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Abstract— In this contribution, we derive an optimal solution
to an H−/H∞ fault detection (FD) problem for linear time-
invariant systems. Firstly, a novel H∞-based performance index
is formulated to minimize the relative sensitivity of the residual
to disturbances with respect to the sensitivity to faults. Then a
class of optimal filters for the H−/H∞ FD problem is obtained
by solving a Linear Matrix Inequality (LMI) optimization.
Further specifications such as fault isolation can be achieved by
using the remaining degrees of freedom in the optimal FD filter
design. Moreover, weighting filters are considered to improve
the results. Finally, two examples demonstrate the effectiveness
of the proposed scheme.

I. INTRODUCTION

As many control systems and engineering processes be-

come more and more complex and integrated, there is a

growing need for on-line supervision and fault detection to

increase their reliability, safety and fault tolerance capabil-

ities and many different approaches have been proposed to

solve the FD problem [4], [15], [16], [3], [9], [18], [17], [7].

Recently, mixed-norm FD problems have attracted a great

deal of attention and various approaches and schemes have

been proposed in many contributions. In [14], an H−/H∞

FD problem is investigated and a suboptimal solution is

given, which is due to that a bilinear matrix inequality

formulation is employed so that some variables are needed

to be pre-defined to solve their optimization problem. Wang

et al [12] considers the H∞/H∞ FD problem and give a

suboptimal solution due to the fact that a common Lyapunov

function is used to solve their matrix inequalities, which

results in a conservative FD observer design. While in [10],

both H∞/H∞ and H−/H∞ FD problems are considered

and a suboptimal solution is given since the FD problem is

formulated as a quasi-linear matrix inequality formulation

that necessitates an iterative method to approximate the

optimal solution.

This work considers an H−/H∞ FD problem for linear

time-invariant systems subject to faults and disturbances.

First, we propose a new performance index that captures

the requirements of fault detection and disturbance rejection.

The disturbance rejection performance is measured, using

the H∞ norm, by the size of the disturbance to residual

dynamics. Using a static observer, we give a class of (not

necessarily stable) solutions to a novel FD problem in the

form of a simple LMI with two degrees of freedom. Then,
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the freedoms in this class of solutions are used to derive

the optimal filter to the H−/H∞ FD problem. Under certain

conditions, we show that fault isolation can also be achieved.

We then improve the results with the use of weighting filters.

Mainly, this work has made progress in the following two

aspects: (1) we give the optimal design of the H−/H∞ FD

filter; (2) the cost function in this work combines both fault

detection and disturbance attenuation requirements for which

only the ’ratio’ between these two objectives is optimized

and needed to be fixed. So that a class of optimal filters

with two degrees of freedom is given and can be used to

achieve further specifications such as fault isolation.

The structure of the work is as follows. After defining

the notation, we formulate the H−/H∞ problem as well

as a novel FD problems using a static observer structure

in Section II. Section III gives a class of solutions to

the novel FD problem. In section IV, we present further

specifications that can be achieved by the filters and we

give the optimal filter design for the H−/H∞ FD problem.

Section V gives a technique to improve the results through

the use of weighting filters. Finally, numerical examples

are presented in Section VI to validate our approaches, and

Section VII summarizes our results.

The notation we use is fairly standard. The set of real

n×m matrices is denoted by Rn×m. For A ∈ Rn×m we use

the notation AT to denote transpose. For a matrix A ∈ Cn×n,

λ̄(A) denotes the largest and λ(A) the smallest eigenvalue

of A, respectively. For A ∈ Cn×m, σ̄(A) denotes the largest,

and σ(A) the smallest, singular values of A, respectively.

For A = AT ∈ Rn×n, A > 0 (A < 0) denotes that A
is positive (negative) definite, that is, all the eigenvalues of

A are greater (less) than zero. The n × n identity matrix

is denoted as In and the n × m null matrix is denoted as

0n,m with the subscripts occasionally dropped if they can be

inferred from context.

