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Abstract— Collaboration among IDSs allows users to benefit
from the collective knowledge and information from their
collaborators and achieve more accurate intrusion detection.
However, most existing collaborative intrusion detection net-
works rely on the exchange of intrusion data which raises the
privacy concern of participants. To overcome this problem,
we propose a knowledge-based intrusion detection network,
which provides a platform for IDS users to effectively share
their customized detection knowledge in an IDS community. An
automatic knowledge propagation mechanism is proposed based
on a decentralized two-level optimization problem formulation,

leading to a Nash equilibrium solution which is shown to be
scalable, incentive compatible, fair, efficient and robust.

I. INTRODUCTION

To protect computer users from malicious intrusions, In-

trusion Detection Systems (IDSs) are designed to monitor

network traffic and computer activities by raising intrusion

alerts to network administrators or security officers. Tradi-

tional IDSs work independently from each other and rely

on downloading new signatures or detection rules from the

corresponding security vendor’s signature/rule base to remain

synchronized with new detection knowledge. However, the

increasing number and diversity of intrusions render it not

effective to rely on the detection knowledge from a single

vendor, since no single vendor can cover all the possible

intrusions due to limited labor and available technology. In-

deed, vendors usually choose to cover high priority intrusions

which may have large influence among their clients or have

high risk levels. Collaborative intrusion detection networks

(CIDNs) provide a platform for IDSs to take advantage of

the collective knowledge from collaborators to improve the

overall detection capability and accuracy. However, most

existing CIDNs, such as those in [1], [2], [3], [4], and [5],

rely on the sharing of intrusion data with others, which

raise privacy concerns from the participants. The other way,

sharing detection knowledge such as malware signatures and

intrusion detection rules, causes less privacy concern.

In reality, expert IDS users, including security analysts,

network administrators, and security system programmers,

create their own detection rules or customize existing ones

to improve detection accuracy specifically for their individual

environment [6]. A new detection rule created by one user
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may be adopted directly by another user if they have simi-

lar network/computer configurations. For example, detection

rules created for an academic computing environment may be

easily adopted by another similar institution; a new intrusion

detection rule created to minimize vulnerability of a software

can be adopted by others using the same software. An expert

user who creates new rules for newly revealed vulnerabilities

may share their rules with others who are subject to similar

vulnerabilities. Sharing rules among a large group of users

can be an effective way to improve the overall security

among all users.

In this paper, we leverage the benefit of intrusion detection

knowledge sharing and propose a knowledge sharing collab-

orative intrusion detection network, where intrusion detection

knowledge is shared among users who have similar interests

in the community. Accordingly, an automatic knowledge dis-

semination mechanism is proposed to allow users effectively

share detection rules with other users without overwhelming

their receiving capacities.

The major contributions of this paper are as follows: 1)

We develop a rule dissemination protocol based on a decen-

tralized two-level optimization framework, which determines

the information propagation rates to each recipient. We set

an optimal rule sharing policy for each node and show the

existence of a Nash equilibrium in the intrusion detection

network. 2) We employ Bayesian learning for each node

to estimate the compatibility ratio of others based on the

empirical data collected by the node. 3) We design distributed

dynamic algorithms to find the Nash equilibrium and perform

comprehensive simulations to demonstrate the efficiency,

incentive-compatibility, fairness, robustness and scalability

of the rule sharing mechanism.

The rest of the paper is organized as follows. In Section

II, we describe a knowledge sharing CIDN framework and

propose a two-level optimization model to analyze optimal

knowledge propagation in the network. In Section III, we

discuss Nash equilibrium of the distributed CIDN model

and propose practical algorithms to find it. We conduct

simulation-based study of the proposed system in Section

IV. Finally, we conclude the paper in Section V.

II. OPTIMAL KNOWLEDGE SHARING CIDNS

Defense against attackers is a challenging problem since

a defender needs to know all possible attacks to ensure

network security, whereas an attacker only needs to know

a few attack techniques to succeed. It is often impossible

for one person or a small group of defenders to know all

attack techniques, but it is common to have knowledge about
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some attacks. As a result, the attackers have a significant

advantage over the defenders. This motivates defenders to

share knowledge with others to overcome their weaknesses.

