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Abstract— Blood glucose levels fluctuate widely in Type 1 dia-
betic patients expecially during stressful situations, intercurrent
illness, exercise and changes in meal composition. Furthermore,
inter- and intra-subject variability make the prediction of such
fluctuations an even harder task. The paper deals with the
application of online data-driven multi-step subspace-based
patient-specific predictor models to T1DM glycemia prediction,
exploiting the interplay between previously injected insulin,
meal intake and eventually vital signs. When the unknown
underlying model is changing over time we believe such an
adaptive scheme may constitute a valuable step towards the
development of an advisory tool capable of informing the
patient at any time about the evolution of glycemia and possibly
give advices on the most appropriate control action to take [1].

I. INTRODUCTION

Diabetes Mellitus is a disease characterized by a chron-

ically raised blood glucose concentration due to impaired

carbohydrates, proteins and fats metabolism caused by de-

fects in either insulin secretion from the pancreatic β -cells

or insulin action [2]. In particular, type 1 diabetes mellitus

(T1DM), target of this contribution, is characterized by

no production of insulin whatsoever. The complications of

the disease can be costly to the health care system and

devastating to the patient. For this reason, it is critical

for diabetes patients to regulate their blood glucose tightly.

Because insulin deficiency defines T1DM, exogenous insulin

replacement is the hallmark of the therapy. In the non-

diabetic subjects, insulin is secreted into the portal circulation

at a low basal rate throughout the 24 hours superimposed

with an augmented secretion during meals. Hence, the idea

behind conventional therapy insulin regimens is to mimic

with subcutaneous injections this secretion pattern. Many

factors influence glycemia such as changes in diet, physical

activity, stress or intercurrent illness and therefore insulin

requirements are never fixed. Adjusting their own insulin

dosing in response to high or low glucose levels at partic-

ular times of the day represents the toughest challenge for

the diabetic patients. The availability of prediction models

capable of estimating the expected blood glucose profile in

the near future during daily life would clearly support them

in the non-trivial decision making task.

Recent years’ advances in self-monitoring devices have

made frequent (e.g., every 5-10 minutes) and well-sampled

glucose concentration data readily available for several days,

opening to new possibilities in diabetes management. Most
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of the continuous glucose meters (CGM) are minimally inva-

sive, assessing glucose concentration indirectly via interstitial

fluid sampling from the subcutaneous tissues, e.g., [3].

To date many studies have developed empirical models

from type 1 diabetes data in order to predict future blood

glucose trajectories. Originally developed by [4] the idea of

T1DM CGM time-series analysis has been further pursued

by [5] and [6] to predict future glucose concentration from

its past history. However, none of these works considered the

dynamic interplay between previously injected insulin, meal

intake and eventually exercise. Attempts at including in the

prediction model insulin and carbohydrates can be found in

[7], [8], [9], [10], [11] and [12]. A different approach is that

of [13] and [14] focusing on insulin sensitivity prediction

and consequently on the resulting blood glucose prediction

by means of stochastic models for critically ill patients.

Nevertheless, a peculiarity of diabetic subjects blood glucose

dynamics is that it heavily varies over time, often quickly

and unexpectedly. As a consequence, a linear-time-invariant

model may not be sufficient to produce accurate forecasts of

future glycemia [12]. In addition, a sound and valid patient-

specific dynamical model of the glucose metabolism is still

unavailable, despite extensive research [15].

That said, the purpose of this article is to present on-line

data-driven multi-step ahead predictions of T1DM patients

blood glucose levels, exploiting meal informations, insulin

dosing and vital signs.

We shall be concerned with a recursive version of a class

of subspace-based multi-step predictors presented in [16],

[17], namely those based on the PBSID algorithm [18], [19].

We therefore refer the reader to the above mentioned works

for a thorough discussion on the subject matter, suffices

it here to review the basic steps only, adding the novelty

represented by the updating scheme.

The remainder of the paper is organized as follows.

Section II deals with the experimental conditions, the mod-

eling strategy and the subspace-based recursive multi-step

predictors derivation and implementation. Section III shows

the main results divided into three subsections corresponding

to different real-life situations. In Sec. IV comments on the

procedure as well as remarks concerning the achievements

are provided. Finally, Sec. V summarizes the findings and

hints to future work.

