ΦT

i (x1,..,xi)zi=0 = x+m
i |ΦT

i (x1,..,xi)zi=0, (33)

since

x+m
iest |ΦT

i (x1,..,xi)zi=0 = (x+iest)
+(m−1)|

ΦT
i (x1,..,xi)zi=0,

= (x+i )
+(m−1)|

ΦT
i (x1,..,xi)zi=0, (34)

= x+m
i |ΦT

i (x1,..,xi)zi=0.

This analysis reveals that, as long as ΦT
i (xi)zi = 0, the value

of the estimated variable x+iest is equal to the true value of x+i
and this relation is also valid for all i and all future values. �

IV. EXAMPLE

The proposed methodology is applied to the problem con-
sidered in [22]: wing rock elimination in high-performance
aircrafts. The discrete-time Euler model of the continuous-
time system given in [22], which describes the motion of the
wing, is given by

x+1 = x1 +T x2,

x+2 = x2 +T x3 +T Φ
T (x1,x2)θ , (35)

x+3 = x3 +
T
τ
(v− x3),

where the states x1(k), x2(k) and x3(k) describe the roll angle,
the roll rate and the aileron deflection angle, respectively, τ

is the aileron time constant, v(k) is the control input, θ ∈ R5

is a vector of unknown constant parameters,

Φ(x1,x2) = [1,x1,x2,x1|x2|,x2|x2|], (36)

and T is the sampling period. Applying the co-ordinates and
input transformation

x̂1 = x1,

x̂2 = x1 +T x2, (37)

x̂3 = x1 +2T x2 +T 2x3,

u = F +
T 3

τ
v,

with
F = 2x̂3− x̂2 +(1− T

τ
)(x̂3 + x̂1−2x̂2), (38)
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yields the system in strict feedback form

x̂+1 = x̂2,

x̂+2 = x̂3 +Φ
T
2 (x̂1, x̂2)θ , (39)

x̂+3 = u+Φ
T
3 (x̂1, x̂2)θ .

where
Φ2 = T 2Φ(x̂1, x̂2),

Φ3 = 2Φ2 = 2T 2Φ(x̂1, x̂2),
(40)

Simulations are carried out for T = 0.5 and the parameters
τ = 1

15 , θ0 = [0,−26.72,0.76485,−2.9225,0]T as in [1], and
for x∗1 = 0. The initial conditions for the parameter estimator
have been set to θ̂(0) = 0, and the initial state has been
selected as x(0) = [0.4, 0, 0]T . Figure 1 and Figure 2 show
the time histories of the parameter estimation errors z2(k)
and z3(k). Note that, consistently with the theory, z2(k)
and z3(k) do not converge to zero. Figure 3 and Figure
4 show the time histories of the perturbations Φ2(x)z2(k)
and Φ3(x)z3(k), respectively, which converge to zero.
Finally, Figure 5 and Figure 6 display the time histories
of the states x1(k), x2(k), and x3(k) and of the control signal.

V. CONCLUSIONS AND FUTURE WORKS

In this paper a novel adaptive controller design method for
the adaptive regulation of linearly parameterized discrete-
time systems in strict-feedback form has been developed.
The control law is constructed using a backstepping-type
procedure together with a novel parameter update law, which
renders the zero equilibrium of the parameter estimation error
system stable. This property is obtained, as in the continuous-
time immersion and invariance approach, including a func-
tion of the state in the definition of the parameter estimation
error. The results are illustrated on the Euler model of the
system which describes the wing rock oscillation in high-
performance aircraft. Further work to develop a stable param-
eter estimator which does not require overparametrization is
under way.
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