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Abstract— This paper considers the synthesis of polyhedral
Lyapunov functions for continuous-time dynamical systems.
A proper conic partition of the state-space is employed to
construct a finite set of linear inequalities in the elements
of the Lyapunov weight matrix. For dynamics described by
linear and polytopic differential inclusions, it is proven that
the feasibility of the derived set of linear inequalities is
necessary and sufficient for the existence of an infinity norm
Lyapunov function. Furthermore, it is shown that the developed
solution naturally applies to relevant classes of continuous-time
nonlinear systems. An extension to non-symmetric polyhedral
Lyapunov functions is also presented.

I. INTRODUCTION

Polyhedral Lyapunov functions (or shortly, LFs) have
attracted an increased interest in the recent years, as they are
less conservative compared to quadratic Lyapunov functions.
Also, in many control problems constraints are expressed by
linear inequalities, which makes polyhedral LFs more suit-
able for constructing an estimate of the domain of attraction.
For an excellent exposition of related results see [1].

One of the most popular issues related to polyhedral
LFs is the existence and synthesis of a Lyapunov function
defined using a weighted infinity norm. In that respect, it
is well known [2] that existence of an infinity norm LF
is equivalent with existence of a 0-symmetric polyhedral
contractive (invariant) set. For asymptotically stable systems
described by a linear polytopic differential or difference
inclusion it is known [3]–[6] that existence of an infin-
ity norm LF is a necessary condition. Available methods
for constructing an infinity norm LF for linear systems
or polytopic differential inclusions (see [1] for a detailed
overview) stem from the necessary and sufficient conditions
proposed in [3], which are also mentioned in [4], where
polyhedral Lyapunov Functions are embedded in the theory
of vector norms as Lyapunov functions. However, these
conditions, although non-conservative, require the solution
of a rather difficult non-convex problem, which includes a
bilinear matrix equality constraint.

Recently, a novel, geometric approach to the synthesis of
infinity norm LFs was proposed for discrete-time dynamical
systems in [7]. Therein, a proper conic partition of the
state-space was employed to obtain an alternative set of
necessary and sufficient conditions for the existence of an
infinity norm Lyapunov function. This approach retains com-
putational tractability even when applied to certain relevant
classes of nonlinear dynamics, which is a unique property.
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The aim of this paper is to apply the approach of [7] to
systems described by linear differential equations or linear
polytopic differential inclusions. This requires different tools
and already provides a useful relaxation, i.e., an eigen value
restriction (decomposition) or the strict diagonal dominance
property [6] is no longer required. Furthermore, similarly to
the discrete-time case, a natural extension to several relevant
classes of continuous-time nonlinear systems is obtained.
In particular, a useful result is obtained for continuous-
time quadratic nonlinear systems, in the form of sufficient
conditions for the existence of a local polyhedral LF given
by a set of linear inequalities. A generalization to non-
symmetric polyhedral Lyapunov functions is also provided.

II. PRELIMINARIES

A. Basic notation and definitions

Let R, R+, Z and Z+ denote the field of real numbers, the
set of non-negative reals, the set of integer numbers and the
set of non-negative integers, respectively. For every c ∈ R
and Π ⊆ R define Π≥c := {k ∈ Π | k ≥ c} and similarly
Π≤c, RΠ := Π and ZΠ := Z∩Π. For a set S ⊆ Rn, int(S)
denotes the interior and ∂S denotes the boundary of S. A
set S is called 0-symmetric (or shortly, symmetric) if for
all x ∈ S it holds that −x ∈ S . For any Z ∈ Rl×n and
S ⊆ Rn, −S := {−x | x ∈ S} and ZS := {Zx | x ∈ S}.
For a vector x ∈ Rn, [x]i denotes the i-th element of x
and ‖x‖ := ‖x‖∞ = maxi=1,...,n |[x]i| denotes the infinity
norm of x, where |·| denotes the absolute value. For a matrix
Z ∈ Rl×n, [Z]ij ∈ R denotes the element in the i-th row and
j-th column of Z and [Z]i• ∈ R1×n denotes the i-th row of
Z. In ∈ Rn×n denotes the n-th dimensional identity matrix.
For a matrix Z ∈ Rl×n let ‖Z‖ := supx 6=0

‖Zx‖
‖x‖ denote its

induced matrix infinity norm and for a matrix Q ∈ Rn×n let
µ(Q) := lim sup

h→0

‖In+hQ‖−1
h denote its induced logarithmic

norm. It is well known that ‖Z‖ = maxi∈Z[1,l]

∑n
j=1 |[Z]ij |.

