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Abstract— The widespread use of power converters and non-
linear loads connected to the grid have caused the emergence
of problems regarding the power quality. Among different
kind of non-linear distortion, there is the issue of the DC
current component. In fact, a DC current component flowing
in the grid transformers has various detrimental effects, i.e.
increased harmonic distortion, increased power losses, and
possible damage due to consequent overheating. This paper
proposes a non-linear sensor and a compensator system that
act as an active filter to remove the DC current component
flowing in the power lines. In the first part, the strategy is
outlined and then the stability issue is addressed by means
of a simplified model. Simulation results confirmed that the
simplified model closely approximates the real system. An
approximated analysis of stability is also presented. Finally we
present some experimental results that shows the effectiveness
of the proposed solution.

I. INTRODUCTION AND PROBLEM FORMULATION

The widespread use of power converters and non-linear
loads connected to the grid have caused the emergence of
problems relative to power quality.

For this purpose, international regulations have been de-
veloped to guarantee that devices connected to the grid do
not deteriorate the power quality. Among different kinds of
deteriorations, which can arise from non-linear distortions,
there is the issue of the DC current injection/absorption, as
shown in [1], [2], [3]. The DC current component can be
caused by non-linear loads or by power converters, for exam-
ple grid connected systems for renewable energy, AC/DC or
AC/AC converters. At the moment this problem is addressed
by international or country-specific regulations that impose
a limit to the maximum DC current injection/absorption
allowed.

However, these regulations do not guarantee that the
cumulative effect of numerous power converters connected
to the grid remains acceptable, without harmful effects for
electric system sensitive to DC components.

The DC current component is detrimental especially for
the distribution power transformers. The main effect of a DC
current component flowing in a transformer is the magnetic
core saturation during a sinusoidal semi-period (half-cycle
saturation), see [1]. Half-cycle saturation causes an increased
magnetizing current and transformer current becomes dis-
torted with the production of a significant amount of har-
monics. When operating in half-cycle saturation condition, a
transformer presents an increased reactive power absorption,
that implies increased power losses and, consequently, over-
heating, [4], [5], [6], [7]. The solution analyzed in this paper
was proposed in [8] and it is applicable to single phase grid.
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A similar strategy was used to prevent the core saturation
of the line frequency transformer used inside grid connected
converters as shown in [9].

The basic idea of this solution concerns that a DC current
component flowing in the power lines causes a DC voltage
drop across the parasitic resistances of the power lines of
the grid. This means that at the PCC (Point of Common
Coupling), defined as the ”interface between sources and
loads on an electrical system” , there will be a small DC
voltage component, which holds the information about the
DC current component that is flowing through the power
lines.

For this reason, removing the DC voltage component at
the PCC implies setting to zero the DC current component
injected by any electric devices connected at the same PCC.

The basic idea proposed in [8] could be extended to a three
phase grid. In case of long transmission three phase power
lines, a geomagnetic storm can induce in the wires a nearly
direct DC current, causing the magnetic saturation of power
transformers and electric generators with a significant heating
up of coils and cores, see [10]. This heat could disable or
destroy them.

This paper concerns the stability analysis of the solution
proposed in [8] providing a simplified small signal model of
the whole system composed by the grid, the non-linear load
and the proposed solution. Simulation results verified the
same behavior of the whole detailed system in comparison
with the simplified model whereas the mathematical analysis
proved the system stability.

This paper completes our work of [11] with some experi-
mental results which show the effectiveness of the proposed
method.

II. OPERATING PRINCIPLE OF THE PROPOSED DC
COMPENSATION STRATEGY

The key element to address this problem, as shown in
[8], is a very precise DC voltage sensing strategy with a
high rejection ratio to the offsets usually present in the
measurement chain. As a matter of fact, sensing the DC
voltage drop across the parasitic resistance of the grid means
extracting a DC voltage component of the order of a few
hundreds of mV from a sinusoidal signal of peak-to-peak
amplitude over 600V . The detection of this small DC voltage
component is realized with the use of a toroidal magnetic
core with a sole winding, in the following referred to as
reactor. The reactor is sized mimicking a low power toroidal
transformer with a primary voltage equal to the grid one.