II. METHODS

A. Experimental conditions

Data collection was accomplished in a major data ac-

quisition trial taking place at the Centre d’Investigation

Clinique de Montpellier, France, within DIAdvisorTM [1],
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Fig. 1. Data Acquisition Schedule. Phase P1 corresponds to the in-hospital
test from day 0 to day 3; phase P2 corresponds to the ambulatory test from
end of day 3 to day 10±2 ; phase P3 corresponds to the exercise test one
day between end of day 10 and day 24

a large scale FP7 European project. Ethics approval for the

collection and publication of data was obtained by the ethical

committee of the investigation center. The study comprised

three consecutive phases, namely, an in-hospital test, an

ambulatory test and an exercise test, the data being collected

over a window of 14 days in total according to the flow

chart depicted in Fig. 1. No specific intervention on usual

diabetes treatment was scheduled during the study since a

faithful picture of blood glucose fluctuations and insulin-

glucose interactions in various environmental conditions was

pursued, the patients continuing adapting their insulin ther-

apy based on the outcome of their own glucose meter and

following standard physicians’ recommendations. For the

whole duration of the study the partecipants were equipped

with the CGMS Abbott Freestyle Navigator R© [3] and the

VivoMetrics LifeShirt R© [20] devices, making it possible

to record interstitial glucose levels every 10 minutes, heart

rate, respiration rate and body movements every minute and

were asked to annotate in a personal logbook insulin types,

doses and times of injections. During the first phase, the

patients were served standardized meals for breakfast (8:00),

lunch (13:00) and dinner (19:00), the amount of administered

carbohydrates being 42, 70 and 70 grams, respectively,

whereas in the ambulatory period, the subjects wrote on the

logbook time and estimated carbohydrate content of their

meal intakes. Finally, the specific exercise test, taking place

at the hospital, consisted of a 30-minutes exercise bout 2

hours after a standardized 42 grams carbohydrates breakfast

using an ergo-cyclometer, the effort being constant and above

the anaerobic threshold. Figure 2 shows one such data series

for a representative patient.

B. Modeling Strategy

The physiology of glucose metabolism in diabetes was

considered having one output, i.e., glycemia, and two main

inputs, i.e., carbohydrate intake and administered insulin

[15]. Further, given that physical activity has been proven to

decrease plasma glucose levels due to increased glucose up-

take by the exercising muscles [2], the effects of exercise, i.e.,

increased heart rate, respiration rate and body movements,

were therefore regarded as additional inputs. Physiological

models from the literature [21] exploiting mean population

parameter values were used to filter the raw informations

on meals and insulin to obtain glucose rate of appearance in

plasma after a carbohydrate intake and appearance of insulin

in plasma after a dose. Sample period was 10 [min].
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Fig. 2. Representative patient data. Top Interstitial glucose [mg/dl], Top

Center Glucose rate of appearance in plasma [mg/kg/l], Center Insulin rate
of appearance in plasma [mU/l]; Top Bottom Heart rate [beats/min], Bottom

Respiration rate [breaths/min]. All the data vs. Time [min]

C. Online subspace-based multi-step predictors

Let a finite input sequence {uk}T+N
k=k0

and the corresponding

output sequence {yk}T+N
k=k0

be generated by a discrete-time

linear-time-invariant system Σn(A,B,C,D,K) in innovation

form {

xk+1 = Axk +Buk +Kek

yk =Cxk +Duk + ek

(1)

with input uk ∈ R
m, output yk ∈ R

l , state vector xk ∈ R
n

and zero-mean white noise innovation process, i.e., one-step

ahead prediction error, ek = yk − ŷk. Let us define for future

reference Ā = A−KC and denote the joint input-output pro-

cess assumed to satisfy the condition of persistent excitation

of sufficiently high order by zk = [uT
k yT

k ]
T . Further, without

loss of generality, let us assume no direct feedthrough, i.e.,

D = 0.

Throughout the paper k shall denote the current time

instant in the identification problem, k0 shall be the initial

time from which the data are collected, so that k− k0 is the

past horizon in the identification problem denoted by p, T

shall be such that T −k represents the future horizon denoted
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by f , while t shall be the sample index in the prediction

problem, t > T +N. Finally, the number of steps in the look

ahead will be denoted by τ .