For a symmetric matrix Z ∈ Rn×n let Z � 0(Z � 0)
denote that Z is positive definite (semi-definite). For any
x, y ∈ Rn, c ∈ R+, x ≤ y, x < y, x ≥ y and x > y
denote the corresponding set of component-wise inequalities
and ±x ≤ c denotes the inequalities −c ≤ x ≤ c. A subset
C of Rn is a convex cone if and only if c1C ⊕ c2C = C
for any c1, c2 ∈ R+. A convex cone C is salient if and only
if C ∩ −C = {0}. A convex cone C is pointed if 0 ∈ C.
A n-th dimensional cone C in Rn is called a proper cone
if it is convex, salient, pointed and int(C) 6= ∅. Given a
cone C in Rn, its dual cone, denoted by C⊥, is defined as
C⊥ := {y ∈ Rn | y>x ≥ 0,∀x ∈ C}. Furthermore, if C is a
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proper cone, then so it is C⊥. For any point y ∈ Rn, y 6= 0,
the set r(y) := {x ∈ Rn | x = cy, c ∈ R+} is called a ray.

B. Stability definitions and results

A function ϕ : R+ → R+ belongs to class K if it is
continuous, strictly increasing and ϕ(0) = 0. A function
ϕ : R+ → R+ belongs to class K∞ if ϕ ∈ K and
lims→∞ ϕ(s) =∞. Consider the continuous-time system

ẋ(t) = Φ(x(t)), t ∈ R+, (1)

where x : R+ → Rn is the state trajectory and Φ : Rn → Rn
is an arbitrary map, with Φ sufficiently smooth and Φ(0) = 0.
For simplicity of exposition, x can also denote a point in
Rn. Let V : Rn → R be locally Lipschitz and define the
upper right Dini derivative D+V (x(t)) of V at x(t), for
some t ∈ R+, as follows:

D+V (x(t)) := lim sup
h→0+

V (x(t+ h))− V (x(t))
h

. (2)

Definition II.1 A set P ⊆ Rn is called positively invariant
(PI) for system (1) if for all x(0) ∈ P it holds that x(t) ∈ P
for all t ∈ R+.

Definition II.2 Let X with 0 ∈ int(X) be a subset of Rn.
System (1) is Lyapunov stable if for all ε ∈ R>0 there exists
a δ(ε) ∈ R>0 such that ‖x(0)‖ ≤ δ(ε) implies ‖x(t)‖ ≤ ε
for all t ∈ R+. The origin of (1) is attractive in X if for
any x(0) ∈ X it holds that limt→∞ ‖x(t)‖ = 0. System (1)
is asymptotically stable in X if it is Lyapunov stable and
attractive in X. System (1) is exponentially stable in X if for
any x(0) ∈ X it holds that ‖x(t)‖ ≤ θ‖x(0)‖e−νt for some
θ ∈ R+, ν ∈ R>0. System (1) is globally asymptotically
(exponentially) stable (GAS (GES)) if it is asymptotically
(exponentially) stable in Rn.

Theorem II.3 Let X ⊆ Rn be a PI set for (1) with 0 ∈
int(X). Furthermore, let α1, α2 ∈ K∞, ρ ∈ R>0 and let
V : Rn → R+ be a smooth function such that:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ X, (3a)
D+V (x(t)) ≤ −ρV (x(t)), ∀x(t) ∈ X, t ∈ R+.

(3b)

Then system (1) is asymptotically stable in X. If the above
inequalities hold with α1(s) := c1s

ν , α2(s) := c2s
ν for some

c1, c2, ν ∈ R>0, then system (1) is exponentially stable in X.

A proof of the above theorem can be found in [1].

Definition II.4 A function V that satisfies (3) is called a
Lyapunov function in X. A Lyapunov function in Rn is called
a global Lyapunov function.