The operating principle resides in the asymmetric satura-
tion of the reactor magnetic core in presence of a DC bias.
In Fig. 1 is shown the reactor connected to the grid, and
the current transformer used to sense the reactor’s current.
In this figure im is represents the transformer’s current, ir
the reactor’s current and VDC the DC voltage component.
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Fig. 1. Schematic of the reactor connected to the grid and the current
transformer used to sense the reactor’s magnetizing current.
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Fig. 2. Reactor voltage (blue line), magnetic flux (green line) and measured
magnetizing current (red line) in presence of a positive DC bias.

Fig. 2 shows the waveforms of reactor magnetic flux and
magnetizing current in presence of a positive DC voltage
component vDC : the magnetic flux saturates deeply at the
end of the positive semi-period of the grid voltage, draining
more magnetizing current. As a result, the reactor current
will present a higher value in correspondence of the positive
or negative grid voltage semi-period, depending on the sign
of the DC voltage component. The asymmetric saturation of
the magnetic core holds the information regarding both the
DC voltage component sign and amplitude.

In order to obtain an offset free measurement, a current
transformer is used to measure the reactor current. The
transfer function between the reactor current ir and the
measured current im can be obtained with the model of the
ideal transformer with turn ratio n, a magnetizing inductance
Lm and a resistive load Rl connected at the secondary. This
transfer function is given by

im(s)
ir(s)

= 1
n

sLmn2

sLmn2+Rl
. (1)

Setting p = Rl

Lm
, the relationship between the reactor

current ir and the sensed one im can be written as follows,
setting n = 1

dim
dt

= dir
dt

− p im . (2)

For every k ∈ Z define the two intervals

I+(k) = [k + T/4−∆TZC , k + T/4 + ∆TZC ]
I−(k) = [k + 3T/4−∆TZC , k + 3T/4 + ∆TZC ] .

(3)

To detect this asymmetric distortion, during every grid
voltage period, two indexes, respectively the positive sat-
uration index (4) and the negative saturation index (5), are
computed by integrating the reactor current in intervals I+(k)
and I−(k), placed around voltage zero crossing, as follows

SIP (k) =

∫

I+(k)

im(t) dt (4)
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Fig. 3. Basic idea of the control scheme able to compensate the DC voltage
component at the PCC.

SIN (k) =

∫

I
−
(k)

im(t) dt . (5)

In this way, the following output is computed

y(k) = SIP (k) + SIN (k) . (6)

In absence of a DC voltage component during time interval
[kT, (k + 1)T ], the magnetizing current shows a symmetric
saturation in intervals I−(k) and I+(k), around the zero
crossing of the mains voltage. In this case y(k) = 0.

On the other hand, in case of a positive voltage bias,
the positive semi-period of the flux wave saturates and an
asymmetric distortion, which causes even harmonics, appears
in the reactor current. The absolute value of SIP is greater
than SIN (see Fig. 2) and y(k) > 0. The sign of y(k) is the
same as the DC voltage bias i.e. the DC current component
injected into the grid by electric devices connected at the
same PCC. In this way, output y(k) plays the role of a DC
component detector.

Transfer function (1) shows that the current transformer
rejects the DC component. For this reason, the small in-
tegral windows, around the grid voltage zero crossing, are
mandatory to find the DC voltage component of the grid.

With these premises, a digital dynamic compensation of
the offset introduced by the analog conditioning is feasible
and the resulting measurement system is free from offset
problems. A feedback control can be implemented in order to
obtain y(k) = 0, that corresponds to a symmetrical saturation
of the reactor core and therefore to a null value of the DC
voltage component at the PCC. This is obtained injecting
into the grid a DC current component that balances the DC
current component generated by other loads/power converters
connected at the same PCC.

The measured signal y(k) is used to realize, with a simple
PI regulator, a closed loop control able to force to zero vDC .
Fig. 3 shows the basic idea of the control scheme: the DC
component loop produces the set point, i∗inv , for the inner
current loop of the power converter.

