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Abstract— In this work an proportional integral observer for
a class of delayed nonlinear triangular systems with multiple
and simple time-delay is proposed. First, the proportional inte-
gral observer synthesis is presented for nonlinear systems with
variable time-delay and is extended for nonlinear systems with
multiple time-delay. The observer performance is evaluated
through numerical simulations.

I. INTRODUCTION

In the recent years time-delayed systems have been in-

vestigated extensively because of the delay phenomenon is

often encountered in various engineering systems such as

mechanical and electrical systems, communication networks,

among others. The source of a time-delay may be due to

the nature of the system or induced into the system due

to the transmission delays associated to other components

interacting with the system. A time-delay may be the origin

of instability or oscillations in a system. For this reason,

many researchers are devoted to investigate the different

fields of automatic control for time-delayed systems, such as

stability, observability, controllability and system identifica-

tion, among others. For instance, in [11],[7] different control

approaches for delayed systems are presented.

The case of observer design for state estimation of nonlinear

systems is treated by many authors from a theoretical and

practical point of view, see for instance, [9], [7], [3]. The

observer synthesis for triangular nonlinear systems is related

to the notion of uniform observability, for instance, the

authors in [3], propose a high-gain proportional observer

with constant gain for nonlinear systems having a triangular

structure and a single output. In [4], a generalization for

multiple-output systems is presented. A lot of researchers,

such as [6], [12], have extensively investigated the case

of observer synthesis for delayed systems. For instance, in

[1], a chain of observation algorithms reconstructing the

system state based on delayed measurements of the process

output is proposed. In [8], an adaptive observer for time-

delay nonlinear systems in triangular form is presented.

Proportional-Integral (PI) Observers are very well known

in the literature, in particular for linear systems, because

of their robustness properties against constant perturbations.

An adaptive PI-Observer is introduced in [2]. In [5] it is

shown that a PI-Observer can be used to attenuate the sensor

noise. For nonlinear systems with Lipschitz nonlinearities

and linear observer gains, have been recently proposed (see

[5], [10]).

This paper is organized as follows. Section 2 is devoted

to preliminaries and the problem formulation. Section 3

describes the proportional integral observer synthesis for a

class of nonlinear systems with a signal variable time-delay.

An extension of this observer for nonlinear systems with

multiple and variable delays is presented in Section 4. In

Section 5 numerical simulations are presented in order to

evaluate the observer performance and finally conclusions

are discussed in Section 6.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider the following non-linear delayed system:






















































ẋ1 = f1(u, uτ , x1, x1τ , x2)
ẋ2 = f2(u, uτ , x1, x1τ , x2, x2τ , x3)
...

ẋi = fi(u, uτ , x1, x1τ , x2, x2τ , . . . , xi, xiτ , xi+1)
...

ẋn−1 = fn−1(u, uτ , x1, x1τ , . . . , xn−1, xn−1τ , xn)
ẋn = fn(u, uτ , x, xτ )
y = x1

(1)

where u(t) ∈ R
m and y ∈ R are the input and the output

of the system. x(t) =











x1(t)
x2(t)

...

xn(t)











∈ R
n is the state vector.

Henceforth the next notations are used

xτ (t) = x(t−τ(t)) =











x1(t − τ(t))
x2(t − τ(t))

...

xn(t − τ(t))











=











x1τ

x2τ

...

xnτ











∈ R
n,

uτ (t) = u(t − τ(t)),

where τ(t) a known variable delay and x(t) = φ(t) for

t ≤ τ . φ(t) is the initial condition belonging to a Banach

space and ‖ · ‖ represents the Euclidian norm of a vector.

System (1) can be written in the following form:
{

ẋ(t) = f(u(t), uτ(t), x(t), xτ (t))
y(t) = Cx(t)

(2)
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where

f =















f1(u, uτ , x1, x1τ , x2)
f2(u, uτ , x1, x1τ , x2, x2τ , x3)

...

fn−1(u, uτ , x1, x1τ , . . . , xn−1, xn−1τ , xn)
fn(u, uτ , x, xτ )















and C is a (1 × n) matrix:

C =
[

1, 0, . . . , 0
]

(3)

The following assumptions are introduced:

Assumption 1 (A1). The functions fi; i = 1, . . . , n are

globally Lipschitz w.r.t. x and xτ , then ∃ c > 0 and ∀ x(t),
y(t), x(t − τ), y(t − τ) ∈ R

n such that:

||f(u, uτ , x, xτ )−f(u, uτ , y, yτ )|| ≤ c(||x−y||+||xτ −yτ ||)

Assumption 2 (A2). Assume that the functions fi(.), i =
1, . . . , n − 1 satisfie.