As indicated in [1], [2], for polyhedral functions of the
form V (x) = ‖Px‖, with P ∈ Rl×n, l ∈ Z≥n, observing
that V (x) = max

i
[P̃ ]i•x with P̃ :=

(
P −P

)>
one obtains

that the derivative of V along the trajectories of (1) is

D+V (x) = max
i∈I(x)

{[P̃ ]i•Φ(x)}, (4)

where I(x) := {i ∈ Z[1,2l] | [P̃ ]i•x = V (x)}.
Next, consider a linear continuous-time system, i.e.,

ẋ(t) = Ax(t), t ∈ R+, (5)

where A ∈ Rn×n. Let Vq(x) := x>Pqx with Pq ∈ Rn×n
and V (x) := ‖Px‖ with P ∈ Rl×n, l ∈ Z≥n, be a quadratic
and infinity norm Lyapunov function candidate, respectively.

Theorem II.5 (i) System (5) is GES if and only if there
exists a matrix Pq � 0 such that, for any Q � 0, A>Pq +
PqA � −Q. (ii) System (5) is GES if and only if there
exists η ∈ R<0, a number l ∈ Z≥n, a matrix P ∈ Rl×n with
rank(P ) = n and a matrix Q ∈ Rl×l such that PA = QP
and µ(Q) ≤ η.

For the proof see [3]–[5]. In [4], a direct relation between
Pq and P was indicated as well. For infinity norm Lyapunov
functions, in [4] it was indicated that V (x) = ‖Px‖ is
positive definite and radially unbounded, which is sufficient
for GAS, but not for GES. In what follows, a fact established
in [7] is recalled, which exposes a direct relation with GES.
For any n ∈ Z≥1 let l ∈ Z≥n and P ∈ Rl×n.

Fact II.6 The following statements are equivalent.
(i) rank(P ) = n.
(ii) The function V (x) = ‖Px‖ satisfies (3a) with

α1(s) := cs for some c ∈ R>0 and α2(s) := ‖P‖s.

Although the conditions specified by Theorem II.5-(ii) are
non-conservative, finding a solution that satisfies these con-
ditions is challenging, due to the rank constraint and the
bilinear equality constraint. Several attempts were made to
design a tractable algorithm that solves this problem, see,
e.g., [6], [8], [9]. In the next section, an alternative set
of necessary and sufficient conditions for the existence of
an infinity norm Lyapunov function is proposed, based on
the idea introduced in [7] for discrete-time dynamics. The
additional difficulty particular to continuous-time dynamics
is related to the expression of the derivative provided by
(4), which requires a different treatment (see the proof of
Theorem III.6).

III. CONTINUOUS-TIME LINEAR DYNAMICS

The idea is to start directly from the Lyapunov conditions
(3) and transform them into a finite set of convex conditions
on a specific conic partition of the state-space. To this end,
let us define a proper conic partition of Rn.

Definition III.1 Let l ∈ Z≥n and let L := Z[1,l]. A finite set
of cones {Ci}i∈L is called a proper l-conic partition of Rn
if ∪i∈L{Ci ∪ −Ci} = Rn, Ci is a proper cone for all i ∈ L
and int(Ci) ∩ int(Cj) = ∅ for all (i, j) ∈ L × L with i 6= j.

Fact III.2 Let x ∈ Rn, Γ ∈ R+ and P ∈ Rl×n. The
following statements are equivalent.

(i) ‖Px‖ ≤ Γ.
(ii) ±[P ]i•x ≤ Γ for all i ∈ L.

7568



The equivalence follows directly from the definition of the
infinity norm.

Fact III.3 Let x ∈ Rn, i ∈ L and P ∈ Rl×n. The following
statements are equivalent.

(i) ‖Px‖ = [P ]i•x.
(ii) ([P ]i• ± [P ]j•)x ≥ 0 for all j ∈ L \ {i}.

The equivalence follows from Fact III.2 and the definition
of the infinity norm.

Fact III.4 Let C be a proper cone in Rn and let E be a real
matrix of suitable dimensions such that

C⊥ = {x ∈ Rn | Ex ≥ 0}. (6)

Then for any x ∈ Rn the following statements are equivalent.
(i) x>y ≥ 0, ∀y ∈ C.
(ii) Ex ≥ 0.