In fact, some open source intrusion detection systems, such

as Snort [7] and OSSEC [8], allow users to create and

edit detection rules, which provides an opportunity for users

to contribute and exchange intrusion detection rules. The

purpose of knowledge sharing CIDN is to provide such

a platform for users to share their detection rules with

others effectively. In [9], an architecture called SMURFEN is

proposed, which is built on a Chord [10] peer-to-peer (p2p)

communication overlay. In this section, we propose a model

for knowledge sharing CIDNs and design an optimal rule

sharing mechanism.

A. CIDN Knowledge Propagation Modeling

Knowledge propagation is an essential part of the CIDN

system. In this subsection, we describe a system model for

a collaborative network comprising a set of n IDSs, denoted

by N . In the network, users are allowed to contribute and

share rules with others using peer-to-peer communication

substrate. A user i propagates new rules to its neighbors,

denoted by Ni, with a probability pij , j ∈ Ni, to achieve

an optimal impact. We let ni = |Ni| be the number of

neighbors of node i. The communication in the collaboration

network is bi-directional, i.e., if node i propagates rules to

node j, then node j also propagates rules to node i. We use

a matrix r = [rij ]i,j∈N to represent the rule propagation

rate between nodes in the network and rij ∈ [0, r̄i], ∀i, j ∈
N , is the rule propagation rate from node i to node j.

To make the design robust to DoS attacks, nodes specify

maximum sending rate from their neighbors. We denote by

R = [Rij ]i,j∈N the requested sending rate from i to j.

Note that Rij is controlled by node j and informed to node

i. CIDNs require nodes to control their sending rate under

the requested rate, i.e., rij ≤ Rij , ∀i, j ∈ N . To control the

communication overhead, an IDS i can set the upper-bound

Mi ∈ R++ on the total out-bound communication rate, i.e,∑
j∈Ni

rij ≤ Mi. Denote by r̄i the rule contribution rate

from node i. The rule propagation rate from node i to other

nodes can not exceed the rule contribution rate r̄i of node i.
Let pij ∈ [0, 1] denote the probability that node i sends a rule

to node j when such a new rule occurs. Then the probability

can be derived from the rule sending and contribution rates,

i.e., pij =
rij
r̄i

.

Propagated rules are not all equally useful to their recip-

ients. To capture the metric of relationship on helpfulness,

we use a matrix C = [Cij ]i,j∈N to denote the compatibility

ratio between two nodes, where Cij ∈ [0, 1], ∀i, j ∈ N ,
representing the probability or likelihood that a rule useful

to node i is also useful to node j. Note that the compatibility

matrix can be asymmetric, i.e., Cij 6= Cji.

Our goal is to devise a system-wide rule propagation

protocol so that the rules contributed by all contributors are

fairly distributed to other nodes so as to optimize their impact

on the system. To achieve this goal, we model our system

based on a two-level optimization problem formulation as

sketched in Figure 1. At the lower level, an IDS i solves the

optimization problem (PPi) where it chooses its propagation

rate ~ri to optimize its public utility function. At the upper

level, an IDS i determines the request rate to all neighbors
~Ri from a private optimization problem (Pi). The choice of

Rji at the upper level influences the decision-making at the

lower public optimization level.

(Pi) max Ui
b

(PPi) max Ui
r

(Pi) max Uj
b

(PPi) max Uj
r

Rij=qij rjiRji=qji rij

IDS i IDS j

rij

rji

Fig. 1. An illustration of the rule propagation protocol between IDS i
and IDS j. Each IDS has a two-level decision process. IDS i optimizes the
propagation rate rij based on an altruistic or public optimization (PPi) and
uses a private optimization problem (Pi) to determine the requested sending
rate Rji which will be passed on to IDS j for its propagation decisions.
It can be seen that the (PPj) decision of IDS j depends on the decision
from (Pi) of IDS i. The interdependence of the agents leads to a Nash
equilibrium.

B. Lower Level – Public Utility Optimization

In this subsection, we formulate an optimization frame-

work for each node to decide on the propagation rate to

all its neighbors to maximize its utility. The utility of each

node Ui has two components: a public utility function U r
i

and a private utility function U b
i . The utility U r

i measures

the aggregated satisfaction level experienced by node i’s
neighbors weighted by their compatibility ratios. It allows

a node to propagate its rules more toward those with whom

it is more compatible. On the other hand, U b
i measures the

satisfaction level of a node with respect to the amount of

help it receives from its neighbors.