A transfer matrix G(s) = D + C(sI − A)−1B will

be denoted as G(s)
s
= (A,B,C,D) or G(s)

s
=

[

A B
C D

]

and we define G∼(s) := GT (−s) to be the para-hermitian

complex conjugate of G(s). Transfer matrix dependence

on the variable s will be normally suppressed. For a (not

necessarily stable) transfer matrix G we define

‖G‖∞ = sup
ω∈R

σ̄ (G(jω)) , ‖G‖− = inf
ω∈R

σ (G(jω)) .

II. FAULT DETECTION PROBLEM FORMULATION

Consider a linear time-invariant dynamic system subject

to disturbances, modeling errors and process, sensor and
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actuator faults modeled as

ẋ(t) = Ax(t)+Bu(t)+Bff(t)+Bdd(t),

y(t) = Cx(t)+Du(t)+Dff(t)+Ddd(t), (1)

where x(t) ∈ Rn, u(t) ∈ Rnu and y(t) ∈ Rny are the

process state, input and output vectors, respectively, and

where f(t) ∈ Rnf and d(t) ∈ Rnd are the fault and

disturbance vectors, respectively. Here, Bf ∈ Rn×nf and

Df ∈ Rny×nf are the component and instrument fault

distribution matrices, respectively, while Bd ∈ Rn×nd and

Dd ∈ Rny×nd are the corresponding disturbance distribution

matrices [2]. Consider a residual generator using a static

observer of the form

˙̂x(t) = Ax̂(t)+Bu(t)−L (y(t)−Cx̂(t)−Du(t)) ,

r(t) = H(y(t)−Cx̂(t)−Du(t)), (2)

where x̂(t) ∈ Rn is the observer state and r(t) ∈ Rnr is

the residual signal. Here L ∈ Rn×ny and H ∈ Rnr×ny are

the observer and residual gain matrices, respectively, and are

to be determined. Define the state estimation error signal as

e(t) = x(t)− x̂(t). It follows that the residual dynamics are

given by

ė(t) = (A+LC)e(t) + (Bf+LDf)f(t) + (Bd+LDd)d(t),

r(t) = HCe(t) +HDff(t) +HDdd(t).

By taking Laplace transforms, r(s) = Trf(s)f(s) +
Trd(s)d(s), where

[

Trf Trd

] s
=

[

A+LC Bf+LDf Bd+LDd

HC HDf HDd

]

=F
[

Gf Gd

]

(3)

are the transfer matrices from faults and disturbances to the

residual, respectively, and where

F
s
=

[

A+ LC L
HC H

]

,
[

Gf Gd

] s
=

[

A Bf Bd

C Df Dd

]

(4)

are the FD filter and the fault and disturbance dynam-

ics, respectively. With these preliminaries we formulate the

H−/H∞ FD problem as follows.

Problem 2.1: With all variables as defined above, assume

that:

A1. The pair (A,C) is detectable (see Remark 2.2.)

A2. Gf has full column rank over the extended imaginary

axis (see Remarks 2.3 and 2.4, and Section V.)

A3. ny ≥ nf (see Remark 2.5.)

A4. nr = nf (see Remark 2.6.)

Find

γ0 := min {
‖Trd‖∞
‖Trf‖−

: A+ LC is stable}.

Remark 2.1: An interpretation of Problem 2.1 is that

σ̄(Trd(jω)) is required to be smaller than or equal to

γ0σ(Trf(jω)) for all ω ∈ R. This captures the requirement

of ensuring insensitivity to the disturbance and sensitivity to

faults. �

Since
∥

∥

∥
T−1
rf Trd

∥

∥

∥

∞
≤

∥

∥

∥
T−1
rf

∥

∥

∥

∞
‖Trd‖∞ = ‖Trd‖∞/‖Trf‖−,

then,

γ0 ≥ min {
∥

∥

∥
T−1
rf Trd

∥

∥

∥

∞
: A+ LC is stable} =: γ1. (5)

It follows that γ1 is a lower bound on γ0, which motivates

the following problem:

Problem 2.2: Let all variables and assumptions be as

given in Problem 2.1. For a given γ > 0 find L and H ,

if they exist, such that A+ LC is stable and
∥

∥

∥
T−1
rf Trd

∥

∥

∥

∞
< γ. (6)

Remark 2.2: Assumption A1 is needed to guarantee the

existence of at least one L such that A+ LC is stable. �

Remark 2.3: The cost function in (6) can be expressed as

T−1
rf TrdT

∼
rdT

−∼
rf < γ2 or, equivalently, as

TrdT
∼
rd < γ2TrfT

∼
rf , (7)

If Gf loses rank over the extended imaginary axis, then so

does Trf = FGf and (7) cannot be satisfied for any γ > 0.