The equivalence follows from the definition of a dual cone.

Fact III.5 [7] Let P ∈ Rl×n. The following statements are
equivalent.

(i) rank(P ) = n.
(ii) There exists a c ∈ R>0 such that ‖Px‖ ≥ c‖x‖ for all

x ∈ Rn.

The main result for linear dynamics is stated next.

Theorem III.6 Let l ∈ Z≥n, N := Z[1,n] and P ∈ Rl×n.
The following statements are equivalent.

(i) The function V (x) = ||Px|| is a global Lyapunov
function for system (5).

(ii) There exist c ∈ R>0, ρ ∈ R>0 and a proper l-conic
partition of Rn, i.e., {Ci}i∈L, with the set of matching dual
cones {C⊥i }i∈L and corresponding matrices {Ei}i∈L, such
that the following inequalities hold for all i ∈ L:

Ei([P ]i• ± c[In]j•)> ≥ 0, ∀j ∈ N , (7a)

Ei([P ]i• ± [P ]j•)> ≥ 0, ∀j ∈ L \ {i}, (7b)

Ei(−ρ[P ]i• − [P ]i•A)> ≥ 0. (7c)

Proof: Let us proceed with the proof of (ii) ⇒ (i).
Fact III.4 and (7a) yield

([P ]i• ± c[In]j•)x ≥ 0, ∀j ∈ N , ∀x ∈ Ci.

Letting Γ := [P ]i•x, the above inequality and Fact III.2 yield
[P ]i•x ≥ c‖x‖ for all x ∈ Ci. Similarly, (7b) and Fact III.4
imply

([P ]i• ± [P ]j•)x ≥ 0, ∀j ∈ L \ {i}, ∀x ∈ Ci.

Then, from Fact III.3 it follows that ‖Px‖ = [P ]i•x for
all x ∈ Ci. This further yields that ‖Px‖ = −[P ]i•x for
all x ∈ −Ci. As such, since (7) holds for all i ∈ L and
{Ci}i∈L is a proper l-conic partition of Rn, we have that
‖Px‖ ≥ c‖x‖ for all x ∈ Rn. Using Fact III.5 yields that
rank(P ) = n and hence, by Fact II.6 V (x) = ‖Px‖ satisfies
(3a) for all x ∈ Rn. Using a similar reasoning, from (7c)

one obtains that [P ]i•Ax ≤ −ρ[P ]i•x for all x ∈ Ci. The set
of constraints (7b) together with Fact III.4 and Fact III.3
yield that V (x) = [P ]i•x for all x ∈ Ci. Next, let us
distinguish between two cases: x ∈ int(Ci) and x ∈ ∂Ci.
The first case can be reduced to ([P ]i• ± [P ]j•)x > 0
for all x ∈ int(Ci), i.e., if this is not the case one of the
hyperplanes is redundant and the property is obtained for a
larger cone. This and (4) imply that D+V (x) = [P ]i•Ax,
for all x ∈ int(Ci). The second case can be reduced to
x ∈ ∂Ci ∩ ∂Cj , for some arbitrary j ∈ L, j 6= i. Then,
as x ∈ Ci and x ∈ Cj , the corresponding inequalities (7b)
and Fact III.4 yield [P ]i•x = [P ]j•x = V (x). Hence,
from inequalities (7c) and Fact III.4 one obtains that both
(−ρ[P ]i• − [P ]i•A)x ≥ 0 and (−ρ[P ]i• − [P ]j•A)x ≥ 0
hold. This, together with (4) and the result obtained for
x ∈ int(Ci) imply that D+V (x) ≤ −ρ[P ]i•x = −ρV (x)
for all x ∈ Ci. Hence, as the same reasoning can be applied
for all i ∈ L and {Ci}l∈L is a proper l-conic partition of Rn,
it follows that inequality (3b) is satisfied for the considered
candidate Lyapunov function.

