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Abstract— One of the most challenging tasks for an energy
producer is represented by the optimal bidding on energy
markets. Each eligible plant has to submit bids for the spot
market one day before the delivery time and bids for the
ancillary services provision. Allocating the optimal amount of
energy, jointly minimizing the risk and maximizing profits is
not a trivial task, since one has to face several sources of
stochasticity, such as the high volatility of energy prices and
the uncertainty of the production, due to the deregulation and
to the growing importance of renewable sources. In this paper
the optimal bidding problem is formulated as a multi-stage
optimization problem to be solved in a receding horizon fashion,
where at each time step a risk measure is minimized in order to
obtain optimal quantities to bid on the day ahead market, while
reserving the remaining production to the ancillary market.
Simulation results show the optimal bid profile for a trading
day, based on stochastic models identified from historical data
series from the Italian energy market.

I. INTRODUCTION

During the last few years, energy-related issues emerged
as a relevant application area of stochastic control, especially
since electricity markets have been deregulated and have
become very complex, leading to a wide range of new oppor-
tunities for power producers to optimize their productivity.
The main tasks power producers have to face include pro-
duction planning and optimal bidding. Scheduling operations
and trading on the electricity market involve dealing with
several sources of uncertainty, such as stochasticity of prices
and of produced power in case of intermittent renewable
sources. An overview on how the electricity markets work
is presented in [1], while a macroeconomic description of
power plant investments is given in [2].

A firm which produces and sells energy has many options
to diversify its output; basically it will hedge against the
risk associated with the aforementioned uncertainty sources
by stipulating bilateral contracts, and it will try to increase its
margins by trading on the day-ahead market or by presenting
bids for ancillary services, such as primary or secondary ca-
pacity reserves (see [3] for a comparison between electricity
contracts and the more common financial products such as
options, futures and other derivatives).

Bilateral contracts are mainly traded on a long-term basis,
as shown in [4], where the expiration date of such contracts
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is fixed at one year from the present date. Nonetheless,
in a more and more real-time market, it is not excluded
that bilateral contracts will be traded in a more short-term
fashion.

Existing approaches focused on jointly providing optimal
bidding strategies and unit commitment under stochasticity,
as done in [5]–[9] and [10], which considered the case of a
price-taker hydropower producer. The extension of the latter,
in [11], aims at solving the unit commitment problem, once
that the bidding auction has taken place but information
about prices and weather has not been disclosed yet. A
general overview on stochastic programming models applied
to energy topics is presented in [12]. Stochastic models of
electricity prices, which are affected by high volatility and
jumps, are presented in [13] and [14]. The latter considers the
dynamical evolution of volatility and introduces parameter-
varying models such as GARCH, that will be also considered
in this work.

This paper focuses on the optimal bidding problem. We do
not consider unit commitment, which is assumed decoupled
(this is the assumption of most producers that own several
production sources), in a generalized formulation that can be
extended and scaled to different kinds of power plants. For
a simple power producer without marginal costs and from
a price-taker point of view, the problem is to decide the
following quantities:
• the optimal amount of installed capacity that should be

traded on bilateral contracts,
• which amount should be traded on the day ahead;
• how much energy should be allocated and stored for

the following ancillary services market (if the plant is
eligible for this kind of production).

In other words, our goal is to split the production into three
different output channels, each of which has a different level
of risk and profit.

A control approach based on stochastic optimization is
proposed to solve the optimal bidding problem, relying on
the minimization of the Conditional Value at Risk (CVaR)
risk measure [15], since the pure maximization of the
expected profit would lead to excessively risky decisions.
Simulations have been carried on the basis of past values
of the Italian national cleared prices and on past offers
submitted by producers, which are public and available
online [16].

The paper is organized as follows. The considered energy
market model is described in Section II. In Section III the
optimal bidding problem is presented, under a risk-penalizing
objective function, and the control algorithm is defined.
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Fig. 1. Scheme of electricity markets

Simulation results are shown in Section IV, and conclusions
are drawn in Section V.