In particular, the assumption implies that Df has full column

rank which is necessary for T −1
rf to have a proper state-space

realization. This assumption can be (somewhat) relaxed if we

change the cost function in (7) to TrdT
∼
rd − γ2TrfT

∼
rf ≤ 0

and if Gd loses rank over the imaginary axis whenever Gf

does. Dealing with this situation will necessitate an intricate

analysis of spectral factorizations with imaginary axis zeros

[1], which is outside the scope of this work. In Section V

we relax this assumption by modifying the cost function in

(6) and introducing weighting functions. �

Remark 2.4: An alternative approach in the case that Gf

loses rank over the external imaginary axis is to design

the FD scheme over a specific finite frequency range inside

which Gf has full rank [11], [13], [8], although the solution

involves non-convex optimization. �

Remark 2.5: Suppose that ny < nf , then assumptions A1

and A2, together with Theorem 13.32 in [19] imply that

Gf = ĜfGi where Ĝf ∈ RL
ny×ny
∞ and Gi ∈ RL

ny×nf
∞

such that GiG
∼
i = Iny

. Furthermore, Ĝf (s) can be chosen

to have the same A and C matrices as Gf . Using (4) and

(7) we have

TrdT
∼
rd<γ2TrfT

∼
rf ⇔ FGdG

∼
d F

∼< γ2FGfG
∼
f F

∼

⇔ FGdG
∼
d F

∼< γ2FĜf Ĝ
∼
f F

∼.

Thus we may replace Gf (s) by Ĝf (s) and so there is no

loss of generality in assuming that nf ≤ ny . �

Remark 2.6: We opt for nr = nf for the following

reasons:

1) There is no need for nr > nf since our interest is in

increasing the sensitivity of the residual to faults by

increasing the singular values of Trf relative to those

of Trd, and there are at most nf singular values of Trf

since ny ≥ nf .

2) Since the set of all optimal filters when nr < nf is

a subset of those when nr = nf , we get maximal

sensitivity to faults when nr = nf .

3) This will prove useful when we consider fault isolation

in Section IV below. �
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In the following sections, the optimal solution of Problem

2.1 is derived in two stages. First we construct a class of

optimal solutions to Problem 2.2 using LMI techniques.

Then, in Section IV, the freedoms in this class of solutions

are employed to derive the optimal H−/H∞ FD problem

and we show that, by an appropriate choice of the freedoms,

further specifications such as fault isolation can also be

achieved.

III. A CLASS OF OPTIMAL FD FILTERS FOR PROBLEM 2.2

In this section, we characterize a set of (not necessarily

stable) filters of the form given in (4) such that (6) is satisfied.

Our approach is to use the bounded real lemma to derive

necessary and sufficient conditions for (6) in the form of a

(nonlinear) matrix inequality. We then introduce a change of

variables to derive an equivalent LMI.

Since Df ∈ Rny×nf has full column rank, there exist

D†
f ∈ Rnf×ny and D⊥

f ∈ R(ny−nf )×ny such that

[

D†
f

D⊥
f

]

Df =

[

Inf

0

]

, rank

([

D†
f

D⊥
f

])

= ny.

Let

H = U1D
†
f +U2D

⊥
f , L = (Z1 −Bf )D

†
f +Z2D

⊥
f (8)

where U1 ∈ Rnf×nf , U2 ∈ Rnf×(ny−nf ), Z1 ∈ Rn×nf and

Z2 ∈ Rn×(ny−nf ) are free parameters, with U1 nonsingular

to ensure that HDf is invertible. Then

HDf =U1, Bf+LDf =Z1, (HDf )
−1H=D†

f+U0D
⊥
f (9)

where U0 = U−1
1 U2. By taking some matrix manipulations,

it shows that

T−1

rf

s
=

[

A+LC−(Bf+LDf )(HDf )
−1HC −(Bf+LDf )(HDf )

−1

(HDf )
−1HC (HDf )

−1

]

.

