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Abstract— This paper presents an application of linear-
Parameter-Varying (LPV) control to solve the torque vectoring
problem of a through-the-road hybrid electric vehicle (TtR-
HEV). To achieve high performance both in reference tracking
and disturbance rejection, a two-degree-of-freedom LPV self-
scheduled controller is synthesized by using mixed sensitivity
loop shaping. The controller is based on a single Lyapunov func-
tion and guarantees stability and a level of control performance
for all admissible trajectories of varying parameters. Moreover,
an anti-windup control scheme is derived by employing a two-
step design procedure. Finally the designed controller is tested
in various driving maneuvers and compared with a flatness-
based controller.

I. INTRODUCTION

Hybrid electric vehicles (HEV) are developed to achieve

either better fuel economy or better performance, compared

to conventional vehicles. Control schemes have been focused

on the dual-axle propulsion system. The front-wheel axle and

rear-wheel axle are separately driven, where one is propelled

by a hybrid power train and the other one is driven by electric

motors [1]. Moreover, regenerative braking on individual

wheels can significantly improve the vehicle fuel efficiency

and hence the fuel economy.

To overcome the conflict between stability and agility of

the conventional vehicles, one emerging technique called

torque vectoring is used in both pure electric and hybrid

electric vehicles. Its benefits become more obvious, when the

vehicle is commanded to drive along a curve, particularly

at high vehicle speed. Due to the response time, that the

vehicle takes to build up lateral forces on wheels, the

vehicle responds slower than the expectations of drivers.

Meanwhile, after a relatively long response time, the vehicle

yaw movement, e.g. the yaw rate, presents overshoot and

oscillation before settling on a steady state [7]. Conventional

vehicle suspensions are tuned through bump steering, static

settings, etc, to guarantee system stability at the expense of

vehicle agility.

Adopting torque vectoring technique in a hybrid or pure

electric vehicle enables independent control of each wheel.
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When the vehicle is cornering, the torques applied on the

outside wheels are increased, while the inside wheels are

effectively braked. Such a solution eliminates the need to

compromise between response and stability.

Currently, torque vectoring receives enormous attention

from car manufacturers for their next generation vehicles.

In [7], an inverse model of the complex vehicle system

is employed as the feedforward control part. Assuming the

inverse model is an accurate representation of the actual sys-

tem, it plays a significant role in the whole control scheme,

where the feedback part is complementary to account for the

external disturbances. However, this control concept lacks

of generality, for it is not easy or even not possible to

create a highly realistic model that represents the inverse

of a complex non-linear vehicle. In [6], a combination of

flat feedforward and LQG feedback controller is proposed

in the application of torque vectoring. Its performance is

demonstrated under extreme driving situations for reference

tracking. Nevertheless, the construction of the flat nonlin-

ear model involves the differentiation of measured signals

[10], which may amplify measurement noise. An adaptive

feedback linearization technique is proposed in [9] for an

active front steering and rear torque vectoring vehicle in the

presence of parameter uncertainties.

This paper presents a novel LPV self-scheduled control

scheme to solve the torque vectoring problem of a through-

the-road hybrid electric vehicle. A two-degree-of-freedom

(2-DOF) controller is synthesized to realize the feedfor-

ward and feedback control simultaneously. It guarantees

performance and stability for all admissible trajectories of

varying parameters. Moreover, the feedforward and feedback

controllers are synthesized in one optimization step.

In section 2 some facts about TtR-HEV are introduced

for basic understanding. A single-track model to analyze

vehicle lateral dynamics serves as the starting point before

controller design. Section 3 focuses on the LPV model

realization and self-scheduled controller synthesis. In section

4, the performance of the designed controllers is tested in

different driving maneuvers in simulation, and compared

with a controller proposed in [6]. Finally, conclusions are

drawn in section 5.