II. MARKET MODEL DESCRIPTION

At noon of the day before the day of the delivery,
referred to as day D, the spot pool auction is closed. By
that moment, participants must have presented their bids
(couples quantity/price) for each hour of the following day.
Then, they still have the possibility to present bids for
the ancillary services market, up to one hour and a half
before the delivery time. Moreover, between the day-ahead
and the ancillary services market the intra-day market takes
place, where market participants are allowed to modify those
parts of the program that cannot be satisfied. A scheme of
the chronological order of the energy markets is shown in
Figure 1.

The spot price (or cleared price) comes from a so called
clearing process, aimed to find the national price for spot
transactions, The clearing process works as follows. Pur-
chasers and suppliers submit their bids (which are couples
price-volume, expressed in e/MWh). Selling bids from all
suppliers are aggregated and ordered by increasing prices
while purchasing bids are sorted by decreasing prices. The
matching point between demand and supply determines the
cleared price (for further information on the clearing price
mechanism, see [1]). Three cases are possible: (i) the bid is
accepted, and paid at the price asked by the participant, (ii)
the bid is completely rejected, or (iii) the bid is accepted but
changed by the system, thus resulting in a different quantity.
The last is the case when the bid is set exactly at the cleared
price and the volume may not be entirely dispatched.

In this work we consider a simplified market scenario,
which does not account for the intra-day market and partial
fulfillment of bids in the day-ahead market. In this case either
the total volume is supplied or the bid does not take place.
Note that the price at which the transaction is settled is
however the cleared price, that is the same for all the parties.

The ancillary services market works in a price as bid
mechanism instead. This means that bids from market par-
ticipants are dispatched at the proposed price according to
an economic order (lower selling bids/higher purchasing bids
are activated first), until the total demand is covered.

For a time slot t ∈ N (generally one hour) of a given day,

the profit is given by:

P (t) = sBL(t)uBL(t) + sDA(t)uDA(t) + sAS(t)′uAS(t)
(1)

where uBL ∈ R, uDA ∈ R and uAS ∈ RL are the energy
quantities allocated to bilateral contracts, day-ahead and
ancillary services markets, respectively, while sBL, sDA ∈ R
and sAS ∈ RL are the corresponding prices and L is the
number of bids presented.

Probabilistic models of the cleared price evolution and
of the bid prices are required to generate relevant price
scenarios, that will be exploited by the optimal control policy.
Those models are introduced in the following.

A. Spot price modeling

As a result of deregulation electricity prices forecasting
has assumed a crucial role in the recent years. Several
models have been developed to catch the dynamics of elec-
tricity prices, such as ARMAX models, multiple regression,
different specifications of multiple regression models, non
linear Markov switching regression models and time-varying
parameter regression models (see, e.g., [17], [18]). Energy
can be assimilated to a particular traded stock, whose price
is affected by high volatility and unpredictability.

Consider the following stochastic differential equations,
where s is the spot price of an asset and y represents some
internal variables such as variance

ds(τ) = µs(s(τ), y(τ))dτ + σs(s(τ), y(τ))dzs (2a)
dy(τ) = µy(y(τ))dτ + σy(y(τ))dzy (2b)

where zs(τ), zy(τ) are Wiener processes, namely dzs,
dzy are correlated Gaussian variables with zero mean and
variance dτ . In (2) we assume s ≥ 0, ∀τ ≥ 0. For control
synthesis purposes, we discretize (2) to obtain the difference
equations

s(t+ 1) = f(s(t), y(t), zs(t)) (3a)
y(t+ 1) = g(y(t), zy(t)) (3b)

where [·](t) denotes the value of [·] at time τ = t∆T ,
∆T is a constant trading interval, zs(t), zy(t) ∈ Rn are
random Gaussian vectors with zero mean E[zs(t)] = 0,
E[zy(t)] = 0, ∀t ≥ 0, and covariance matrix Φs(t) =
E [zs(t)zs(t)′], Φy = E [zy(t)zy(t)′], with Φs(t), Φy(t)
positive semidefinite ∀t ≥ 0. Model (2) is a general form that
covers several popular models, including the time-varying
parameter GARCH models, which allow for a specific dy-
namics of the volatility itself. For a price st, the GARCH(1,1)
Gaussian model with normally distributed innovation is a
simple constant mean model and is defined as follows:

st = C + εt (4a)
σ2
t = κ+G1σ

2
t−1 +A1ε

2
t−1 (4b)