Then

T−1
rf Trd

s
=

[

Ac Bc

Cc Dc

]

where

Ac = A+LC−(Bf+LDf)(HDf )
−1HC,

Bc = (Bd+LDd)−(Bf+LDf)(HDf )
−1(HDd),

Cc = (HDf )
−1HC,

Dc = (HDf )
−1(HDd).

By using the rearrangements of the variables as given in (9),

we obtain

T−1
rf Trd

s
=

[

A1 + Z0C2 Bd,1 + Z0Dd,2

C1 + U0C2 Dd,1 + U0Dd,2

]

, (10)

where we have defined




A1 Bd,1

C1 Dd,1

C2 Dd,2



=







A−BfD
†
fC Bd −BfD

†
fDd

D†
fC D†

fDd

D⊥
f C D⊥

f Dd






(11)

and Z0 = Z2 − Z1U0. The next result gives the solution of

Problem 2.2.

Theorem 3.1: Let all variables and assumptions be as

given in Problem 2.2. For some γ > 0, there exist L and

H such that A+LC is stable and (6) is satisfied if and only

if there exist P = P T , Q and U0 such that the following

LMI




AT
1P+CT

2Q
T+PA1+QC2 ⋆ ⋆

BT
d,1P+DT

d,2Q
T −γI ⋆

C1+U0C2 Dd,1+U0Dd,2 −γI



<0,

(12)

is satisfied, where ⋆ represents terms readily inferred from

symmetry.

Proof. From a generalized bounded real lemma in [5], there

exist L and H such that (6) is satisfied if and only if there

exists P = PT (not necessarily positive definite) such that




AT
c P+PAc PBc CT

c

BT
c P −γI DT

c

Cc Dc −γI



 < 0. (13)

Substituting (10) in (13) and then the nonlinear matrix

inequality is linearized by taking the change of variables

Q = PZ0. It follows that there exist L and H such that (6)

is satisfied if and only if there exist P = P T , Q and U0

such that (12) is satisfied. Furthermore, if (12) has feasible

solutions P, Q = PZ0 and U0 and we define

H0 = D†
f + U0D

⊥
f , L0 = −BfD

†
f + Z0D

⊥
f , (14)

so that L and H in (8) can be written as

L = L0 + Z1H0, H = U1H0, (15)

then we get a class of (not necessarily stable) FD filters F
of the form (4) parameterized by free variables U 1 and Z1,

subject to U1 nonsingular. It can be seen that A + LC =
(A+L0C) +Z1(H0C). The rest of the proof, which shows

that it is always possible to stabilize A+LC by choosing the

freedom Z1 in the filter design, is omitted due to the length

limitation and can be obtained from the authors. �

Remark 3.1: If P is singular, then, because of the strict

inequality in (12), we can perturb P such that the perturbed

P is nonsingular and inequality (12) is still satisfied. This

shows that we can always recover Z from P and Q. �

IV. DESIGN OF AN OPTIMAL H−/H∞ FD FILTER

In the previous section, we derived a set of fault detection

filters and residual dynamics parameterized by free Z1 and

U1, with U1 nonsingular that solve Problem 2.2. This section

shows that, through a suitable choice of Z1 and U1, the

optimal H−/H∞ FD filter is derived and stabilized and

further specifications such as fault isolation can also be

achieved in some circumstances.

Firstly, note that since Bf +L0Df = 0 and H0Df = Inf

from (14), then

Trf
s
=

[

A+L0C+Z1H0C Z1

U1H0C U1

]

(16)

from (3) and (15). As known that, to ensure fault isolability

for all faults, it is required that the transfer matrix Trf

is diagonal. So that in the case of Trf = Inf
(ignoring

905



disturbances), r = f and each individual fault only affects

its corresponding residual signal.