II. THROUGH-THE-ROAD HYBRID ELECTRIC VEHICLE

To implement a hybrid power train, a natural way is to

mount an electric drive train to an existing combustion engine

driven propulsion system. Such an implementation is called

through-the-road hybrid electric vehicle (TtR-HEV) [2]. The
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conventional combustion engine drives one axle, while the

other one is equipped with electric components, including

an electric energy storage and electric motors. Therefore,

by assembling an internal combustion engine (ICE) driven

vehicle with electric parts, together with necessary control

units, a TtR-HEV is realized as in Fig. 1.

Fig. 1. Basic design of a TtR-HEV

This paper considers the electric drive designed in the

way that two electric motors with their own controllers

are mounted inside the wheels as hub motors. With the

equipment of two motors, the size of the electric drive train is

reduced and the final drive becomes unnecessary. Moreover,

two independent motors make it possible, that torques are

distributed to left and right wheels individually and in an

optimal way.

A. Single-Track Model

Instead of working on complex vehicle models, consider-

able insight into the basic aspects of vehicle handling and

stability can also be gained by taking a simplified model

of a vehicle that runs at a constant speed over an even

horizontal road. One well-known simplified vehicle model to

be employed in this paper is a single-track model [8]. The

second-order linearized vehicle lateral dynamics are written

as follows:

β̇ = (
−afCf + arCr

mυ2x
− 1)ψ̇ −

Cf + Cr

mυx
β +

Cf

mυx
δ (1)

ψ̈ = −
a2fCf + a2rCr

Izυx
ψ̇ +

arCr − afCf

Iz
β +

afCf

Iz
δ +

1

Iz
Mz

(2)

Here the side slip angle β and yaw rate ψ̇ are chosen as states

for a state space realization. The driver’s wish is described

by the steering angle δ and longitudinal velocity υx, both

of which can be estimated or measured online. Mz is the

generated yaw torque to turn the vehicle around the vertical

axis, and is regarded as an input. Cf , Cr, af , ar,m, Iz are

constant vehicle parameters and stand for the cornering

stiffness of front wheel and rear wheel, distance from the

center of gravity to the front axle and rear axle, vehicle mass,

moment of inertia around the vertical axis, respectively (see

Table I).

III. TORQUE VECTORING

A. LPV Model

An LPV state space model has the form:

G(θ) :=

{

ẋ = A(θ)x +B(θ)u
y = C(θ)x +D(θ)u

(3)

where x ∈ R
m is the state vector, u ∈ R

n the input

vector, y ∈ R
l the output vector. The mappings A(θ), B(θ),

C(θ), D(θ) are affine functions of θ(t). The measurable

parameter vector θ(t) represents a time-varying parameter

vector referred to as scheduling signal vector, which is

assumed to be confined to a compact set:

θ(t) ∈ P ⊂ R
l, ∀t > 0

This section presents an LPV model of the vehicle lateral

dynamics in the form of G(θ).
The time-varying parameter θ varies in a polytope P with

vertices ω1, ω2, ..., ωr. An LPV model is called polytopic

if it can be presented by a convex combination of a finite

number of state space matrices of the LPV model at vertices

of θ(t). A matrix polytope is defined as a convex hull of

these matrices [3], as
[

A(θ) B(θ)
C(θ) D(θ)

]

∈ Co

{ [

Ai Bi

Ci Di

]

, i = 1, 2, ...r

}

=

r
∑

i=1

αi

[

Ai Bi

Ci Di

]

: αi ≥ 0,

r
∑

i=1

αi = 1

where Co denotes the convex combination among systems

at vertices.

Here, the state space matrices of the vehicle lateral dy-

namics can be regarded as fixed functions of two varying

parameters which depend on the vehicle velocity υx(t):

θ(t) =

[

1

υx(t)

1

υ2x(t)

]T

.