0 < α < ai =
∂fi

∂xi+1
(u, ξ) ≤ β;

i = 1, . . . , n − 1, ∀ξ ∈ Rn

(4)

Assumption 3 (A3). The variable delay τ(t) is bounded, e.g.

0 < τ(t) ≤ τmax, it is differentiable and satisfies τ̇ (t) ≤ µ <

1.

The following notations are employed:

• A is a (n × n) matrix having the following form:

A =

















0 a1 0 . . . 0

0 0 a2

...
...

. . . 0
0 . . . 0 an−1

0 . . . 0 0

















(5)

where the functions ai; i = 1, . . . , n − 1 are defined in

Equation (4) and each one satisfies Assumption (A2).

• S is a (n × n) constant symmetric positive-definite

matrix having the form:

S =



















s11 s1 0 0

s1 s22
. . . 0

0
. . .

...
...

. . . sn−1

0 . . . 0 sn−1 snn



















(6)

where sii > 0 and sj < 0; i = 1, . . . , n; j = 1, . . . , n − 1.

• Define the (n × n) diagonal matrix Λρ as

Λρ = diag
[

ρ, ρ2, . . . , ρn
]

(7)

where ρ is a strictly positive real number.

Lemma. [3]. There exist an n × n constant symmetric

positive definite matrix S having the form given in Equation

(6) and a strictly positive real number η > 0, such that

AT (t)S + SA − 2CT C ≤ −ηI; ∀t ≥ 0 (8)

where A is given by Equation (5) and I is the (n × n)
identity matrix. The elements of S, i.e. sii, sj , i = 1, . . . , n;

j = 1, . . . , n − 1, are given in function of α and β defined

in Equation (4).

III. OBSERVER SYNTHESIS

Consider the following dynamical system:







˙̂x = f(u(t), uτ (t), x̂(t), x̂τ (t)) − ΛρS
−1CT (Cx̂(t) − y(t))

−ρΛρS
−1CT w(t)

ẇ = Cx̂(t) − y(t)
(9)

where S is given by Equation (6) and satisfies the precedent

Lemma; C is given by Equation (3);

x̂(t) =











x̂1

x̂2

...

x̂n











and

x̂τ = x̂(t − τ) =











x̂1τ

x̂2τ

...

x̂nτ











x̂(t) and x̂τ (t) are the estimated state vectors, without and

with delay respectively; u and y are the input and the output

of the nonlinear system (1) respectively. The matrix Λρ is

given in Equation (7).

One now states the following:

Theorem 1. Suppose that system (1) satisfies Assumptions

(A1)-(A3). Then, for ρ > ρ∗ with ρ∗ =
4 − 3µ

η(1 − µ)
cλmax(S),

system (9) is an asymptotic proportional integral observer

for system (1). The observation error x̃ = x̂(t) − x(t) is

asymptotically stable for x̂(0), x(0) ∈ R
n.

Proof. Consider the observation error x̃(t) = x̂(t) − x(t) =










x̃1

x̃2

...

x̃n











with x̃i = x̂i(t) − xi(t); i = 1, . . . , n. Let xi =











x1

x2

...

xi











, xi
τ =











x1τ

x2τ

...

xiτ











; i = 1, . . . , n − 1, and △f =











△f1

△f2

...

△fn











where,

△fi =







fi(u, uτ , x̂i, x̂i
τ , xi+1) − fi(u, uτ , xi, xi

τ , xi+1)
; i = 1, . . . , n − 1
fn(u, uτ , x̂, x̂τ ) − fn(u, uτ , x, xτ ); i = n

(10)
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For i = 1, . . . , n − 1 we have:

fi(u, uτ , x̂, x̂τ ) − fi(u, uτ , x, xτ ) = fi(u, uτ , x̂i, x̂i
τ , x̂i+1)

− fi(u, uτ , x̂i, x̂i
τ , xi+1)

+ △fi

(11)