An IDS i can control two sets of variables, ~ri = [rij ]j∈Ni

and ~Ri = [Rji]j∈Ni
. We call qji =

Rji

rij
the greed factor,

which reflects the greediness of the request from node

j. qji > 1 indicates that node j requests a higher rule

propagation rate from node i than the rate it propagates to

node i. The introduction of greed factor serves two major

purposes: 1) it sets an expectation of return ratio so that

a node i can determine its rule propagation rate rij and

Rij/rji can reach qij to achieve maximum satisfaction from

node j; 2) it serves as an upper bound for communications

between nodes i and j, i.e., rij ≤ qijrji, or equivalently,

rij ≤ Rij . It circumvents potential denial-of-service attacks

from a malicious node who sends an excessive volume of

traffic to node j.

The public optimization problem (PPi) seen by each node

i, i ∈ N , is given by

(PPi) max
~ri∈R

ni

U r
i (~ri) :=

∑

j∈Ni

CjiSij(rij) (1)

∑

j∈Ni

rij ≤ Mi, (2)
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rij ≤ Rij , (3)

0 ≤ rij ≤ r̄i, (4)

where Sij : R → R is the satisfaction level of node j in

response to the propagation rate rij of node i. We let Sij

take the following form

Sij(rij) := Cij log

(
1 +

rij
Rij

)
. (5)

The concavity and monotonicity of the satisfaction level indi-

cate that a recipient becomes increasingly pleased when more

rules are received but the marginal satisfaction decreases

as the number of received rules increases. The parameter

Cij in (5) suggests that a node j is more content when the

compatibility or usefulness of rules sent from node i is high.

The objective function U r
i : Rni → R in (1) aggregates

the satisfaction level Sij of node j by the compatibility factor

Cji. The utility U r
i can be viewed as a public altruistic utility

in that a node i seeks to satisfy its collaborators by choosing

propagation rates ~ri. The problem (PPi) is constrained by (2)

in that the total sending rate of a node i is upper bounded

by its communication capacity. The additional constraint (4)

ensures that the propagation rate does not exceed its rule

contribution rate r̄i. Note that the constraint (3) is imposed

by its recipient while constraint (4) is set by node i itself.

Define the sets F1
i := {~ri ∈ R

ni :
∑

j∈Ni
rij ≤ Mi,Mi ∈

R++} and F2
i := ∩j∈Ni

F2
ij , where F2

ij := {rij ∈ R+ :
rij ≤ min(Rij , r̄i)}. The optimization problem is feasible if

and only if Fi := F1
i ∩F2

i is not empty. The feasible set is a

convex polytope and it can be represented by the convex hull

of its finite set of Ki extreme points Ki = {k1, k2, · · · , kKi
},

where Ki = |Ki|. Since the utility function (1) is strictly

convex in ~ri and the feasible set is convex, the optimization

problem (PPi) is in a form of convex programming and

admits a unique solution.

It can be seen that when Mi is sufficiently large and (2) is

an inactive constraint, the solution to (PPi) becomes trivial

and rij = min(Rij , r̄i) for all j ∈ Ni. The situation becomes

more interesting when (2) is an active constraint. Assuming

that qij and hence Rij have been appropriately set by node j,

we form the Lagrangian functional Li : Rni ×R×R
ni → R

Li(~ri, µi, δij) :=
∑

j∈Ni

CjiCij log

(
1 +

rij
Rij

)

−µi


∑

j∈Ni

rij −Mi


 −

∑

j∈Ni

δij(rij − r̄i), (6)

where µi, δij ∈ R+ satisfy the complementarity conditions

µi

(∑
j∈Ni

rij −Mi

)
= 0, and δij(rij − r̄ij) = 0, ∀j ∈ Ni,

where r̄ij := min(Rij , r̄ij). We minimize the Lagrangian

(by differentiating it) with respect to ~ri ∈ R
ni

+ and obtain the

first-order Kuhn-Tucker condition:
CijCji

rij+Rij
= µi+δij , ∀j ∈

Ni. When (2) is active but (3) and (4) are inactive, we can

find an explicit solution supplied with the equality condition
∑

j∈Ni

rij = Mi (7)

and consequently, we obtain the optimal solution

r⋆ij = r∗ij :=
CijCji∑

u∈Ni
CiuCui

(
Mi +

∑

v∈Ni

Riv

)
−Rij . (8)

When either one of the constraints (3) and (4) is active, the

optimal solution is attained at one of the extreme points of

the polytope. Since the log function has the fairness property,

the optimal solution r⋆ij has non-zero entries when the

resource budget is positive, Mi > 0. In addition, due to the

monotonicity of the objective function, the optimal solution

r⋆ij is attained when all resource budgets are allocated, i.e.,

constraint (2) is active. Hence, the optimal solution r⋆ij to

(PPi) is always on the face of the polytope where (7) holds.