To prove (i) ⇒ (ii) observe that if V (x) = ‖Px‖ with
P ∈ Rl×n is a global Lyapunov function for system (5),
then it induces [10] a family of 0-symmetric polytopic λ-
contractive sets (with λ = ρ) for system (5), i.e.,

{PΓ}Γ∈R>0 , PΓ := {x ∈ Rn | ‖Px‖ ≤ Γ}.

Furthermore, as shown in [7], a proper l-conic partition of
Rn can then always be constructed using any of the sets PΓ.
As such, let Γ ∈ R>0, consider a proper l-conic partition of
Rn induced by PΓ and take l arbitrary cones Ci that belong
to this partition. Then, let {Ei}i∈L be a set of matrices such
that C⊥i = {x ∈ Rn | Eix ≥ 0}, i ∈ L, are the corresponding
dual cones. Using a similar reasoning as in [7], it follows that
either ‖Px‖ = −[P ]i•x or ‖Px‖ = [P ]i•x for all x ∈ Ci and
all i ∈ L. Thus, from (3a) together with Fact III.5, Fact III.2,
Fact III.3 and Fact III.4 one obtains that [P ]i• or [−P ]i•,
respectively, satisfies (7a) and (7b). This together with (3b),
(4) and Fact III.4 further yields that (7c) holds for [P ]i• or
[−P ]i•, respectively, which completes the proof.

Several remarks about the complexity of testing the condi-
tions of Theorem III.6 are in order. Assuming for simplicity
that Ei ∈ RF×n for all i ∈ L and some F ∈ Z≥n, for
each i ∈ L, condition (7a) yields 2nF , condition (7b) yields
2(l−1)F and condition (7c) yields F linear inequalities in c
and the elements of P , respectively. So, testing (7) for a fixed
l ∈ Z≥n and F ∈ Z≥n amounts to solving a single linear
program with ln+1 variables and lF (2l+2n−1) inequalities.
This is a tractable problem for x ∈ Rn with n reasonable
large, as the number of inequalities and variables has a
worst case cubic and square, respectively, dependency on
the system dimension. Choosing the number l amounts to the
classical problem of finding an upper bound on the number
of rows of the matrix P . A solution to this problem can be
found in [11]. Also, the results therein can be employed to
choose the right number and position of ray directions that
define each cone Ci.
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IV. CONTINUOUS-TIME NONLINEAR DYNAMICS

A. Polytopic differential inclusions

Consider systems of the form

ẋ(t) ∈ Φ(x(t)), t ∈ R+, (8)

where Φ : Rn ⇒ Rn,

Φ(x) := {Ax | A ∈ Co({Aw}w∈W)},

Aw ∈ Rn×n for all w ∈ W := Z[1,W ], W ∈ Z≥1.
Notice that finding an infinity norm Lyapunov function for
system (8) is equivalent with solving the same problem for
a continuous-time switched linear system under arbitrary
switching.As shown in [3], the derivative of the function
V (x) = ‖Px‖ along the solutions of the differential inclu-
sion (8) is obtained as

D+V (x) = max
w∈W

max
i∈I(x)

{[P̃ ]i•Awx}, (9)

where I(x) = {i ∈ Z[1,2l] | [P̃ ]i•x = V (x)}.

Theorem IV.1 Let l ∈ Z≥n, N := Z[1,n] and P ∈ Rl×n.
The following statements are equivalent.

(i) The function V (x) = ||Px|| is a global Lyapunov
function for system (5).

(ii) There exist c ∈ R>0, ρ ∈ R>0 and a proper l-conic
partition of Rn, i.e., {Ci}i∈L, with the set of matching dual
cones {C⊥i }i∈L and corresponding matrices {Ei}i∈L, such
that the following inequalities hold for all i ∈ L:

Ei([P ]i• ± c[In]j•)> ≥ 0, ∀j ∈ N , (10a)

Ei([P ]i• ± [P ]j•)> ≥ 0, ∀j ∈ L \ {i}, (10b)

Ei(−ρ[P ]i• − [P ]i•Aw)> ≥ 0, ∀w ∈ W. (10c)

Proof: For the proof of (ii)⇒ (i) let us first notice that
condition (10c) represents a set of affine inequalities in Aw.
Thus, as A ∈ Co({Aw}w∈W), (10c) implies that

Ei(−ρ[P ]i• − [P ]i•A)> ≥ 0, ∀A ∈ Co({Aw}w∈W).