Therefore, if A+L0C is stable, we easily get Trf = Inf
by

choosing Z1 = 0 and U1 = Inf
such that the filter achieves

optimal FDI.

If A+ L0C is not stable, then it is needed to choose Z1

such that the fault detection filter F is stable. The rest of

this section considers the stabilization of the F by choosing

suitable Z1 and U1 such that optimal FD is achieved.

Note that simple calculation using (10) and (14) shows

that

A+ L0C = Ac. (17)

It follows from the (1,1) block of (13) and the assumed

nonsingularity of P that A + L0C has no eigenvalues on

the imaginary axis. It follows that we can effect a similarity

transformation on the data, if necessary, such that

[

A+ L0C
H0C

]

=





As 0
0 Aa

Cs Ca





where As and −Aa are stable. Then (16) implies that

Trf
s
=





As 0 0
ZaCs Aa+ZaCa Za

U1Cs U1Ca U1



 (18)

where we have set Z1=[0 ZT
a ]T . Let U1 be any orthogonal

matrix and

Za=−P−1
a CT

a , (19)

where Pa =PT
a > 0 is the unique solution of the Lyapunov

equation

AT
a Pa + PaAa − CaC

T
a = 0. (20)

Note that Pa > 0 follows from the facts that −Aa is stable

and (Aa, Ca) is observable, which in turn follows from the

fact that (A + L0C,H0C) is detectable. Then (18) implies

that

Trf
s
=

[

Aa+ZaCa Za

U1Ca U1

]

=

[

Aa−P−1
a CT

aCa −P−1
a CT

a

U1Ca U1

]

.

Hence, Trf , and so that Trd are stable, which follows from

(Aa+ZaCa)
TPa+Pa(Aa+ZaCa)+CT

a Ca = 0 and Pa > 0.

Since UT
1 U1 = I and given (20) is satisfied , by taking matrix

calculations, it shows that T∼
rfTrf = I .

As illustrated above, in either case of A + L0C is stable

or instable, it is always possible to construct F such that

T∼
rfTrf = I which gives ‖Trf‖− = I and

‖Trd‖∞
‖Trf‖−

= ‖Trd‖∞ =
∥

∥

∥
T−1
rf Trd

∥

∥

∥

∞
< γ. (21)

Therefore, the above result shows that a suitable choice of

Z1 and U1 ensures T∼
rfTrf = I and then γ0 = γ1 in (5).

Hence, it proves that our scheme gives the optimal solution

of Problem 2.1.

Remark 4.1: Note that due to the specific choice of Z1 in

(19) to stabilize F , Trf is no longer diagonal, which implies

that it is not possible to achieve fault isolation. However, we

find that it is always possible to choose the free variable U1

suitably such that F achieves fault isolation at DC (ω = 0).

Set U1 =
(

Inf
− Ca(Aa + ZaCa)

−1Za

)T
, then Trf(0) =

U1−U1Ca(Aa+ZaCa)
−1Za = Inf

, which ensures optimal

FDI at DC. �

Remark 4.2: Note that if A + L0C stable, we get an

optimal FDI filter for the H−/H∞ problem. Now suppose

in the LMI in (13) we add the constraint that P = P T > 0
instead of just P = P T . This will, in general, result in a

larger optimal γ but will ensure that A+L0C is stable from

(17). Hence, it follows from the preceding argument that we

can improve the fault isolation capability of our filter at the

expense of its fault detection ability. �

V. EXTENSIONS OF THE FAULT DETECTION PROBLEM

In the previous sections, we presented a fault detection

scheme that is optimal with respect to the specifications

of Problem 2.1 and that also has some fault isolation

properties. In this section, we briefly outline an extension

to the proposed scheme which involves the introduction of

frequency weighting to improve the fault detection properties

and remove assumption A2 in Problem 2.1.

A. Further improvement in FD performance

In the fault detection scheme developed in the previous

section, the performance of the FD filter depends on the

value of γ. If γ < 1, then the smallest singular value of

Trf is larger than the largest singular value of Trd over

all frequencies and the performance of the FD scheme is

expected to be satisfactory. On the other hand, if γ >> 1,

then the fault detection may not be effective or inadequate.