Remark 1: We can interpret (8) as follows. The solution

r∗ij is composed of two components. The first part is a

proportional division of the resource capacity Mi among

|Ni| neighbors by their compatibilities. The second part is

a linear correction on the proportional division by balancing

the requested sending rate Rij . It is also important to notice

that by differentiating r∗ij with respect to Rij , we obtain
∂r∗ij
∂Rij

=
CijCji∑

u∈Ni
CiuCui

−1 < 0, suggesting that at the optimal

solution, the propagation rate decreases as the recipient

sets a higher requested sending rate. If a node wishes to

receive higher propagation rate from its neighbors, it has no

incentive to overstate its level of request. Rather, a node j
has the incentive to understate its request level to increase

r∗ij . However, the optimal solution is upper bounded by

min(r̄i, Rij). Hence, by understating its request Rij , the

optimal propagation rate is achieved at its boundary point

min(r̄i, Rij).

C. Upper Level – Private Utility Optimization

An IDS i has another degree of freedom to choose its level

of requested sending rate Rji of its neighbors. Rji states the

maximum rule propagation rate from node j to i that node

i can accept. In contrast to the public utility optimization,

the optimization at this level is inherently non-altruistic or

private. The objective of an IDS i is to choose ~Ri so that its

private utility U b
i : Rni

+ → R is maximized, i.e.,

(Pi) max
~Ri∈R

ni
+

U b
i (

~Ri), (9)

subject to the following constraint from the total receiving

capacity R̄i, i.e.,
∑

j∈Ni
Rji ≤ R̄i. Let U b

i take the form

of U b
i :=

∑
j∈Ni

Cji log(1 + r⋆ji), where r⋆ji is the optimal

solution attained at (PPi). The log function indicates that

an IDS intends to maximize its own level of satisfaction

by choosing an appropriate level of request. The request

capacity is imposed to prevent excessive incoming traffic

as a result of high level of requests. We assume that the

capacity is sufficiently large so that the constraint is inactive.

Therefore, the decision variable Rji is uncoupled and the

problem (Pi) can be equivalently separated into |Ni| op-

timization problems with respect to each j, i.e., for every

j ∈ Ni,

(Pij) max
Rji∈R+

log(1 + r⋆ji). (10)
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The following proposition characterizes the optimal choice

of Rji or qji of node i.
Proposition 1: Assume that r̄i is sufficiently large so that

the constraint (4) is inactive. The optimization problem (Pi)
admits an optimal solution given by

R∗
ji = q∗jirij =

1

2

CijCji∑
u∈Nj

CjuCuj


Mj +

∑

v∈Nj

Rjv


 . (11)

Proof: The proof of Proposition 1 is in Appendix A.

Combining the solutions to optimization problems (PPi) and

(Pi) with the above result, we arrive at

r⋆ij = R∗
ij =

1

2

CijCji∑
u∈Ni

CiuCui

(
Mi +

∑

v∈Ni

Riv

)
. (12)

Equation (12) suggests that an optimal response of node

i to node j is to propagate rules at the same rate as the

requested rate, which is proportional to the propagation rate

sent by node j by the optimal greed factor q∗ij since R∗
ij =

q∗ijrji.

Mi

(0,0)

ri1

Mi

ri2

ri1

ri2

Ri1 Ri1

Ri1

Ri2

*

Fig. 2. An illustrative example of a 3-person system involving the set of
nodes {i, 1, 2}. Node i solves (PPi) while nodes 1 and 2 solve (P1i) and
(P2i), respectively.

The properties of the solutions to (Pi) and (PPi) are

illustrated in Figure 2 for an IDS i and its two neighboring

peers. In this illustrative example, we look at the optimal

propagation rule for node i to communicate with nodes 1 and

2. Node i solves (PPi) with constraints (1) ri1 + ri2 ≤ Mi,

(2) ri1 ≤ Ri1, and (3) ri2 ≤ Ri2. The shaded region is

the feasible set of the optimization problem. The optimal

allocation can be points on the face of ri1 + ri2 = Mi

of the feasible set. Given the request rates Ri1 and Ri2,

suppose the optimal allocation is found at the red point. At

the higher level, nodes 1 and 2 need to solve the optimization

problems (P1i) and (P2i), respectively. They have incentives

to understate their requests. For example, node 1 can request

a lower rate until it hits R∗
i1 and the optimal allocation will

increase until it reaches R∗
i1. This fact leads to the green

point which is the optimal solution to (PPi) found on the

vertex of its feasible set given that ri1 ≤ R∗
i1. Node 2 makes

a similar decision and results in R∗
i2.