By applying the Mean Value Theorem:

fi(u, uτ , x̂, x̂τ ) − fi(u, uτ , x, xτ ) = aix̃i+1(t) + △fi

; i = 1, . . . , n − 1

(12)

where the functions ai =
∂fi

∂xi+1
(u, uτ , x̂i, x̂i

τ , λx̃i+1 +

xi+1); i = 1, . . . , n − 1 verify (A2) with λ ∈ [0, 1] and

△fi; i = 1, . . . , n − 1 are given in (10). The dynamics of

the observation error x̃ is deduced from Equations (2) and

(9):














˙̃x = f(u, uτ , x̂, x̂τ ) − f(u, uτ , x, xτ )
− ΛρS

−1CT Cx̃

− ρΛρS
−1CT w(t)

ẇ = Cx̃

(13)

By combining Equations (10),(11), (12) and (13), the dy-

namics of the observation error is:














˙̃x(t) = (A − ΛρS
−1CT C)x̃(t)

+ △f(u, x̂(t), x(t), x̂τ (t), xτ (t))
− ρΛρS

−1CT w(t)
ẇ = Cx̃

(14)

where A is an (n × n) matrix having the form given in

Equation (5).

Let x̄ = Λ−1
ρ x̃. It can be easily verified that Λ−1

ρ AΛρ = ρA

and consequently














˙̄x(t) = ρ(A − S−1CT C)x̄(t)
+Λ−1

ρ ∆f(u, uτ , x̂, x, x̂τ , xτ )
−ρS−1CT w(t)
ẇ = ρCx̄

Consider now the following Lyapunov-Krasovskii functional:

V = x̄T Sx̄ + w2 +
cλmax(S)

1 − µ

∫ t

t−τ(t)

||x̄(s)||2ds

where c is the Lipschitz constant introduced in Assumption

(A1), λmax(S) is the largest eigenvalue of S and µ is a

constant introduced in Assumption (A3). The time derivative

of the functional V is:

V̇ = 2ρx̄T (SA − CT C)x̄(t) − 2ρx̄T CT w(t) + 2ρw(t)Cx̄(t)

+
cλmax(S)

1 − µ
||x̄(t)||2 −

cλmax(S)

1 − µ
(1 − τ̇ (t))||x̄(t − τ)||2

+ 2x̄(t)T SΛ−1
ρ △f(u, x̂(t), x(t), x̂τ (t), xτ (t))

= ρx̄(t)T (SA + AT S − 2CT C)x̄(t)

+
cλmax(S)

1 − µ
||x̄(t)||2 −

cλmax(S)

1 − µ
(1 − τ̇ (t))||x̄(t − τ)||2

+ 2x̄(t)T SΛ−1
ρ △f(u, x̂(t), x(t), x̂τ (t), xτ (t))

By taking into account the precedent Lemma, the following

inequality arises:

V̇ ≤ −ρη||z(t)||2

+
cλmax(S)

1 − µ
||x̄(t)||2 −

cλmax(S)

1 − µ
(1 − τ̇ (t))||x̄(t − τ)||2

+ 2||x̄(t)T P ||||F ||

By using the Lipschitz condition described in Assumption

(A1):

||Λ−1
ρ △f(u, x̂(t), x(t), x̂τ (t), xτ (t))|| ≤ c||x̄(t)||+c||x̄(t−τ)||

it follows that

V̇ ≤ −ρη||x̄(t)||2

+
cλmax(S)

1 − µ
||x̄(t)||2 −

cλmax(S)

1 − µ
(1 − τ̇ (t))||x̄(t − τ)||2

+ 2c||S||||x̄(t)||2 + 2c||S||||x̄(t)||||x̄(t − τ))||

Since ||x̄(t)||||x̄(t−τ))|| ≤ 1
2 (||x̄(t)||2 + ||x̄(t−τ))||2), then

V̇ ≤ −ρη||x̄(t)||2 +
cλmax(S)

1 − µ
||x̄(t)||2

+ 3c||S||||x̄(t)||2 +
τ̇(t) − µ

1 − µ
c||S||||x̄(t − τ)||2

It results from Assumption (A3) that
τ̇(t) − µ

1 − µ
≤ 0, then

V̇ ≤ (−ρη +
4 − 3µ

1 − µ
cλmax(S))||x̄(t)||2

(15)

Let ρ∗ =
4 − 3µ

η(1 − µ)
cλmax(S). If ρ > ρ∗ then:

V̇ ≤ −α(ρ)||x̄(t)||2 (16)

with α(ρ) = ρη −
4 − 3µ

1 − µ
cλmax(S) and α(ρ) > 0, which

results in V̇ ≤ 0, that means V (t) ≤ V (0). Because of

α(ρ)||x̄(t)||2 ≤ −V̇ , it follows that:

α(ρ) lim
t→+∞

∫ t

0

||x̄(s)||2ds ≤ V (0) − lim
t→+∞

V (t) (17)

It results that lim
t→+∞

x̄(t) → 0, moreover ||x̃(t)|| ≤ ρn||x̄||

and in consequence lim
t→+∞

x̃(t) → 0.