The available data sequences {uk}, {yk} and the innovation

process {ek} will be organized in Hankel-type matrices

denoted by uppercase letters, the subscript indexes standing

for the argument of the upper left and lower left elements

of the first column, respectively; accordingly, finite length

process tails will be represented by the block rows of the

block Hankel data matrices and denoted, with some abuse

of notation, by uppercase letters with one subscript index

only, e.g.,

Y[a,b] :=








Ya

Ya+1

...

Yb







=








ya ya+1 · · · ya+N−1

ya+1 ya+2 · · · ya+N

... · · · · · ·
...

yb yb+1 · · · yb+N−1








Consider now (1) in predictor form:
{

xk+1 = Āxk +Buk +Kyk

ŷk|k−1 =Cxk

(2)

Iterating the system equations to obtain the output tail at time

k+ h, h ∈ [0,T ):

Yk+h =CĀhXk +
h

∑
i=1

CĀh−i(BUk+i−1 +KYk+i−1)+Ek+h (3)

and stacking all the data on top of each other, the following

matrix relation can be written:

Y[k,T ] = OXk0
+ΞZ[k0,k)+ΨZ[k,T ]+E[k,T ] (4)

where the first term depend on the initial conditions of the

state, the second term depends upon past input-output data

and the third on future input-output data. Matrices O , Ψ
and Ξ are given in (7) and (8). Discarding the effects of

mishandled initial conditions for sufficiently large p (details

in [18]), the Markov parameters of the system (1) can be

found solving the least-squares problem:

Yk = Ξ0Z[k0,k)+Ek (5)

Ξ̂0 = argmin
Ξ0

|| Yk −Ξ0Z[k0,k) ||
2
F (6)

where || · ||F stands for the Frobenius norm of a matrix.

Using the estimated coefficients in Ξ̂0 and the recipe (9)

with 1 ≤ i ≤ τ

Γi = Ξ̂i +
i−1

∑
j=0

Ĉ ˆ̄Ai− j−1K̂Γ j, Γ0 = Ξ̂0 (9)

the output predictors are given by [16], [17]:








Ŷk+1|k
Ŷk+2|k

...

Ŷk+τ|k







=








Γ1

Γ2

...

Γτ








Z[k0,k) (10)

D. Implementation details

The solution to the regression problem (6) can be obtained

by factorization of
[
Z[k0,k) Yk

]T
into a lower triangular

matrix L and a matrix with orthogonal rows Q, i.e., the LQ

decomposition:
[

Z[k0,k)

Yk

]

=

[
L11 0

L21 L22

]

︸ ︷︷ ︸

L

[
QT

1

QT
2

]

︸ ︷︷ ︸

Q

(11)

The sought parameters are then computed according to:

Ξ̂0 = L21L−1
11 (12)

Now, for an adaptive implementation, the predictor coeffi-

cients should be recomputed each time new data becomes

available, i.e., each new time step. This is accomplished by

solving (6) at every sampling instant by means of a ”new”, in

the sense that it contains new data, LQ decomposition. Our

approach moved from [22] and is based on the application

of Givens QR Method [23] to calculate the factorization in

(11) as follows. Let the blocks L11 and L21 at time k−1 be

denoted by L11(k − 1) and L21(k − 1), respectively. When

new input-output data are available at time k the vector

[zT
p yT

k ]
T can be appended to [L11(k− 1)T L21(k− 1)T ]T ;

next, by applying a sequence of orthogonal Givens rotations

G the matrix L
′

can be made lower triangular, i.e. updated,

according to the following:
[√

λ L11(k− 1) | zp√
λ L21(k− 1) | yk

]

︸ ︷︷ ︸

L
′

G =

[
L11(k) | 0

L21(k) | ỹk

]

(13)

where a forgetting factor λ ∈ [0.95,1) may be used to

discount old data. When Ξ̂0 containing the recursively es-

timated Markov parameters is found, the computation of the

predictors is done as in the non-recursive case Eqs. (9), (10).

III. RESULTS

In order to show how the proposed on-line predictors

apply in the various situations we present results belonging

to the three different phases of the data acquisition trial. We

are interested in evaluating the performances on different

prediction horizons τ , 1[min]≤ τ ≤ 30[min], with respect to

the percentage Variance Accounted For (VAF):

VAF = 1− var(ŷN − yN)

var(yN)
× 100

We use boxplots of the above mentioned metrics for multi

look-ahead to display population results, where the central

mark in each box is the median of the VAF over the

population while the edges are the 25th and 75th percentiles,

respectively.