εt = ηtσt (4c)

where εt is the innovation process with variance σ2
t and

ηt ∼ N (0, 1) is a random variable drawn from a standard
Gaussian distribution. The scalar parameters C, G1, A1, κ
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Fig. 2. Sampling the Gaussian distribution to obtain quantized spot prices

are identified form historical data series, considering past
spot prices observed at the same hour of the day.

When dealing with optimization problems in the presence
of stochastic data, the approximation of continuous uncer-
tainty to a discrete domain is often used, and constructed
in a way to preserve the main statistical properties of the
underlying continuous process [19], [20].

For optimization purposes we quantize the number of
future spot prices for the day-ahead market in N possible
values. This is done by sampling the Gaussian standard
distribution into N intervals, taking the central value of each
interval, and substituting it into ηt in (4c). In this way we
obtain a finite and discrete set of possible innovations that
leads to quantized spot prices siDA with discrete realization
probabilities πi, i ∈ {1, 2, . . . , N}. The sampling process is
illustrated in Figure 2. Note that bids from other competitors
are not taken into account for the generation of spot prices.
This is done on the assumption that produced volumes are
not relevant enough to affect the clearing price process, so
that we can consider it as an external stochastic process,
condensing all the outside information. In other words,
the historical series of prices captures the past behavior
of all generators in the system. This allows reducing the
complexity of modeling the behavior of each competitor and
purchaser.

B. Bid-price modeling

On the ancillary services market multiple bids are possible,
that is, a power plant can submit more than one bid at
different prices independently. In our framework we allow
for such a possibility, fixing a priori the price for each of
the L possible bids to present to the ancillary services market,
and optimizing over the energy quantity to allocate per bid.
To this end, given a spot price siDA, i ∈ {1, 2, . . . , N},
we need to identify L representative price values sijAS , j ∈
{1, 2, . . . , L}, such that the probability of acceptance πijAS
of a bid with price sijAS , conditioned to siDA, is sufficiently
high.
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Fig. 3. Bid-price model

We present an empirical approach to derive such repre-
sentative bid prices, based on the distribution of the past ac-
cepted bids on the Italian energy market, which are published
on the GME (Gestore dei Mercati Energetici) website [16].
The Italian electricity market is divided into six physical
zones, namely: North, North-Center, South-Center, South,
Sicily and Sardinia. For each of these zones a different
ancillary services market takes place. Since several kinds
of ancillary services exist on the market (such as primary
and secondary reserves, which differ in the time needed to
activate them), the presented bids are filtered both by specific
kind of service and by zone.

Let P = {p1, p2, . . . , pN} be the set of the prices of
the presented bids, where pi ≤ pj , ∀i ≤ j, and let A =
{a1, a2, . . . , aM} bet the set of the prices of the accepted
bids, with ai ≤ aj , ∀i ≤ j, A ⊆ P and M ≤ N . Now, con-
sider a partition A1,A2, . . . ,AL, obtained by clustering A
into L subsets. We take the representative bid price sijAS
as the the centroid of the cluster Aj , for j = 1, 2, . . . , L.
Let amini and amaxi be respectively the minimum and the
maximum price in cluster Ai, i = 1, . . . , L, and consider
the subsets P1,P2, . . . ,PL of P computed such that pj ∈ Pi
if and only if amini ≤ pj ≤ amaxi , for all j = 1, 2, . . . , N
and i = 1, 2, . . . , L. We have that Pi ∩ Pj = ∅, ∀i, j, and⋃L
i=1 Pi ⊆ P . The acceptance probability in each cluster,

that is the probability πijAS , is then computed by

πijAS =
|Aj |
|Pj |

(5)

for all j = 1, 2, . . . , L, where | · | denotes the cardinality
operator.