The observation error x̃ = x̂(t)−x(t) is asymptotically stable

for x̂(0), x(0) ∈ R
n and then, system (9) is an asymptotic

proportional integral observer for system (1). This completes

the proof.2

Remark: If the time-delay in system (1) is constant, it

corresponds to say that µ = 0 and from Theorem 1, it can

be easily deduced the following theorem:

Theorem 2. Suppose that system (1) satisfies Assumptions

(A1)-(A3), then for ρ > ρ∗ with ρ∗ =
4

η
cλmax(S), system

(9) is an asymptotic convergent observer for system (1). The

observation error x̃ = x̂(t) − x(t) is asymptotically stable

for x̂(0), x(0) ∈ R
n.
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IV. EXTENSION FOR SYSTEMS WITH MULTIPLE

TIME-DELAY

The proportional integral observer design for a systems with

multiple time-delays is the same as the above presented

strategy. The only condition to preserve the same design is

maintaining the triangular structure of the system nonlinear-

ity with respect to each state of different time-delay. Consider

the following triangular system with multiple time-delays:























































ẋ1 = f1(x1, x
1τ , x2, u, uτ)

ẋ2 = f2(x1, x
1τ , x2, x

2τ , x3, u, uτ)
...

ẋi = fi(x1, x
1τ , x2, x

2τ , . . . , xi, x
iτ , xi+1, u, uτ)

...

ẋn−1 = fn−1(x1, x
1τ , . . . , xn−1, x

(n−1)τ , xn, u, uτ)
ẋn = fn(x, xτ , u, uτ)
y = x1

(18)

where

xiτ =











xi(t − τ1)
xi(t − τ2)

...

xi(t − τl)











; i = 1, . . . , n

xτ (t) =











x1τ

x2τ

...

xnτ











and

uτ (t) =











u(t − τ1)
u(t − τ2)

...

u(t − τl)











where τ1(t), τ2(t), . . . , τl(t) are l known and bounded vari-

able time-delays, each one satisfies the following assumption:

Assumption 4 (A4). The variable time-delay τi(t); i =
1, . . . , l is bounded, that means 0 < τi(t) ≤ τ i

max; i =
1, . . . , l, it is derivable and satisfies τ̇i(t) ≤ µi < 1;

i = 1, . . . , l. System (18) can be written in the following

form:
{

ẋ(t) = f(u(t), uτ(t), x(t), xτ (t))
y(t) = Cx(t)

(19)

where

f =















f1(x1, x
1τ , x2, u, uτ)

f2(x1, x
1τ , x2, x

2τ , x3, u, uτ)
...

fn−1(x1, x
1τ , . . . , xn−1, x

(n−1)τ , xn, u, uτ)
fn(x, xτ , u, uτ)















and the matrix C is given in Equation (3). Consider the

following dynamical system:







˙̂x = f(u(t), uτ (t), x̂(t), x̂τ (t)) − ΛρS
−1CT (Cx̂(t) − y(t))

−ρΛρS
−1CT w(t)

ẇ = Cx̂(t) − y(t)
(20)

where S is a matrix having the form given in Equation (6)

and satisfies the precedent Lemma, C is the matrix given

in Equation (3), x̂(t) =











x̂1(t)
x̂2(t)

...

x̂n(t)











and x̂τ = x̂(t − τ) =











x̂1τ

x̂2τ

...

x̂nτ











, are the estimated state vectors, without and with

time-delay respectively, u and y are the input and the output

of system (18) respectively, and finally, the matrix Λρ is

given in Equation (7) with ρ > 0. The following theorem is

an extension of Theorem 1, for the case of multiple time-

delays.