With this result, the remainder of the proof of (ii) ⇒
(i) simply follows the corresponding part of the proof of
Theorem III.6. For the converse part of the proof, suppose
that V is a global common Lyapunov function for system (8).
Then, a proper l-conic partition of Rn can be constructed as
indicated in the proof of Theorem III.6, which yields that
(10a) and (10b) hold. Then, using (3b), (9) and Fact III.4
yields that either [P ]i• or [−P ]i• is a feasible solution to
(10c) for all w ∈ W and for all i ∈ L, which completes the
proof.

The LP that corresponds to checking feasibility of (10)
has ln+ 1 variables and lF (2(l−1) + 2n+W ) inequalities.

Example 1 [9]: Consider a switched linear system under ar-
bitrary switching with A1 =

(
0.3 0.7
−2.3 −2.3

)
, A2 =

(−1.8 1.0
−0.8 0.1

)
.

The conic partition was generated for l = 13, F = 2.
The feasibility of the resulting LP with 5 variables and
781 constraints was tested using 3 different solvers (i.e.,
linprog, SeDuMi and CDD). The constraint c ≥ 1 was

imposed and the feasible solution c = 2.2373 was obtained
for ρ = 0.001. In [9] this example was proposed as a test of
conservativeness in terms of the complexity of the resulting
polyhedral sublevel set. The simplest polyhedral set obtained
in [9] has 28 vertices. Applying the approach proposed in this
section, a polyhedral set with 26 vertices was obtained. The
polytope P1 is plotted in yellow in Figure 1 and Figure 2,
where trajectories obtained for all the vertices of P1 as
initial conditions and the “extreme” dynamics ẋ = A1x and
ẋ = A2x, respectively, are also plotted.
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Fig. 1. Simulation results (A1 dynamics) - Example 1.
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Fig. 2. Simulation results (A2 dynamics) - Example 1.

B. Quadratic nonlinear systems

Consider systems of the form

ẋ(t) = Φ(x(t)), t ∈ R+, (11)

where Φ : Rn → Rn, Φ(x) := Ā(x)x and

Ā(x) := A+
(
B>1 x . . . B>n x

)>
,

A,Bi ∈ Rn×n for all i ∈ N = Z[1,n]. Bilinear differential
equations have numerous relevant real-life applications, as
they arise naturally in models of power electronic circuits
and systems biology reactions. The solution for bilinear dy-
namics presented in [12], which corresponds to the classical
approach of [3], employs an iterative algorithm that requires
solving a min-max non-convex optimization problem subject
to a bilinear constraint. Next, the approach of Theorem III.6
is applied to bilinear dynamics, which yields a single LP.

Theorem IV.2 Let l ∈ Z≥n, P ∈ Rl×n, F ∈ R≥n
and F := Z[1,F ]. Suppose that there exists a set of points
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{{xei}e∈F}i∈L with xei ∈ Rn, xei 6= 0 for all (i, e) ∈ L × F
that induces a proper l-conic partition of Rn, i.e., {Ci}i∈L
with Ci := Co({r(x1

i ), . . . , r(x
F
i )}) for all i ∈ L. Further-

more, let {C⊥i }i∈L be the set of matching dual cones with
corresponding matrices {Ei}i∈L and suppose that there exist
c ∈ R>0 and ρ ∈ R>0 such that the following inequalities
hold for all i ∈ L:

Ei([P ]i• ± c[In]j•)> ≥ 0, ∀j ∈ N , (12a)

Ei([P ]i• ± [P ]j•)> ≥ 0, ∀j ∈ L \ {i}, (12b)
(−ρ[P ]i• − [P ]i•Ā(0))xe2i ≥ 0, ∀e2 ∈ F ,(
− ρ[P ]i• − [P ]i•Ā(xe1i )

)
xe2i ≥ 0, ∀(e1, e2) ∈ F × F .

(12c)

Let V := Co ({{xei}e∈F}i∈L), Pλ := {x ∈ Rn | ‖Px‖ ≤ λ}
and let λ∗ := sup{λ ∈ R>0 | Pλ ⊆ V}.