III. CONTROL PROBLEM FORMULATION

We tackle the optimal bidding problem as a multistage
stochastic optimization problem with sampling time one
hour, since hourly bids are presented in the Italian electricity
market.

The problem formulation involves the setup of a scenario-
based tree with two optimization stages, where the root node
is represented by the current price of the bilateral contract
sBL(t) and by the last observed cleared price sDA(t).
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Fig. 4. Two-stage optimization tree for the optimal bidding problem

The first optimization stage at time t models the decision
on the quantity of energy to allocate on the bilateral con-
tracts, and on the day-ahead market. At t+1, the N branches
are represented by the cleared prices at the same hour of
the following day. Each one of these nodes further splits
into L possibly accepted bid prices for the ancillary services,
presented on the same operational day (see Figure 4).

A. Conditional Value at Risk

One of the most common approaches in optimal bidding
problems is based on the maximization of the expected profit.
The main drawback of this strategy is that it can lead to very
risky decisions, since high risk associated to energy markets
are not taken into account.

In order to compensate for this disadvantage and to find a
tradeoff between risk and expected revenue, in this work a
common risk measure is exploited, namely Conditional Value
at Risk (CVaR). Let f(u, s) be a loss function of the decision
vector u ∈ Rn and of the random variable s ∈ Rm, here the
loss function is the opposite of the profit introduced in (1)

f(u, s) = −sBL(t)uBL(t)−sDA(t)uDA(t)−sAS(t)′uAS(t)

where

u = [uBL, uDA, u
′
AS ]′ ∈ R2+L

s = [sBL, sDA, s
′
AS ]′ ∈ R2+L.

Let p(s) be the probability density function of the random
vector s. With respect to a given probability β, 0 ≤ β ≤ 1,
the β-VaR (Value at Risk) is defined as the lowest value `,
such that the loss f(u, s) will not exceed ` with probability β.
A more accurate index is the β-CVaR, which is the condi-
tional expectation of the loss function above `, quantifying
what the average loss is when one loses more than `, with
probability 1− β [15].

The probability of f(u, s) not exceeding the threshold `
is

ψ(u, `) =

∫
f(u,s)≤`

p(s)ds. (6)

The β-VaR and the β-CVaR are defined respectively as

`β(u) = min{` ∈ R : ψ(u, `) ≥ β} (7a)

φβ(u) = (1− β)−1
∫
f(u,s)≥`β(u)

f(u, s)p(s)ds. (7b)

In a nutshell, CVaR is derived by taking a weighted average
between VaR and losses exceeding VaR. In [15] the authors
show that the β-CVaR of the loss associated with any u can
be determined by the formula

φβ(u) = min
`∈R

Fβ(u, `) (8)

where

Fβ(u, `) = `+ (1− β)−1
∫
s∈Rm

[f(u, s)− `]+p(s)ds (9)

and [·]+ denotes the positive part of its argument,

[f ]+

{
f if f ≥ 0

0 if f < 0.

The integral in (9) can be approximated by sampling the
distribution of s, according to the density function p(s). If the
sampling generates a collection of M vectors s1, . . . , sM ,
each of which has probability πi of occurring, then the
corresponding approximation F̃β(u, `) is given by

F̃β(u, `) = `+
1

(1− β)

M∑
i=1

πi[f(u, si)− `]+. (10)

We will use (10) as the objective function to minimize in the
stochastic optimization problem, as detailed in the following.

B. Problem formulation

For a generic price-taker power producer (i.e., whose bids
do not influence the outcome of the clearing process), and
given a desired probability β, the optimal bidding problem
at each hour of the operational day D can be cast as

min
u, `

`+
1

1− β

N∑
i=1

πivi (11a)

s.t. uBL ≥ 0, (11b)
uDA ≥ 0, (11c)

uijAS ≥ 0, (11d)
vi ≥ 0, (11e)

uBL + uDA +

L∑
k=1

uikAS ≤ 1, (11f)

vi ≥ −sBLuBL − siDAuDA −
L∑
k=1

πikASs
ik
ASu

ik
AS ,

(11g)
i = 1, 2, . . . , N, j = 1, 2, . . . , L.