III. MODELING AND SIMPLIFIED STABILITY ANALYSIS

A. Simplified model

Fig. 3 outlines the general idea of the compensator’s
strategy. A more detailed model is presented in Fig. 4,
where the converter is composed of a IGBT full bridge with
the second-order LC output filter (two inductors Lf and
a capacitor Cf with a series resistance Rf ) connected to
the grid (Lg and Rg represents the distributed parameters
of the electric distribution grid). The same figure shows
the presence of a generic electric load composed by the
inductance Ll, the resistance Rl and the DC generator which
causes the DC current flowing towards the grid, i.e. the
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equivalent voltage caused by non-linear loads or converters
connected along the grid. At the same PCC is connected the
non-linear DC voltage component sensor: the reactor.
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Fig. 4. Schematic of the power circuit.

In order to perform the stability analysis a simpler model
was developed. The power converter is usually controlled
by a Digital Signal Processor (DSP) which commands the
power devices’ turn on/off at high frequency in order to
limit the harmonic distortion of the output current. The DSP
usually embeds a closed loop regulator which can control
the output current. The bandwidth of this kind of controller
is usually much higher than the considered system (which
operates at discrete time at the grid voltage’s period), so in
the simplified analysis the whole power converter with its
output filter can be substituted by an ideal current generator
iinv . The grid’s distributed inductance Lg presents usually
a low value with respect to other inductances, so it can be
neglected. The previous assumptions lead to the non-linear
model presented in Fig. 5. It is important to note that at
this level of simplification the system is still non-linear (the
inductance of the reactor is represented by the hysteresis
function Φ = f(ir)).
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Fig. 5. Simplified non-linear model.

B. Linearized model for stability analysis

The equations of the simplified model, depicted in Fig. 5
are the following










Φ̇(t) = vg(t)− (2Rg +Rr)f
−1(Φ(t))

+2Rgiinv(t)− 2Rgil(t)
Ll i̇l(t) = vg(t)− 2Rgf

−1(Φ(t))− (2Rg +Rl)il(t)
+2Rgiinv(t)− El(t) ,

(7)
where Φ is the reactor flux and il the current absorbed by
the load. The control input is the inverter current iinv , while

El, the load equivalent voltage, represents a disturbance. The
grid voltage is the periodic signal vg = Vg sin(ωt).

Let χ : R → {0, 1} be the indicator function associated
to I, the union of intervals I−(k), I+(k) (defined by (3)),
for all k ∈ Z , which is, ∀t ∈ R

χ(t) =

{

1 if t ∈ I
0 otherwise .

At each sampling time kT the measured output y(k) can
then be expressed by the following integral (see also Fig. 2)

y(k) =

∫ kT

(k−1)T

χ(t)im(t)dt , (8)

where the measured current im satisfies the following first
order differential equation (see (2))

dim(t)

dt
=

df−1

dφ(t)
|Φ(t)

dΦ

dt
− p im(t) . (9)

Augmented system (7)+(9) is rewritten as

ẋ = F (x, t, El, iinv) , (10)

where x = (Φ, i, im)T .
System (7)+(9) is asymptotically stable since it models an

electric system composed of passive components. In nominal
conditions, i.e. when no disturbance is applied (El = 0)
and the inverter current is null (iinv = 0), the state x
asymptotically converges to a 2π

ω
-periodic signals x0 =

(Φ0, il0, imo) which satisfies

ẋ0(t) = F (x0(t), t, 0, 0) . (11)

To study the behavior of system (10) in a neighborhood of
the reference solution x0, we set the error vector e = x−x0,
with components e = (eφ, eil , eim). Then, by (10) and (11)

ė = G(e, t, El, iinv) ,

where G(e, t, El, iinv) = F (x0 + e, t, El, iinv) −
F (x0, t, 0, 0). The corresponding linearized model in a
neighborhood of the equilibrium e = (0, 0, 0) is the time-
varying system

ė = A(ωt)e+Biinv +WEl , (12)

where, setting α(t) = df−1

dΦ |Φ0(t)

A(t) = d
de
G(e, t, El, il)|e=0,El=0,iinv=0

=





−(2Rg +Rr)α(t) −2Rg 0

−2
Rg

Ll
α(t) −

2Rg+Rl

Ll
0

−(2Rg +Rr)α
2(t) −2Rgα(t) −p



 ,

B = dG
dIinv

=





2Rg

2
Rg

Ll

2Rgα(t)



 , W = dG
dEl

=





0

−2
Rg

Ll

0



 .