Then, the function V (x) = ||Px|| is a Lyapunov function
in Pλ∗ for system (11).

Proof: Observing that x ∈ Ci ∩ V implies x ∈
Co({0, {xei}e∈F}) and as Ā(x) is an affine function of x, it
follows that for any fixed e2 ∈ F , (12c) implies that

(−ρ[P ]i• − [P ]i•Ā(x))xe2i ≥ 0, ∀x ∈ Ci ∩ V. (13)

Then, as by (12c) we also have that (13) holds for all e2 ∈ F ,
yields that

(−ρ[P ]i• − [P ]i•Ā(x))x ≥ 0, ∀x ∈ Ci ∩ V.

From the above inequality, using (4) and applying the same
reasoning as in the proof of Theorem III.6, it can be shown
that (3b) holds for all x ∈ Ci ∩ V . Observing that Pλ∗ ⊆ V
is a PI set for system (11) and {Ci}i∈L is a proper l-conic
partition of Rn yields the desired result.

The conditions of Theorem IV.2 yield a local infinity norm
Lyapunov function for (11) and lead to a LP with ln + 1
variables and lF (2l+2n+F −1) inequalities. Note that the
set Pλ∗ can be enlarged by enlarging the set V , as long as
the corresponding LP remains feasible.

Example 2 [12]: Consider the nonlinear quadratic system
(11) with A =

(−50 −16
13 −9

)
, B1 = ( 0 6.9

6.9 0 ) and B2 =
( 0 2.75

2.75 0 ). In [12], a polyhedral Lyapunov function was
computed for this system using nonlinear programming,
which resulted in a polyhedral invariant set with 20 vertices.
Additionally, therein it was established that the box B :=
R[−1.2,1.2]×R[−2.8,2.8] is a subset of the domain of attraction.
Using the approach of Theorem IV.2, a conic partition was
generated for l = 17 and F = 2. The feasibility of the
resulting LP with 5 variables and 1327 constraints was tested
using 3 different solvers (i.e., linprog, SeDuMi and CDD).
The constraint c ≥ 1 was imposed and the feasible solution
c = 1 was obtained for ρ = 0.3. In Figure 3, the cyan
polytope denotes the set V obtained as the convex hull of
the points used to generate the conic partition. The polytopic
domain of attraction P3, which has only 12 vertices, is
plotted in Figure 3 in yellow, together with the system
trajectories obtained for its vertices as initial conditions. In
the same figure, the box B is plotted with a dotted line.
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Fig. 3. Simulation results - Example 2.

The polyhedral domain of attraction P3 corresponding to
Theorem IV.2 also establishes that B is a subset of the region
of attraction.

V. NON-SYMMETRIC
POLYHEDRAL LYAPUNOV FUNCTIONS

Non-symmetric polyhedral Lyapunov functions are partic-
ularly of relevance for real-life applications. Even in the case
of asymptotically stable linear dynamics, where existence of
symmetric polyhedral LFs, such as infinity norm ones, is a
necessary condition, often hard constraints on the states are
specified by non-symmetric polyhedra. In such a situation,
symmetric domains of attraction offer an overly conservative
solution. This motivates the interest for the construction of
non-symmetric domains of attraction.

One of the earliest results in this direction can be found
in [13]. Therein, it was shown how symmetric norm Lya-
punov functions (i.e., defined by a 1-, 2- or ∞-norm) can
be modified to yield non-symmetric domains of attraction
for linear dynamics. More recent results on non-symmetric
norm LFs can be found in [14], where a generalization of
several previous contributions was attained. For a complete
overview, the interested reader is referred to the monograph
[1] and the references in [14].

In what follows it is indicated how the approach proposed
in this paper can be extended to non-symmetric polyhedral
LFs. To this end, the following correspondent of a proper
l-conic partition of Rn is defined.

Definition V.1 Let l ∈ Z≥n+1 and let L := Z[1,l]. A finite
set of cones {Ci}i∈L is called a non-symmetric proper l-
conic partition of Rn if ∪i∈LCi = Rn, Ci is a proper cone
for all i ∈ L and int(Ci)∩ int(Cj) = ∅ for all (i, j) ∈ L×L
with i 6= j.