B. 2-DOF LPV Controller Synthesis

In order to maintain stability and high performance along

all trajectories of θ(t), the controller needs to be capable of

adjusting to the variations in the plant dynamics. LPV gain

scheduling is employed in this paper to synthesize the con-

troller. With the existence of a quadratic Lyapunov function

for all P , the designed controller guarantees stability and a

level of control performance along all admissible trajectories.

The synthesis problem reduces to solve a system of linear

matrix inequalities (LMIs), see [3].

We choose the yaw rate ψ̇ as the measured output y, two

states x = [β ψ̇]T , and the steering angle δ as an exogenous

input w, yaw torqueMz as the control input u. The controller

is synthesized by shaping mixed sensitivities: sensitivity S
and control sensitivity KS are designed to achieve desired

properties of the closed-loop transfer function from the

desired yaw movement ψ̇ to the fictitious output vector

z = [zs zk]
T [11]. The design is carried out by choosing

suitable weighting filters Ws and Wk. The generalized plant
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P (s) is shown in Fig. 2. Its state space representation is

given as:

ẋ = A(θ)x +B1(θ)w +B2(θ)u

z = C1(θ)x+D11(θ)w +D12(θ)u (4)

y = C2(θ)x+D21(θ)w +D22(θ)u

In order to be able to use the design techniques in [3], a
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Fig. 2. Generalized plant with 2 DOF

prefilter is added to remove the parameter dependence of

B2(θ).

Here, to fulfill requirements of both reference tracking

and disturbance rejection, a 2-DOF synthesis structure is

employed. The controller K(θ) has the form:

ẋk = Ak(θ)xk +Bke(θ)e +Bkδ(θ)δ (5)

u = Ck(θ)xk +Dke(θ)e +Dkδ(θ)δ (6)

It has two inputs: steering angle δ as the reference, and the

difference e between desired and measured yaw rate. The

control output is the yaw moment Mz . The controller K(θ)
can be decomposed into two parts: a feedforward controller

Kff(θ) to track the reference, and a feedback controller

Kfb(θ) to reduce the errors due to disturbances and uncer-

tainties. The two controllers are synthesized simultaneously

in one optimization step.

C. Torque Distribution

The control output Mz is the torque needed at the center

of gravity to generate yaw movement of the vehicle and

has to be calculated for individual wheels. For this purpose,

the dynamics of a dual track vehicle model is applied. Two

variables σ and ρ are defined to relate the force requests of

front and rear wheels Fx,F , Fx,R and axis-force differences

△Fx,F , △Fx,R as:

Fx,R = σFx,F (7)

△Fx,R = ρ△Fx,F (8)

Depending on σ, it is possible to drive purely by ICE (σ =

0) or purely by electric motor (σ = ∞) or a combination.

Setting ρ → ∞, no torque difference at the front axle is

required. Thus ICE driven wheels are in use.

So the resulting force on each wheel is expressed as [6]

Fx,FL = Fx,F −△Fx,F (9)

=
Fx

2(1 + 2σ)
−

Mz

ωF + ρωR

Fx,FR = Fx,F +△Fx,F (10)

=
Fx

2(1 + 2σ)
+

Mz

ωF + ρωR

Fx,RL = Fx,R −△Fx,R (11)

=
Fxσ

2(1 + 2σ)
−

ρMz

ωF + ρωR

Fx,FR = Fx,F +△Fx,F (12)

=
Fxσ

2(1 + 2σ)
+

ρMz

ωF + ρωR

D. Anti-Windup Control Scheme

An important design issue is actuator saturation, when the

actuator capacity is limited by inherent physical constraints

and limitations of the actuator. In this work, the maximum

torque applied to each wheel is bounded either by the

maximum applicable torque TeMot or by the maximum

power PeMot, see Table I.