In this system, iinv is the control input and El represents
a disturbance.

Using the method presented in section (II), the control
variable iinv is obtained through a first order hold filter
applied to the output of a discrete-time controller. Since
iinv is constant in time intervals [kT, (k + 1)T ], the error e
satisfies the difference equation obtained by discretizing (12)
through a first-order hold:

e(T (k + 1)) = AT e(Tk) +BT iinv(Tk) +WT (k) , (13)
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where AT = Ψ(T ), BT =
∫ T

0
Ψ(T )Ψ−1(τ)Bdτ , WT (k) =

∫ T

0
Ψ(T )Ψ−1(τ)WEl(kT + τ)dτ and Ψ is the transition

matrix associated to system (12), that is it is the solution
of

{

Ψ̇(t) = A(t)Ψ(t)
Ψ(0) = I .

The measured signal is given by (8).
Remark that, in nominal conditions, signal im is symmet-

ric). Therefore, if y0(k) represents the output in nominal
conditions

y0(k) =

∫ (k+1)T

kT

χ(t)im0(t)dt = 0 ,

Since im = im0 + eim , eim(t + KT ) =
(0, 0, 1)Ψ(t)e(KT ), the linearized output is given by

y(k) = CT e(Tk) (14)

where CT =
∫ (k+1)T

kT
χ(t)(0, 0, 1)Ψ(t)dt.

The discrete-time PI controller is given by
{

iinv(k) = kpy(k) + kis(k)
s(k + 1) = s(k) + y(k) .

(15)

In general, the parameters kp, ki appearing in (15)
can be designed using the reduced linear discrete-time
model (13) + (14) + (15) and stability can be checked by
computing the eigenvalues of the closed loop system.

In the following we present a simplified analysis of
stability.

C. A simplified stability analysis

If parameter Ll appearing in (12) is small enough, it is
possible to use singular perturbation theory to reduce the
model (see [12]).

In this hypothesis, the dynamic of state eil can be consid-
ered a fast-dynamic which converges rapidly to the value

eik(t) = −
2Rg

2Rg +Rl

α(t)eφ −
2Rg

2Rg +Rl

(Iinv − El) .

The slow component of the state is es = (eΦ, eim) and its
reduced equations are given by

ės(t) = A0(t)es(t) +B0iinv(t) +W0El(t) , (16)

setting c1 =
2Rg(Rl+Rr)+RrRl

2Rg+Rl
, c2 = 2Rg +

4R2
g

2Rg+Rl
, c3 =

4R2
g

2Rg+Rl
the matrices appearing in (16) are given by

A0(t) =

(

−c1α(t) 0
−c1α

2(t) −p

)

,

B0(t) =

(

c2
α(t)c2

)

,

W0(t) =

(

−c3
−α(t)c3

)

.

Let Ψ0 be the solution of
{

Ψ̇0(t) = A0(t)Ψ0(t)
Ψ0(0) = I ,

if the eigenvalues of matrix A0 are small compared to 2π
T

,
it is possible to approximate Ψ0 in the following way

Ψ0(t) ≃ I +

∫ t

0

A(τ)dτ .

With this approximation, discretizing system (16) with a
zero-order hold we obtain

e((k + 1)T ) = AT0e(kT ) +BT0iinv(kT ) +WT0El(kT ) ,

setting ᾱ = 1
T

∫ T

0
α(t)dt, the system matrices are given by

AT0 = I + T

(

−c1ᾱ 0
−c1ᾱ

2 −p

)

,

BT0 = T

(

c2
ᾱc2

)

,

WT0 = T

(

−c3
−ᾱc3

)

.

The measured output (8) is approximated by

y(k) =

∫ T

0

χ(t)((0, 1)A0(t)e(kT ) +B0(t)iinv(kT ))dt

= (−c1α̂
2,−p̂)e(kT ) + c2α̂iinv(kT )− c3α̂El ,

where α̂ =
∫ T

0
χ(t)α(t)dt and p̂ =

∫ T

0
χ(t)p(t)dt.

To define the PI controller, we add an integrator to the
system output, the value of the integrator is represented by
state s

s(k) = s(k − 1) + y(k − 1); (17)

in this way the control input is given by

iinv = −kpy(k)− kis(k) .