III. NASH EQUILIBRIUM AND ALGORITHMS

In a collaboration network, each node responds to other

nodes by choosing optimal propagation rates and request

rates. The two-level optimization problem leads to two game

structures of interest. Let G1 := 〈N , {~ri}i∈N , {U r
i }i∈N 〉 be

the game that corresponds to optimization problem (PPi) in

which each node chooses its propagation rates given the re-

quested sending rates from its neighbors. Hence, the utilities

of the users in Equation (5) reduce to mere functions of

rij . Denote by G2 := 〈N , {~ri, ~Ri}i∈N , {U r
i , U

b
i }i∈N 〉 the

game that corresponds to the two-level optimization problem

(PPi) together with (Pi). In G2, each node i chooses its

propagation rates as well as its request rates. We next study

the existence and uniqueness properties of Nash equilibria

(NE) of these two games:

Proposition 2: There exists a NE for G1 and G2.

The proof of Proposition 2 is in Appendix B.

Theorem 1: There exists a NE such that rij = Rij ,

∀i, j ∈ N in G2. We call such NE a prime NE.

The proof of Theorem 1 is provided in Appendix C. In

the following, we state two results on the uniqueness of NE

in G1 and G2. Their proofs are in Appendices D and E,

respectively.

Proposition 3: Assume that only (2) is an active con-

straint in optimization problem (Pi) of each node i in G1.

Let λij =
CijCji∑

u∈Ni
CiuCui

. Then, there exists a unique NE

for G1 if qijqji 6=
1

(1−λij)(1−λji)
for each pair of neighbor

nodes i, j.

Proposition 4: Assume that r̄i is sufficiently large and the

response of each node follows (12). There exists a unique

NE for G2 if niλij < 2 for every pair of neighbor nodes i
and j.

A. Dynamic Algorithm to Find the Prime NE

Algorithm 1 Distributed Dynamic Algorithm to Find the Prime

NE at node i

1: Initialization :
2: ~Rin ⇐ {ǫ, ǫ, ..., ǫ} // Small request rates for new neighbors.

3: ~Rout ⇐ SendReceive(~Rin) // Exchange requested sending rates with
all neighbors.

4: set new timer event(tu , “SpUpdate”) // Update sending rates and
request rates periodically.

5: Periodic update:

6: at timer event ev of type “SpUpdate” do
7: // Update the sending rate to all neighbors and then update the

requested sending rates from all neighbors.
8: for k = 0 to B do
9: ~rout ⇐ OptimizeSending(C, ~Rout,M, r̄) // (PPi) optimization.

10: ~rin ⇐ SendReceive(~rout) // Exchange sending rate with all
neighbors.

11: ~Rin ⇐ OptimizeRequest(C, ~rin, R̄) // (Pi) optimization.

12: ~Rout ⇐ SendReceive(~Rin) // Exchange requested sending rate
with all neighbors.

13: end for

14: set new timer event(tu , “SpUpdate”)

15: end timer event

In this subsection, we describe a distributed algorithm

(Algorithm 1) for each node to decide on its rule propagation

rates. The subscript i is removed for the convenience of

presentation. The goal of the algorithm is to lead the system

to converge to a prime NE which we defined earlier. In

the beginning, nodes set a small requested sending rate for

all new neighbors (line 2). An update process is triggered
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periodically where function OptimizeSending is used for

the nodes to find their optimal sending rates ~rout based

on the compatibility matrix C and requested sending rate
~Rout, which is informed by the acquaintances in process

SendReceive (line 3). M and r̄ are the sending capac-

ity and rule contribution rate of i, respectively. Function

OptimizeRequest is used for the nodes to find optimal
~Rin (G2) which gives the maximal private utility, given

the C, the incoming sending rate ~rin, and the receiving

capacity R̄. The update process is repeated B rounds to yield

a converged result.