Theorem 3. Suppose that system (18) satisfies Assump-

tions (A1)-(A4), then for ρ > ρ∗ with ρ∗ = (2 + l +
l

∑

i=1

1

1 − µi

)
cλmax(S)

η
, system (20) is an asymptotic ob-

server for system (18). The observation error x̃ = x̂(t)−x(t)
is asymptotically stable for x̂(0), x(0) ∈ R

n. Proof:

The proof is deduced by following the same steps of the

proof of the Theorem 1. Define x̃ = x̂ − x and x̄ = Λ−1
ρ x̃.

The dynamics of x̄(t) is:















˙̃x(t) = (A − ΛρS
−1CT C)x̃(t)

+ △f(u, uτ , x̂(t), x(t), x̂τ (t), xτ (t))
− ρΛρS

−1CT w(t)
ẇ = Cx̃

Consider the following Lyapunov-Krasovskii functional:

V = x̄T Sx̄+w2 + cλmax(S)

l
∑

i=1

1

1 − µi

∫ t

t−τi(t)

||x̄(s)||2ds

where c is the Lipschitz constant introduced in Assumption

(A1), λmax(S) is the largest eigenvalue of S and µi; i =
1, . . . , l is a constant introduced in Assumption (A4). The
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time derivative of V is:

V̇ = 2ρx̄T (SA − CT C)x̄(t) − 2ρx̄T CT w(t) + 2ρw(t)Cx̄(t)

+ cλmax(S)||x̄(t)||2
l

∑

i=1

1

1 − µi

− cλmax(S)

l
∑

i=1

1 − τ̇i(t)

1 − µi

||x̄(t − τi)||
2

+ 2x̄(t)T SΛ−1
ρ △f(u, uτ , x̂(t), x(t), x̂τ (t), xτ (t))

= ρx̄(t)T (SA + AT S − 2CT C)x̄(t)

+ cλmax(S)||x̄(t)||2
l

∑

i=1

1

1 − µi

− cλmax(S)

l
∑

i=1

1 − τ̇i(t)

1 − µi

||x̄(t − τi)||
2

+ 2x̄(t)T SΛ−1
ρ △f(u, uτ , x̂(t), x(t), x̂τ (t), xτ (t))

Considering the precedent Lemma, it follows that

V̇ ≤ −ρη||x̄(t)||2 + cλmax(S)||x̄(t)||2
l

∑

i=1

1

1 − µi

− cλmax(S)

l
∑

i=1

1 − τ̇i(t)

1 − µi

||x̄(t − τi)||
2

+ 2||x̄(t)T S||||Λ−1
ρ △f(u, uτ , x̂(t), x(t), x̂τ (t), xτ (t))||

By using the Lipschitz condition described in Assumption

(A1):

||Λ−1
ρ △f || ≤ c||x̄(t)|| + c

l
∑

i=1

||x̄(t − τi)||

It results

V̇ ≤ −ρη||x̄(t)||2

+ cλmax(S)||x̄(t)||2
l

∑

i=1

1

1 − µi

− cλmax(S)

l
∑

i=1

1 − τ̇i(t)

1 − µi

||x̄(t − τi)||
2

+ 2c||S||||x̄(t)||2 + 2c||S||||x̄(t)||

l
∑

i=1

||x̄(t − τi)||

Since

||x̄(t)||

l
∑

i=1

||x̄(t − τi)|| ≤
1

2
(l||x̄(t)||2 +

l
∑

i=1

||x̄(t − τi))||
2)

hence

V̇ ≤ −ρη||x̄(t)||2

+ cλmax(S)||x̄(t)||2
l

∑

i=1

1

1 − µi

− cλmax(S)

l
∑

i=1

1 − τ̇i(t)

1 − µi

||x̄(t − τi)||
2

+ (2 + l)c||S||||x̄(t)||2 + c||S||

l
∑

i=1

||x̄(t − τi)||
2

It follows that

V̇ ≤ −ρη||x̄(t)||2 + cλmax(S)||x̄(t)||2(2 + l +

l
∑

i=1

1

1 − µi

)

+ cλmax(S)
l

∑

i=1

τ̇i(t) − µi

1 − µi

||x̄(t − τi)||
2

(21)

From Assumption (A4):
τ̇i(t) − µi

1 − µi

≤ 0, then

V̇ ≤ (−ρη + (2 + l +
l

∑

i=1

1

1 − µi

)cλmax(S))||x̄(t)||2

(22)