Let the state of (16)+(17) be given by z(k) =
(eT (k), s(k)), then z(k + 1) = Akp,ki

z(k), where matrix
Akp,ki

depends on gains kp, ki.
If kp = 0, ki = 0 then

A0,0 =

(

1− ᾱc1 0 0
−ᾱ2c1 1− p 0
−α̂c1 −p̂ 1

)

the associated eigenvalues are {1− ᾱc1, 1− p, 1}. We prove
that the system is stabilized for sufficiently small gains
kp, ki. In fact the first 3 eigenvalues are stable and, by
continuity, remain stable for small values of kp and ki. Using
perturbation theory, assume that kp = 0 and ki is a small
constant. In this case

A0,ki
−A0,0 = ki

(

0 0 c2
0 0 ᾱc2
0 0 α̂c2

)

= kiĀ

let x1 and y1 be respectively the right and left eigenvectors
of matrix A0,0 for eigenvalue 1 and let λ(ki) be the value
of the largest eigenvalue of A0,ki

as a function of ki (hence
λ(0) = 1), where

x1 = (0, 0, 1)t ,

y1 = (
p̂ᾱ2 + α̂p

ᾱp
,−

p̂

p
, 1) ,
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using expression (9.4) from chapter 2 of [13], the derivative
of the eigenvalue 1 with respect to parameter k is given by

λ′(0) =
yT1 Āx1

yT1 x1
= −

α̂c2(ᾱ+ 1)

ᾱ
.

since the quantities α̂, c2, ᾱ are positive, λ′(0) is negative,
this shows that for small values of kp the closed loop system
is asymptotically stable, since the eigenvalue in 1 is moved
in negative direction, towards the interior of the unit circle.

Finally, the steady state error due to a constant disturbance
El to the flux Φ is null since by direct computation it can
be verified that the static gain from El to eΦ is 0.

IV. SIMULATIONS AND MODEL VALIDATION

The aforementioned compensation strategy was simulated
in a Matlab/Simulink environment with the aid of PLECS, a
Simulink toolbox which allows fast simulation of electronic
converters with feedback controls. In order to validate the
reduced model (13), presented in Section III-A, a Simulink
model closest to the real-world realization was implemented.
In particular, the block scheme in Fig. 3 was simulated,
Fig. 4 shows in details the circuit used for simulations. The
parameters were VDC = 450V , Lf = 1.2mH , Rf = 1Ω,
Cf = 2.2µF , Rg = 0.2Ω, Lg = 40µF , Vg = 230VRMS ,
T = 20ms, El = 1V , Rl = 10Ω, Rr = 29Ω, Ll = 1mH .

The signal processing was done at discrete time (sampling
frequency Fsw = 10kHz) with 16-bit numeric variables
(in order to match the processing capabilities of a low-cost
DSP). The block DC Component detection in Fig. 3 was
implemented filtering the reactor current with a first-order
high-pass filter (cut frequency 100rad/s) to account for the
transfer function of the current transformer used for the
current measurement, and the resulting waveform (measured
magnetizing current, with reference to Fig. 2) was integrated
in a window of 20 samples (∆TZC = 1ms) centered in the
grid voltage’s zero-crossing.

The CurrentController was a discrete PI regulator
(kp = 0.08, ki = 306E−6, sampling time 100µs). The same
structure (PI regulator) was chosen also for the compensator
(kp = 151, ki = 4557, sampling time 20ms).

The model realized should approximate with a good
degree of accuracy a real full-bridge converter driven by a
fixed-point DSP controller which implements the proposed
compensation strategy. To validate the simplified model
various simulation were performed comparing its results with
the complete model. The results were quite good, despite
the high number of assumptions that led to the simplified
discrete-time linear model. In particular, Fig. 6 shows the
mean reactor current iR DC when a disturbance El = 1V
was inserted at the time 0.2s. Furthermore, Fig. 7(a) and
7(b) show the transients of iR DC and the inverter current
iinv with the same perturbation but with the compensator
active. The top waveforms are the output of the complete
model, while the bottom waveforms refer to the simplified
model.