Constraints (11b), (11c) and (11d) impose nonnegativity of
the allocated quantities, and (11f) expresses a bound on the
available energy. Constraints (11e) and (11g), together with
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the objective function (11a), model function (10) and allow
the minimization of the β-CVaR.

Causality of the control action is ensured by the fact that
a unique value uDA is allowed for the day-ahead market,
since the actual spot price is not known by the time the
optimization problem is solved.

As the considered power plant is a price-taker participant,
only quantities u are to be decided. Otherwise, if also
spot and bid prices sDA, sAS were optimization variables,
constraint (11g) would make the problem bilinear.

IV. SIMULATION RESULTS

The algorithm has been tested on an instance of the
problem, relative to the trading day of April 1st, 2010 in the
Italian energy market. The cleared prices of the three months
preceding the simulation day (January - March, 2010) have
been considered to fit the GARCH model (4) and to forecast
future values of the spot price sDA(t).

Following the procedure presented in Section II-A, the
Gaussian distribution has been sampled into N = 9 values
varying between −3σ and 3σ to generate predicted cleared
prices (or spot prices). This value of N resulted as a good
trade-off in order to include a sufficient amount of different
scenarios without overloading the computational burden.
Bilateral contracts are not considered in this example, since
no consistent data is available online to estimate the price
sBL. This is due to the fact that in Italy future bilateral
contracts are traded on a long term basis, differently from
our market assumptions. For each predicted scenario of spot
price, a representative number of L = 10 bid prices are fixed.
Then, according to Section II-B, empirical probabilities are
inferred from the presented bids relative to the same period of
the cleared prices (January - March, 2010). Public bids on the
ancillary services market were downloaded from the website
of the Italian authority [16]. The time needed for formulating
and solving an instance of the optimization problem (11) on
2.66 GHz processor was 540 ms in average (max 980 ms),
running linprog on Matlab R2009b.

In Figure 5 the obtained optimal hourly allocation for the
day April, 1st, 2010 is reported. Note that the algorithm
allocates the whole production on the day-ahead market in
some of the central hours of the day, when the spot price
is higher. Table IV shows how the production splits into
different bids, for three representative spot price scenarios.
The highlighted results are relative to hour 20, when the last
observed price is e65.90.

V. CONCLUSIONS

In this paper a decision algorithm based on multi-stage
stochastic optimization is proposed to solve the optimal bid-
ding problem for a price-taker power producer. The algorithm
is aimed at finding the optimal allocation of production
between bilateral contracts, day-ahead market and ancillary
services market. A first step involves time series analysis
and identification of the past spot energy prices, by means
of linear parameter-varying regression models, in order to
forecast a given number of scenarios for the future cleared

price. The empirical probability of acceptance of bid prices
is then inferred from past public bids submitted by the
participants to the energy market. The optimization algorithm
minimizes the conditional value at risk (CVaR), matching
a trade-off between profit maximization and risk control.
Simulations have shown how the proposed control scheme
allocates a fraction of energy production on the ancillary
services in those hours of the day when this market is
attractive, otherwise it reserves the whole production for the
day ahead market.

Future work involves extensions of the optimal bidding
problem to consider a combined production unit, consisting
of more than one generator, with different characteristics
and feeding (coal, hydro, wind), thus leading to dynamical
modeling of the plant behavior, subject to ramp-up/ramp-
down constraints.
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scenario bid no. allocated production (%) price (e) prob. of acceptance (%)

scenario 1, spot = e37.3 1 37.65 12.13 55.07

scenario 5, spot = e66.02
1 3.11 29.07 26.56
2 3.28 44.94 21.37
3 12.09 500 21.05

scenario 6, spot = e76.15 1 9.10 40.34 76.51
2 28.56 38.23 69.17

scenario 7, spot = 87.83 e
1 4.18 27.19 6.45
2 4.18 37.88 73.35
3 4.18 75.97 7.91

scenario 8, spot = 101.3 e
1 4.18 45.21 12.56
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