IV. EVALUATION

We simulate a network of n nodes. Each node i ∈
{1, 2, · · · , n} is labeled with an expertise level ei ∈
[0, 1], ∀j ∈ N , which is the probability that a rule propagated

by node i is effective for intrusion detection. Note that

the higher the expertise level, the higher the compatibility

value. Each node i contributes detection rules to the network

following a Poisson distribution with an average arrival

rate r̂i. Cij is learned by j through past experiences using

the Bayesian learning method described in [9]. The rule

propagation follows the two-level game design described in

Section II. In this section, we show some selected results on

propagation efficiency, incentive compatibility, fairness, and

robustness of the system.

Fig. 3 shows the propagation efficiency for both the mail-

ing list and our system. We define the propagation efficiency

to be the percentage of useful rules that nodes receive. We

see that when using the our system, the information qualities

received by both the low-expertise and the high-expertise

nodes are significantly improved compared to the mailing

list method. The high-expertise nodes receive higher quality

rules than low-expertise nodes, which reflects the incentive-

compatibility of the system.

Fig. 4 shows that uniform gossiping provides no incentive

to nodes with higher compatibility. On the other hand, the

best neighbor propagation scheme provides incentive but no

fairness. Nodes of the same compatibility may have very

different return benefits. This is because under the best neigh-

bor mechanism, nodes form collaboration groups. Nodes of

the same compatibility may join different groups. Since the

return benefit largely depends on which group a node belongs

to, nodes with the same compatibility values may have

significantly different return benefit. On the contrary, our

system has a continuous concave utility on the return benefit

over compatibility values. It ensures incentive compatibility

as well as fairness.

Fig. 5 is to demonstrate the robustness of the system in the

face of insider denial-of-service attacks. We can see that the

influence of a node is bounded in the system. This is because

the system enforces propagation agreements between each

pair of nodes. Each node sets a rule propagation limit to

all its neighbors using the two-level game (see Section II).

Therefore, when a node intends to launch a DoS attack, the

amount of rules it is allowed to send to others is bounded

by the limits set by its neighbors. Nodes sending excessive

traffic to neighbors will be revealed as potential malicious

nodes, and thus removed from the neighbor list of others.

V. CONCLUSION

In this paper, we have studied a rule-sharing collabora-

tive intrusion detection network and used a game-theoretic

framework for its protocol design. We have shown that

at equilibrium the system has the properties of incentive

compatibility, and robustness to denial-of-service attacks.

Moreover, the system has also been proved to be fair, efficient

and scalable. Through simulations, we have corroborated

these important CIDN properties. As future work, we intend

to show system robustness to different insider attacks.

APPENDIX

A. Proof of Proposition 1

From Remark 1, we learn that r∗ij is a monotonic de-

creasing function with respect to Rij or qij . Since the

utility function in (Pij) is monotonically increasing with

r∗ji, increasing Rji will decrease the utility. Hence, an IDS

seeks to lower Rji until the optimal utility is achieved to be

U b⋆
i = log(1+ r̄ji). In other words, an optimal solution R∗

ji

achieves at r∗ji = r̄ji. Assume that r̄i is sufficiently large,

we have r̄ji = Rji. Then R∗
ji solves

R∗
ji =

CijCji∑
u∈Nj

CjuCuj


Mj +

∑

v∈Nj

Rjv


−R∗

ji, (13)

which yields (11). It is easy to see that any requests 0 <
Rji < R∗

ji will lower the optimal allocation r⋆ij and hence

its utility.

�

B. Proof of Proposition 2

In G1, for each i ∈ N , the feasible set Fi is a closed,

bounded and convex subset of Rni . The public utility func-

tion U r
i is jointly continuous in its arguments and strictly

convex in ~ri. Hence, using Theorem 4.3 in [11], it follows

that G1 admits a Nash equilibrium in pure strategies.

In G2, without relaxation, the convex program (PPi)
admits a solution r̃ij , which is continuous in ~Ri [12]. The

feasible set of (Pi) is compact and convex and the U b
i is

jointly continuous in its arguments and strictly convex in ~Ri.

Hence, G2 has a Nash equilibrium at the level of private op-

timization. We can determine r⋆ij which yields an equilibrium

at the level of public optimization. Therefore, G2 admits a

Nash equilibrium in pure strategies of {(~ri, ~Ri), i ∈ N}. �

C. Proof of Theorem 1

We first introduce a few definitions and then prove Propo-

sition 5, which will be used in the proof of Theorem 1.