As it is evident, the results are in good agreement, regard-
ing numerical values and transient time.

V. EXPERIMENTAL RESULTS

A picture of the prototype is presented in Fig. 8(a). It was
based on a Freescale MC56F8323 DSP that performed the
proposed strategy and on a three-level PWM modulation with
a switching frequency equal to 10kHz. The power converter
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Fig. 6. Comparison between the complete model DC reactor current iR DC
(top waveforms) and the simplified ones (bottom waveforms) without the
compensator.
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(a) DC reactor current iR DC .
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(b) Inverter current iinv .

Fig. 7. Comparison between the complete model (top waveforms) and the
simplified one (bottom waveforms).

was connected to the grid by a simple LC filter relying on
two 1.2mH inductors and on a 1.5µF capacitor. Fig. 8(b)
shows the DC voltage sensing circuit. A cheap magnetic
component was used for the reactor: the core material was
Fe-Si, generally used for cheap line frequency transformers,
and the parasitic winding resistance was 29Ω. This high value
of resistance is caused by the high number of turns (2950)
and the small wire diameter (0.315mm). A simple current
transformer was used to realize a measure of the reactor
current free from offset problems.

To test the effectiveness of the proposed solution a low
voltage test bed was realized: the setup is presented in Fig. 9.
The PCC was the output of a power transformer, which
lowered the grid voltage from 230VRMS to 26V RMS. The

(a) Power converter. (b) DC sensor.

Fig. 8. Picture of the power converter and of the DC voltage sensing circuit
used for the experimental results.
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equivalent schematic accounts also the series impedance of
the real transformer and of the grid, Zgrid 2. The firmware
on-board the DSP controlled also the active power to obtain
a DC-Link voltage of 110V . At the PCC a non-linear
load (a 20Ω power resistance with a series diode) was
connected. The control of the DC-Link voltage was realized
by absorbing active power from the grid in order to charge
the DC capacitors of the power converter. The output current
of the active filter will be the superposition of a sinusoidal
supply current and the DC current needed to compensate
the non-linear distortion at the PCC. Without the use of
the proposed solution a significant DC current component
of 580mA was present at the PCC. The effect of this non-
linear load (diode + resistance) on the current flowing at
the input of the transformer, Igrid 1, is shown in Fig. 10(a),
where it is evident that the transformer core was heavily
saturated and, as a consequence, it drained a very distorted
current from the grid. Fig. 10(b) shows also the transformer
secondary current, which presents the typical characteristic
of the half-cycle rectifier.
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Fig. 9. Schematic of the low voltage test bed.

On the contrary, with the compensating system connected,
the converter, in addition to the active current needed to
compensate for its own power consumption, injected a di-
rect current component, which fully compensated the DC
current component previously absorbed from the output of
the transformer. Fig. 11 shows the output voltage and current
of the transformer (Igrid 2 and Vgrid 2) with the DC voltage
compensator ON. The same figure shows also the DC current
component of Iinv that is about −600mA (green trace), i.e.
the DC current component caused by the non-linear load
alone.

A precise DC current meter used for the measurement of
the actual DC current component of Igrid 2 showed only a
small oscillation of mA around zero, i.e. the precision of the
instrument.

(a) Vgrid 2 and Igrid 1. (b) Vgrid 2 and Igrid 2.

Fig. 10. Transformer voltage (red trace) and currents (green and blue
traces) without DC voltage compensator.

Fig. 11. Transformer voltage Vgrid 2 (red trace) and current Igrid 2 (blue
trace) in presence of a diode + resistive load. DC voltage compensator On.

VI. CONCLUSIONS

This paper proposed a non-linear sensor and a grid con-
nected system that act as an active filter to remove the DC
current component flowing in the power lines, that could
potentially damage the distribution power transformers. A
simplified model of the real system was realized and a
mathematical analysis was performed, pointing out that the
system can be always rendered asymptotically stable by an
appropriate choice of the compensator’s parameters. Simu-
lation results confronting the simplified, discrete-time, linear
model and the complete, continuous-time, non-linear model
showed that the simplified model closely approximated the
other model’s behavior. Finally, experimental results showed
the ability of the proposed strategy to effectively compensate
the DC current caused by non-linear loads connected at the
PCC.
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