In addition, we compare the results based on their quali-

tative behaviour, the prediction quality being not particularly

crucial within the normoglycemia range, i.e. between 70−
140 [mg/dL] [24], but very important in detecting the trends

and hypo-hyperglycemia excursions.

Throughout the simulations, user parameters were set to

λ = 0.98, p = f = 5.
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O =










C

CĀ

CĀ2

...

CĀT−1










,Ψ =










0 · · · · · · · · · · · · 0

C[B K] 0 · · · · · · · · · 0

CĀ[B K] C[B K] 0 · · · · · · 0
...

. . .
. . .

. . .
. . . 0

CĀT−2[B K] · · · · · · · · · C[B K] 0










, (7)

Ξ =








Ξ0

Ξ1

...

ΞT







=








CĀp−1[B K] CĀp−2[B K] · · · · · · · · · C[B K]
0 CĀp−1[B K] · · · · · · · · · CĀ[B K]
...

. . .
. . .

. . .
. . .

...

0 · · · 0 CĀp−1[B K] · · · CĀT [B K]








(8)
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Fig. 3. Representative patient in hospital conditions. Predicted glucose
profiles. CGMS measurements (red) vs. prediction obtained using glucose
rate of appearance and insulin in plasma on a 30-minutes prediction horizon
(dashed black)
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Fig. 4. Population study. Variance Accounted For. Left 10 min prediction,
Right 20 min prediction. Each box presents results over the considered
population. The central mark is the median, the edges of the box are the
25th and 75th percentiles.

A. In-hospital test

Data belonging to this phase were considered the most

accurate, since the subjects were followed by research nurses

and doctors in the hospital. Hence, insulin injections and

standardized eaten meals could be used as input signals to

the purpose of prediction. At the same time, physical activity

was limited and therefore vital signs were not exploited

for prediction. Figure 3 presents the predicted profiles of

a representative patient during the in-hospital test. It is

apparent how the proposed predictors can very well follow

the real glucose profile on a short-term horizon.

Figure 4 refers to population results, showing the VAF for

multi look-ahead τ = 10, 20 [min].

B. Ambulatory test

We tested the predictors on three different scenarios:

• (data-rich case) Full data are available and no sensor

failures occur
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Fig. 5. Representative patient in ambulatory conditions. Data-rich case.
Predicted glucose profiles. CGMS measurements (red) vs. prediction ob-
tained with full data on a 30-minutes prediction horizon (dashed black)
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Fig. 6. Population study. Data-rich case. Variance Accounted For. Left 10
min prediction, Right 20 min prediction. Each box presents results over the
considered population. The central mark is the median, the edges of the box
are the 25th and 75th percentiles.

• (missing-meals case) The patient forgets to note one or

more meals

• (no vital-signs available) The patient is not using the

life vest

For the data-rich case, input to the predictors were glucose

rate of appearance, insulin in plasma, heart rate and respira-

tion rate. Figure 5 shows the predicted glucose profile for the

representative patient. Figure 6 refers to population results,

showing the Variance Accounted For for multi look-ahead

τ = 10, 20 [min].

During real life, estimating the carbohydrate content of a

meal is prone to large errors. Moreover, the subjects often

forget to write their meal intakes on the diary. In such a

situation it may be helpful to rely upon insulin information

and vital signs, possibly containing more informations than

that during in-hospital low-activity level life, only. For this

reason, we challenged the predictors accounting for insulin,

heart rate and respiration rate. Figure 8 shows the predicted

glucose profile for the same representative patient. Figure

9 refers to population results, showing the VAF for multi
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Fig. 7. Representative patient during exercise test. Predicted glucose
profiles CGMS measurements (red) vs. prediction obtained using heart rate
and respiration rate only (dashed black) on a 30-minutes ahead prediction
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Fig. 8. Representative patient in ambulatory conditions. Missing- meals
case. Predicted glucose profiles. CGMS measurements (red) vs. prediction
obtained using insulin in plasma and vital signs on a 30-minutes prediction
horizon (dashed black)
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Fig. 9. Population study. Missing-meals case. Variance Accounted For.
Left 10 min prediction, Right 20 min prediction. Each box presents results
over the considered population. The central mark is the median, the edges
of the box are the 25th and 75th percentiles.

look-ahead τ = 10, 20 [min].