The problem is in our requirement that

σ̄(Trf(jω)
−1Trd(jω)) < γ (22)

for all frequencies ω ∈ R. In practice, for the pur-

pose of fault detection, we only need (22) over a lim-

ited frequency range, or even at a single frequency. Let

Wω0
be a stable and proper minimum-phase single-input

single-output bandpass filter with a peak gain of one at

frequency ω0 ∈ R. Suppose we replace the cost func-

tion in (6) by
∥

∥(FGfW
−1
ω0

)−1(FGdWω0
)
∥

∥

∞
< γω0

. This

can be recast as Problem 2.2 by replacing [Gf Gd ] by
[

GfW
−1
ω0

GdWω0

]

, which because of our assumptions on

Wω0
inherits the assumptions of Problem 2.2.

Suppose further that we enforce that FGfW
−1
ω0

is in-

ner (see Section IV). Then σi(Trf(jω)) = |Wω0
(jω)|

and σ̄(Trd(jω)) < γω0
|W−1

ω0
(jω)|, where σi(·) denotes

the ith singular value. It follows that σ̄(Trd(jω0)) <
γω0

σ(Trf(jω0)). Thus we can calculate γω0
for several

values of ω0 in a suitable frequency range [ω, ω̄] to minimize

γω0
. Since γω0

≤ γ for all ω0, we may thus be able to

improve the fault detection properties at a single frequency

ω0. The fault detection filter F may now be followed by a

second filter Wω0
to shape the residual signal r.
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B. Removal of assumption A2 in Problem 2.1

A major assumption we made is that Gf has no zeros over

the extended imaginary axis, and in particular that D f has

full column rank. This excludes important situations such

as no sensor faults (Df = 0). The problem is introduced

by our choice of the cost function in (7): in the case that

Gf (jω1) loses rank at ω1 ∈ R, then so does Trf(jω1),
so that (7) cannot in general be satisfied at jω1. In the

following, a discussion is given for relaxing Assumption A2

and ameliorating the problem of loss rank on Gf .

Suppose that Gf has zeros on the extended imaginary axis.

Then Gf can be written as Gf = ĜfGz where Ĝf has no

zeros over the extended imaginary axis and Gz has all its

zeros on the extended imaginary axis [6]. Suppose now that

we replace the cost function in (6) by

∥

∥

∥
T̂−1
rf Trd

∥

∥

∥

∞
< γ

where T̂rf = FĜf and we enforce that T̂rf is inner as shown

in Section IV. Then σi(Trf (jω)) = σi(T̂rf (jω)Gz(jω)) =
σi(Gz(jω)), since T̂rf is inner, and σ̄(Trd(jω)) < γ. Note

that the singular values of Trf(jω) are set equal to those

of Gz(jω) instead of being set equal to 1 in the original

scheme, therefore γ is the fault detection level relative to

σi(Gz(jω)) rather than 1 as given in (21).

VI. NUMERICAL EXAMPLES

To illustrate the effectiveness of the proposed FD filter

scheme, we consider two examples. The first one, from

the literature, compares our FD filter with other design

techniques. The second example is randomly generated,

and highlights the specifications given in section IV and

section V.

A. Example from the literature

Consider example 2 given in [12] and also considered in
[10]. Both approaches employed an H∞/H∞ FD formula-
tion. The state-space model of the LTI system is described
as follows.

A =







−10 0 5 0
0 −5 0 2.5
0 0 −2.5 0
0 5 0 −3.75






, Bd=







0.8 0.04
−2.4 0.08
1.6 0.08
0.8 0.08






, Bf =







4
4
8
−8






,

C =

[

1 0 0 1
1 0 1 1

]

, Dd =

[

0.2 0.04
0.4 0.06

]

, Df =

[

2
−1

]

.

Our algorithm gives γ0 = 0.2392 and a stable A + L0C.
We set Z1 = 0 and U1 = 2.6I and obtained

L =







−2.0034 −1.0735
0.7778 5.4963
−4.8810 −1.6664
2.1436 −2.8805






, H =

[

1.0385 −0.5231
]

.