Let ρ∗ = (2 + l +

l
∑

i=1

1

1 − µi

)
cλmax(S)

η
. For ρ > ρ∗ it

results:

V̇ ≤ −ξ(ρ)||x̄(t)||2 (23)

where ξ(ρ) = ρη−(2+l+
l

∑

i=1

1

1 − µi

)cλmax(S) and ξ(ρ) >

0, which results in V̇ ≤ 0, that means V (t) ≤ V (0). Because

of ξ(ρ)||x̄(t)||2 ≤ −V̇ , it results that lim
t→+∞

x̄(t) → 0,then

the observation error x̃ = x̂(t)−x(t) is asymptotically stable

for x̂(0), x(0) ∈ R
n.2

V. SIMULATION EXAMPLE

Consider the following nonlinear system:






















ẋ1 = 2x2(t) + cos(x2(t)) −
x1(t − τ)

1 + x1(t − τ)

ẋ2 = −
x2(t − τ)

1 + x2(t − τ)
+ u(t − τ)

y = x1

(24)

The time-delay τ is considered constant. It can be seen that

system (25) can be written in the form of system (1) with

f1 = 2x2(t) + cos(x2(t)) −
x1(t − τ)

1 + x1(t − τ)
,

f2 = −
x2(t − τ)

1 + x2(t − τ)
+ u(t − τ) and C = [ 1 0 ].

Before applying Theorem 1, Assumptions (A1)-(A3) should

be verified for system (25). It is easy to check that functions

fi, i = 1, 2 are Lipschitz, then Assumption (A1) is verified.
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Simulation de x1

Estimation de x1

Fig. 1. The state x1 (solid line) and its estimated value x̂1

It remains to verify Assumption (A2).

According to Equation (4):

a1 =
∂f1

∂x2
= 2 − sin(x2(t)) (25)

It results that 1 ≤ a1 ≤ 3 then Assumption (A2) is satisfied

with α = 1 and β = 3. The elements of the matrix S whose

dimension is 2× 2 are deduced from the precedent Lemma.

These elements verify |s1| >
β2s2

11

2α
and s22 >

s2
1

s11
(see [3]).

By taking s11 = 0, 5, the other elements can be deduced:

s1 = −2 and s22 = 9. The time-delay is considered constant

at τ = 1.30. In this simulation, the input u is given by the

following equation

u(t) = 0, 5 + 0, 4sin(0, 2t + 20).

The proportional integral observer equations are:















































˙̂x1 = 2x̂2(t) + cos(x̂2(t)) −
x̂1(t − τ)

1 + x̂1(t − τ)
− 18ρ(x̂1 − x1) − 18ρ2w(t)

˙̂x2 = −
x̂2(t − τ)

1 + x̂2(t − τ)
+ u(t − τ)

− 4ρ2(x̂1 − x1) − 4ρ3w(t)

ẇ = x̂1 − x1

(26)

The initial conditions of the system (25) and the observer

(27) are:







x1(t) = 0; x̂1(t) = 0 pour t ∈ [−τ, 0[
x2(t) = 0; x̂2(t) = 0 pour t ∈ [−τ, 0[
x1(0) = 5; x̂1(0) = 0; x2(0) = 5; x̂2(0) = 5;

For this simulation, the tuning parameter ρ is set to 10. The

value of this parameter allows to adjust the convergence

time of the observer given in Equation (27).

Figures 1 and 2 show the states x1(t) and x2(t) and their

estimated values x̂1(t), x̂2(t); it can be seen that after a brief

period of time x̂1(t) converge to x1(t). On the other hand

the time profile x2(t) and x̂2(t) are quite similar. It can be

appreciated that x̂2(t) converges very quickly to x2(t).
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Fig. 2. The state x2 (solid line) and its estimated value x̂2

VI. CONCLUSION

In this work an proportional integral observer for a class

of delayed nonlinear triangular systems was presented. The

time-delay is considered variable and it can be presented as

a simple or multiple time-delay in the states or in the input

of the system. The time-delay is supposed to be known and

bounded. The main feature of the proposed observer with

respect to others in the literature, is its simplicity. This is

because (due to its particular structure) the system is treated

in the original coordinates. Also, the proportional integral

observer gain is constant and does not require to solve

any additional dynamical system. The observer is evaluated

successfully through a simulation example.
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