An anti-windup control scheme proposed in [4] is adopted

here for the feedback control loop. The anti-windup scheme

is constructed after the LPV self-scheduled controller is

synthesized. The prerequisite to apply such a scheme is that,

the matrix Dke(θ) is invertible ∀θ(t) ∈ P . The feedback

controller has the form:

ẋke = Ak(θ)xke +Bke(θ)e (13)

ue = Ck(θ)xke +Dke(θ)e (14)

where uke and xke are the output and states of the decom-

posed feedback controller, respectively.

By multiplying (14) with a matrix H(θ) and substracting

from (13), we obtain

ẋke =(Ak(θ)−H(θ)Ck(θ))xke (15)

+ (Bke(θ)−H(θ)Dke(θ))e +H(θ)ue

ue = Ck(θ)xke +Dke(θ)e. (16)

Selecting H(θ) = Bke(θ)D
−1

ke (θ) and replacing the con-

troller output ue with the saturated plant input ũe, the state

space model of the controller can be written as follows.

ẋke =(Ak(θ)−Bke(θ)D
−1

ke (θ)Ck(θ))xke (17)

+Bke(θ)D
−1

ke (θ)ũe

ue = Ck(θ)xke +Dke(θ)e (18)

The new structure of the feedback controller is shown in Fig.

3.

IV. SIMULATION RESULTS

A 14-DOF vehicle model is employed for simulation use,

see [6]. Among them, 6-DOF come from the center of gravity

moving and rotating in all directions. 4-DOF are reserved

for the suspension of the vehicle, the other 4-DOF for the
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Fig. 3. Feedback control scheme with anti windup

TABLE I

PARAMETERS OF THE SIMULATION MODEL

af 1.24 distance from front axle to COG in m
ar 1.228 distance from rear axle to COG in m
Cf 78972 Cornering stiffness of the front wheel in N/rad
Cr 79918 Cornering stiffness of the rear wheel in N/rad
ωF 1.4450 width of the front axle in m
ωR 1.4510 width of the rear axle in m
m 1500 mass of the vehicle in kg ·m2

Iz 3263 moment of inertia around vertical axis in kg
TeMot 775 maximal torque of one electric motor in Nm
PeMot 50 maximal power of one electric motor in Kw

µ 1 adhesion coefficient between wheel and road

angular movement of the wheels. The tire characteristics are

approximated by a modified Dugoff model [5]. Moreover, σ
and ρ are chosen to be zero. The vehicle is rear-wheel-driven

by an ICE, while two electric motors are installed on front

wheels. The vehicle parameters used for simulation are listed

in Table I.

A. Reference Generation

The yaw rate is one of the important state variables

that describe the lateral motion of a vehicle. In this paper,

the desired yaw rate ψ̇d is chosen as the reference input

according to inputs given by the driver: vehicle velocity υx,

and steering wheel angle that is directly related with steering

angle at wheels δ by a steering ratio. The reference input is

generated by an observer, see [6].

B. Implementation of the 2-DOF LPV Controller

There are two dependently varying parameters θ =
[1/υx(t) 1/υ2x(t)]

T . Given the varying range of vehicle

velocity vxmin = 1m/s and vxmax = 35m/s, they form

a parameter box with 4 vertices ω1, ω2, ω3 and ω4, where:

ω1 :=

[

1/υxmin

1/υ2xmin

]

, ω2 :=

[

1/υxmax

1/υ2xmin

]

,

ω3 :=

[

1/υxmin

1/υ2xmax

]

, ω4 :=

[

1/υxmax

1/υ2xmax

]

.

However, this parameter box with four vertices introduces

conservatism into the design: Among four vertices, it can be

easily seen that, ω2 is not reachable for any value of υx.

Hence, the polytope P is reduced to a triangle with vertices

ω1, ω3 and ω4 shown in Fig. 4, though there still remains

some conservativeness on the polytope [12]. By solving the

LMIs using Robust Control Toolbox of Matlab, a polytopic

LPV controller is synthesized. Ws and Wk are filters to

xX

1

2

1

xX 1Z2Z

3Z4
Z

Fig. 4. Polytope of θ

shape the sensitivity and control sensitivity, respectively. By

taking bandwidth, steady state error and control effort into

consideration, the two filters are tuned as:

Ws =
3× 106

105s+ 1
, Wk =

1100s+ 105

5000s+ 5× 109
.