This setting is optimal for the H−/H∞ FDI fol-

lowing Remark 4.2. First we consider the scenario

given in [12]: the disturbance is taken as d(t) =
[1.2 sin(2t)e−0.1t 1.5 cos(2t)e−0.1t]T and the fault f1 is

defined as f1(t) = 0.5, 5s ≤ t ≤ 10s and f1(t) = 0
elsewhere. Figure 1 shows the residuals and highlights the

fact that our residual based on H−/H∞ is more robust

to disturbances than the others. Note that the residuals in

[12] and [10] are of dimension 2 since in their scheme the
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Fig. 1. residual time responses

dimension of the residual is the same as the number of

outputs.

Next, we consider the same system but this time subject

to two white noise disturbances of mean zero and covariance

7 connected at t = 0. A fault is simulated by a unit positive

jump connected at t = 22s. Figure 2 shows the residuals.

This example justifies the use of H−/H∞ schemes over

H∞/H∞.
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B. Randomly generated example

We consider the following randomly generated data:

A =











−30.4438 4.8715 −0.3643 −23.6674 −27.0508
9.8449 −7.1563 6.7607 5.6055 1.1667
−0.4460 −2.0473 −5.2344 0.0314 0.5579
23.0620 3.3600 5.1258 19.5067 27.8028
−2.9175 −8.1727 −6.1518 −4.5557 −10.6214











,

C =





−0.9800 −2.1080 −0.6891 −0.4471 0.3988
−0.3647 −0.8006 0.4282 0.2585 1.4254
0.9081 0.5181 −1.1179 0.2686 0.9972



,

Bf =











−0.8999 1.7625
0.1478 0.1409
−1.3598 1.1176
−1.3020 0.7315
0.8723 −0.4119











, Df =





−0.8032 −0.1423
−0.9889 1.4751
−1.0297 −0.4817



,

Bd =











0.0880 1.2801
−0.9907 0.2294
1.3235 0.2285
1.1952 0.5443
−0.9682 0.9220











, Dd=





0.0905 −0.3783
0.8423 −1.8179
0.4173 1.1086



.
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Our algorithm gives γ = 0.8170 and an unstable A+L0C.
It follows that fault isolation is not possible; however, from
section IV, we can get the optimal solution and ensure fault
isolation at DC by setting

Z1=











0.9353 0.2914
−0.3267 −0.1976
−0.1134 −0.0265
−2.3823 −0.9739
1.1268 0.6113











, U1=

[

0.9970 −0.0778
0.0778 0.9970

]

.

We consider that the system is subject to a disturbance,

which is a white noise with mean zero and standard deviation

1. Two faults are simulated by a unit negative and positive

jump respectively, connected from the 12 th and 35th second.

Figure 3 shows the residuals. It is clear to see that fault

isolation is reached at DC and the impact of disturbances on

the residuals has been attenuated. Next, we use the results
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Fig. 3. residual time responses

of section V to implement a weighting filter scheme. A

bandpass filter

Wω0
=

0.516s2 + 26.83s+ 51.6

s2 + 26.83s+ 100
,

centered around a frequency ω0 = 10 rad/s is used. The

optimal value of γ is now γ = 0.5898. The modified residual

responses are also provided in Figure 4. The result validates

the employment of a weighting filter. Note that with the

design incorporating the weights, it is easier to determine

a residual threshold for fault detection.
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Fig. 4. residual time responses with weights

VII. CONCLUSION

We have considered an H−/H∞ fault detection prob-

lem for linear time-invariant systems subject to faults and

disturbances using a static observer framework. Firstly, we

proposed a novel H∞-based performance index to minimize

the sensitivity of the residual to disturbances with respect to

faults. Then, by using a parameterization of the solutions

of this problem, we constructed an optimal solution to

the H−/H∞ fault detection problem which satisfies some

further fault isolation properties. Frequency weighting filters

are employed to further improve the FD performance. Two

examples demonstrated the effectiveness of our approach.
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