Definition 1: Let ~R∗
i , ~ri, i ∈ N , be a NE. The non-prime

degree D of an equilibrium is the number of distinct pairs

{i, j}, j ∈ Ni, such that R∗
ij 6= r∗ij . Note that a prime NE

has non-prime degree 0.

In this proof, we show that any non-prime NE can be

reduced to a prime NE with D = 0. From Proposition
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2, we know that there exists at least one NE for G2. Let

R
∗ = [~R∗

i ]i∈N and r
∗ = [~r∗i ]i∈N be a NE. Suppose it is not

a prime NE. Hence, there must exist at least one pair that

satisfies r∗uv < R∗
uv for some pair {u, v}. Construct a feasible

solution (R′, r∗) from (R∗, r∗) such that R
′

ij = R∗
ij , for

every {i, j} ∈
⋃

i6=j,j∈Ni,i∈N {i, j}\{u, v}, and R
′

ij = r∗ij ,
for {i, j} = {u, v}. From Proposition 5, it follows that

(R′, r∗) also constitutes a NE, whose non-prime degree

becomes D̄i − 1. By an iterative process, a non-prime NE

(R∗, r∗) can be reduced to a prime NE. Hence, there exists

a prime NE in G2. �

Proposition 5: Let (R∗, r∗) be a NE with D̄ 6= 0 and

{u, v} be a pair of nodes such that r∗uv < R∗
uv. Let (R′, r′)

be a constructed feasible solution such that r′ = r
∗, R

′

ij =
R∗

ij , for every {i, j} ∈
⋃

i6=j,j∈Ni,i∈N {i, j}\{u, v}, and

R
′

ij = r∗ij , for {i, j} = {u, v}. Then (R′, r∗) is a NE of

G2.

We need to show that r
∗ is an optimal response to R

′

and then nodes have no incentive to deviate from R
′

. For

a feasible solution (R, r), we say that rij is a boundary

allocation if rij = min(r̄i, Rij); otherwise, we say that rij
is an internal allocation. At a NE solution, the marginal gains
∂Ur

i

∂rij
, j ∈ Ni, are equal for internal allocation points. In

addition, the marginal gain of i at boundary allocations is

no less than the marginal gains of i at internal allocations.

Since R
∗ is a G2 NE, node v has no incentive to move

by changing Ruv. If a node v decreases its request to u from

value R∗
uv to value r∗uv , then the allocation from node u will

not increase. This can be easily shown by contradiction as

follows.

Suppose the reverse is true, then there must exist an

internal allocation rum to m whose marginal gain is higher

than the marginal gain at R
′

uv . However, from (2) and (5),

we can see that by understating the requests, nodes can

increase their marginal gains. Hence, the marginal gain at

r∗um is larger than the marginal gain at r∗uv . Therefore, we can

conclude that r∗ is not an optimal solution of configuration

R
∗, which contradicts with the property of NE.

We also observe that node v can not gain from u by either

decreasing or increasing its request at R
′

uv . Decreasing the

request results in decreasing the allocation from u, since

the resource is bounded by the request. On the other hand,

increasing the request at R
′

uv shall not increase the allocation

from u, since it will otherwise contradict with the properties

of NE R
∗ that nodes v can not gain better utility by changing

its request at a NE.

Therefore, after the node v decreases R∗
uv to R

′

uv = r∗uv ,

we arrive at r
′

= r
∗. The constructed solution R

′

and r
′

is

another NE of G2. �

D. Proof of Proposition 3

For each pair of collaborative nodes i, j, we have rij =
Aijrij + bij , where rij = [rij , rji]

T , bij = [λij(Mi +∑
v 6=j,v∈Ni

qivrvi), λji(Mj +
∑

v 6=i,v∈Nj
qjvrvj)]

T , and

Aij =

[
0 (λij − 1)qij

(λji − 1)qji 0

]
. Given the existence

of Nash equilibrium and the assumptions on qij and qji, the

uniqueness of the Nash equilibrium is ensured only when

Aij is non-singular. �

E. Proof of Proposition 4

From (12), we can conclude that the optimal response

R∗
ij to other nodes is given by R∗

ij =
λij

2−λij
(Mi +∑

v 6=j,v∈Ni
Riv). Since R∗

ij is linear in Riu, u ∈ Ni, we

can build the above set of equations into a linear system

of equations with the variables Rij , i, j ∈ N stacked into

one vector. The linear system has a unique solution if

the condition of diagonal dominance holds, leading to the

condition. �
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