The corresponding main results for polytopic differential
inclusions and nonlinear quadratic systems are stated next.

Theorem V.2 Let l ∈ Z≥n+1, L := Z[1,l], N := Z[1,n] and
P ∈ Rl×n. The following statements are equivalent.

(i) The function V (x) = maxj∈L{[P ]j•x} is a global
Lyapunov function for system (5).
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(ii) There exist c ∈ R>0, ρ ∈ R>0 and a non-symmetric
proper l-conic partition of Rn, i.e., {Ci}i∈L, with the set of
matching dual cones {C⊥i }i∈L and corresponding matrices
{Ei}i∈L, such that the following inequalities hold for all
i ∈ L:

Ei([P ]i• ± c[In]j•)> ≥ 0, ∀j ∈ N , (14a)

Ei([P ]i• − [P ]j•)> ≥ 0, ∀j ∈ L \ {i}, (14b)

Ei(−ρ[P ]i• − [P ]i•Aw)> ≥ 0, ∀w ∈ W. (14c)

The proof is omitted for brevity. The sufficiency part obvi-
ously follows using the same reasoning as for the symmetric
case. The necessity part is obtained by observing that an
asymptotically stable polytopic differential inclusion always
admits a symmetric polyhedral LF, i.e., Ṽ (x) := ‖P̃ x‖,
which in turn yields a feasible solution to the inequalities
(14) of the form P :=

(
P̃ −P̃

)>
.

Theorem V.3 Let l ∈ Z≥n+1, P ∈ Rl×n, F ∈ R≥n
and F := Z[1,F ]. Suppose that there exists a set of points
{{xei}e∈F}i∈L with xei ∈ Rn, xei 6= 0 for all (i, e) ∈ L × F
that induces a non-symmetric proper l-conic partition of Rn,
i.e., {Ci}i∈L with Ci := Co({r(x1

i ), . . . , r(x
F
i )}) for all

i ∈ L. Furthermore, let {C⊥i }i∈L be the set of matching dual
cones with corresponding matrices {Ei}i∈L and suppose that
there exist c ∈ R>0 and ρ ∈ R>0 such that the following
inequalities hold for all i ∈ L:

Ei([P ]i• ± c[In]j•)> ≥ 0, ∀j ∈ N , (15a)

Ei([P ]i• − [P ]j•)> ≥ 0, ∀j ∈ L \ {i}, (15b)
(−ρ[P ]i• − [P ]i•Ā(0))xe2i ≥ 0, ∀e2 ∈ F ,(
− ρ[P ]i• − [P ]i•Ā(xe1i )

)
xe2i ≥ 0, ∀(e1, e2) ∈ F × F .

(15c)

Let V := Co ({{xei}e∈F}i∈L),

Pλ := {x ∈ Rn | max
j∈L
{[P ]j•x} ≤ λ}

and let λ∗ := sup{λ ∈ R>0 | Pλ ⊆ V}.
Then, the function V (x) = maxj∈L{[P ]j•x} is a Lya-

punov function in Pλ∗ for system (11).

The proof is omitted for brevity and it follows similarly
to the symmetric case. In fact, the only difference in the
non-symmetric case comes for the non-symmetric proper
conic partition, which in turn only affects conditions in (14b)
and (15b), respectively. What remains of interest for further
research, is the maximization of the domain of attraction
under non-symmetric polytopic constraints.

VI. CONCLUSIONS

This paper considered the synthesis of infinity norm Lya-
punov functions for continuous-time dynamical systems. A
proper conic partition of the state-space was employed to
construct a finite set of linear inequalities in the elements
of the Lyapunov weight matrix. For dynamics described by
linear and polytopic differential inclusions, it was proven
that the feasibility of the derived set of linear inequalities

is necessary and sufficient for the existence of an infin-
ity norm Lyapunov function. Furthermore, it was shown
that the developed solution naturally applies to relevant
classes of continuous-time nonlinear systems. An extension
to non-symmetric polyhedral Lyapunov functions was also
presented. Ongoing research deals with the synthesis of
polyhedral control Lyapunov functions in conjunction with
piecewise affine control laws.
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