Finally, we assumed the life vest not to be available to the

patients. Glucose rate of appearance in plasma and insulin

in plasma were used only. Figure 10 shows the predicted

glucose profile for the same representative patient. Figure

11 refers to population results, showing the VAF for multi

look-ahead τ = 10, 20 [min].

C. Exercise test

For the exercise test it was decided to use only respiration

rate and heart rate to forecast glucose evolution. Results are

shown in Fig. 7.

IV. DISCUSSION

Online subspace-based predictor models were applied to

the problem of short-term prediction of T1DM glycemia.

Predictor coefficients were estimated directly from data,

with no prior information about the underlying mechanisms

generating the time series. No warm-up period was requested

by the algorithms, nor initial guesses for the initialization of

the coefficients. From an implementation point of view, the
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Fig. 10. Representative patient in ambulatory conditions. No-vital signs
case. Predicted glucose profiles. CGMS measurements (red) vs. prediction
obtained using glucose rate of appearance and insulin in plasma on a 30-
minutes prediction horizon (dashed black)
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Fig. 11. Population study. No vital-signs case. Variance Accounted For.
Left 10 min prediction, Right 20 min prediction. Each box presents results
over the considered population. The central mark is the median, the edges
of the box are the 25th and 75th percentiles.

approach is attractive, amounting only to LQ decompositions

of appropriately organized input-output Hankel matrices.

Multi-step predictions were evaluated, the main objective

of the investigation being the development of data-driven

predictors able to overcome the limitations arising from the

lack of an accurate and individualized glucose metabolism

model in diabetes and that with the least possible user

intervention can be included in an advisory tool [1].

Indeed, besides being of interest on its own right, the

proposed approach to online prediction can be included in a

predictive control framework [25] to the purpose of glycemia

regulation. Along this line, introducing the future control

inputs uk, the predictors can be re-written as:







Ŷk+1|k
Ŷk+2|k

.

.

.

Ŷk+τ|k






=






Γ1

Γ2

.

.

.
Γτ




Z[k0,k)+








Λ1 0 · · · 0

Λ2 Λ1

. . .
.
.
.

.

.

.
.
.
.

. . . 0
Λτ Λτ−1 · · · Λ1








U[k,τ) (14)

where Z[k0,k) accounts for the past measured input-output

signals up to time instant k, e.g., previously injected insulin,

glucose rate of appearance after a meal challenge and glucose

from the patient’s sensor, U[k,τ) is the sequence of optimal

control "advices” from the optimization of an appropriate

cost function [26], e.g. "take 3 units of insulin" or "eat 50

grams of carbohydrate”, Γ is given in (9) and

Λi = Ĉ ˆ̄Ai−1B̂+
i−1

∑
j=1

Ĉ ˆ̄Ai− j−1K̂Λ j (15)

It is this flexibility that, in the author’s opinion, makes the

merits of this type of predictors.

Long VARX models (5) have been recursively estimated to

obtain the predictor coefficients. However, model reduction

may also be performed by means of state estimation via
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SVD followed by identification of the system matrices,

performing the usual steps of subspace identification [27].

Once A,B,C,D,K are determined, (lower order) matrices Γ,

Λ can be recomputed and new predictors (10) are calculated,

the price to pay being that of minor prediction accuracy. The

difficulty here, in the specific diabetes application, stands

in the model order selection and validation. Therefore, a

procedure that overcomes this limitations (as in the case of

the proposed predictors) is worth pursuing.

V. CONCLUSIONS AND FUTURE WORK

The paper dealt with the recursive estimation of multi-step

short-term T1DM blood glucose predictors in various real

life situations, exploiting the interplay between previously

injected insulin, meal intake and vital signs. Future work will

be devoted to the integration of the presented predictors in

a totally data-driven subspace predictive control framework

to control glycemia in T1DM patients. To that end, an on-

line re-calibration module for the CGM sensor as well as

an interstitium-to-blood glucose dynamics model will need

to be developed. In addition, further work is necessary to

investigate optimal experimental conditions and protocols

in order to obtain data suitable for identification purposes

without contributing to higher patient risk.
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