The resulting LPV controller has an order of five.

C. Implementation of a Flat Feedforward and LQG Feed-

back Controller

The LPV controller is compared with a flatness-based con-

troller in [6], where a flat feedforward control in combination

with a PID and a Linear Quadratic Gaussian (LQG) feedback

control for a TtR-HEV via torque vectoring is proposed to

generate the desired force Fx in longitudinal direction and

the desired yaw moment Mz . The longitudinal force Fx is

needed to fulfill the prerequisites to construct a flat system.

Apart from flat feedforward control, the feedback part is

realized by combining PID and LQG. The input of the PID

controller is the difference between desired and measured

vehicle velocity υx; the output is the longitudinal force Fx.

The LQG controller corrects the error of the yaw rate ψ̇. Its

structure is shown in Fig. 5. It stabilizes the vehicle response

in tracking tests.

Fig. 5. Flatness-based control scheme

D. Comparison

To compare the performance of the two control schemes,

several driving maneuvers are designed for testing.

i) Constant reference velocity with sinusoidal steering:

In this driving maneuver, the reference vehicle ve-

locity maintains 80 Kph. The sinusoidal steering has

an amplitude of 120o and frequency 0.7 Hz. At the

valley of the sinusoidal curve, the steering wheel is

held constant for 0.5 seconds before completing the
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period. The simulation results are plotted in Fig. 6. Fig.

7 refers to the generated torque by feedforward and

feedback controllers, respectively. The control input Mz

is calculated as the sum of both torques.
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Fig. 7. Generated torque by flatness-based and LPV controllers respectively

ii) Normal driving behavior: Apart from above extreme

driving situation, vehicles drive within the linear range

most of the time. To test the performance of both

controllers, some measured driver inputs are used to

represent normal driving behavior. As shown in Fig.

8, first two rows are vehicle velocity and steering

wheel angles given by the driver, the third row is the

comparison between the desired yaw rate generated

by the observer and the simulated yaw rate controlled

by two controllers. Fig. 9 shows enlarged parts of the

comparison for better visualization.

iii) Step steering with disturbance rejection: The foregoing

two driving maneuvers demonstrate the performance

of both controllers in reference tracking. To test their

performance in disturbance rejection, we let the friction

coefficient between the road and tires be subject to

noise. The foregoing maneuvers are implemented under

the assumption that vehicles drive on an ideal dry

asphalt road, which indicates the friction coefficient 1.
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The driving maneuver is defined as: a step steering

of 80o at 100 Kph. Meanwhile, measurement noise,

simulated by an additive white Gaussian noise, is in-

troduced along the whole driving, as shown in Fig. 10.

The controller is expected to guarantee stability and

accuracy against errors.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

time(s)

fr
ic

ti
o

n
 c

o
e

ff
ic

ie
n

t

Fig. 10. noisy friction coefficient with Gaussian noise
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Fig. 11 shows the comparison of vehicle responses by

means of the LPV control and flatness-based control.

Torques generated by feedforward and feedback con-

trollers are shown in Fig. 12.
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E. Assessment of Simulation Results

Driving maneuver i) tests the performance of controllers

in an extreme driving situation, where the vehicle drives at a

relative high velocity and an abrupt change of steering may

lead the vehicle out of control. It needs to be emphasized that

both controllers are synthesized based on a simple linearized

vehicle model and implemented to a more complex and

realistic nonlinear model. Even though the vehicle handling

largely violates the assumption of the single-track model,

the stability of the closed-loop system is still guaranteed

by both LPV and flatness-based controllers. Compared to

the flatness-based controller, the LPV controller outperforms

with smaller overshoot.

Both driving maneuvers i) and ii) are implemented for

reference-tracking test. By taking external disturbance and

simulation error into consideration, driving maneuver iii) is

aimed at testing the robustness of the two controllers. As

depicted in Fig. 11, the 2-DOF LPV controller achieves much

smaller overshoot and steady state error with the presence of

noise. Its feedforward and feedback controllers work together

in an optimal way to realize high performance in both

reference tracking and disturbance rejection tests. Moreover,

the 2-DOF LPV controller is derived, by tuning one filter

for sensitivity and one filter for control sensitivity, instead of

tuning both filters for feedforward and feedback controllers

separately. This control scheme can be easily and efficiently

tuned and implemented.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a successful application of a 2-DOF

LPV self-scheduled controller design of a TtR-HEV via

torque vectoring. A feedforward and a feedback controller

are synthesized in one step to achieve good tracking and

high robustness against disturbances and modeling errors.

An anti-windup control scheme is adopted to avoid signifi-

cant performance degradation, when the actuator saturation

occurs. By testing the designed controller in different driving

maneuvers and comparing it with a flatness-based controller,

its high performance and robustness have been demonstrated

by simulation results. The controller designed in this paper

is based on a simplified vehicle model - single track model.

Further work can be implemented by adopting a more

realistic 2-track model.

REFERENCES

[1] C. C. Chan, K. T. Chau, Modern Electric Vehicle Technology, Oxford
University Press, USA, 2001

[2] B. Chretien, F. Holzmann, G. Kaiser, S. Glaser, and S. Mammar,
Concept of Through the Road Hybrid Vehicle, Advanced Vehicle

Control, AVEC, Ed., Loughborough, 2010
[3] P. Apkarian, P. Gahinet, G. Becker, Self-scheduled H∞ Control of

Linear Parameter-varying Systems: a Design Example, Automatica,
vol 31, no.9, 1995, pp.1251-1261

[4] H. P. Luedders, H. Abbas, D. Doberstein, F. Thielecke, H. Werner,
LPV Gain-Scheduling Control of an Electromechanically Driven
Landing Gear for a Commercial Aircraft, In Proceedings of the 2010

American Control Conference, MD, USA, June 30-July 02, 2010, pp.
4659-4664

[5] G. J. Forkenbrock, An Overview of NHTSA’s 2005 ESC Research
Program, 2005

[6] G. Kaiser, F. Holzmann, B. Chretien, M. Korte, H. Werner, Torque
Vectoring with a Feedback and Feed Forward Controller - Applied to
a through the Road Hybrid Electric vehicle, IEEE Intelligent Vehicle,
Karlsruhe, 2011

[7] M. Burgess, Torque Vectoring, Lotus Engineering,
[http://www.vehicledynamicsinternational.com]

[8] H. B. Pacejka, Tyre and Vehicle Dynamics, Elsevier Butterworth-

Heinemann, 2002
[9] D. Bianchi, A. Bori, G. Burgio, M. D. Di Benedetto, S. Di Gennaro,

Adaptive Integrated Vehicle Control Using Active Front Steering and
Rear Torque Vectoring, In Proceedings of the Joint 48th IEEE Confer-
ence on Decision and Control and 28th Chinese Control Conference,
Shanghai, China, December 16-18, 2009, pp. 3557-3562

[10] R. Rothfuss, J. Rudolph, M. Zeitz, Ein Neuer Zugang zur Steuerung
und Regelung Nichtlinearer Systeme, Automatisierungstechnik 45,
1997, pp. 517-525

[11] S.Skogestad, I.Postlethwaite, Multivariable Feedback Control: Analy-
sis and design, John Wiley and Sons, 2001

[12] A.Kwiatkowski, H.Werner, PCA-Based Parameter Set Mappings for
LPV Models With Fewer Parameters and Less Overbounding, IEEE

Transactions on Control Systems Technology, 2008

1279


