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Abstract— Multi-stage stochastic programming provides a
versatile framework for optimal decision making under un-
certainty, but it gives rise to hard functional optimization
problems since the adaptive recourse decisions must be modeled
as functions of some or all uncertain parameters. We propose
to approximate these recourse decisions by polynomial decision
rules and show that the best polynomial decision rule of a
fixed degree can be computed efficiently. We also show that
the suboptimality of the best polynomial decision rule can be
estimated efficiently by solving a dual version of the stochastic
program in polynomial decision rules.

I. INTRODUCTION

Multi-stage stochastic programs have manifold applica-
tions in engineering and management science. They nat-
urally arise in power system scheduling, investment plan-
ning and supply chain management etc. [1]. Despite their
wide applicability, generic multi-stage stochastic programs
are computationally intractable, and one has to resort to
approximation methods to solve instances of nontrivial sizes.
Over the past decades, researchers have mainly devised
solution methods that rely on a discretization of the uncertain
parameters. Theoretically, these scenario-based approaches
can achieve any desired level of accuracy at the cost of
proliferating the computational overhead. Recent progress
in robust optimization has lead to the emergence of a new
class of tractable approximation techniques which preserve
the true distribution of the uncertain parameters but restrict
the set of recourse decisions to those possessing a specific
functional form. Ben-Tal et. al [2] studied linear decision
rules in the context of robust optimization and proved that
the best linear decision rule can be computed efficiently.
This tractable upper bound approximation was later extended
to the realm of stochastic programming by Shapiro and
Nemirovski [3]. To quantify the suboptimality of the best
linear decision rule for a given stochastic program, Kuhn et.
al [4] proposed to solve its dual problem in linear decision
rules, which results in an efficiently computable lower bound.
A method to improve the approximation quality of linear
decision rules was suggested by Chen et al. [5], [6] and
Goh and Sim [7], who devised several classes of piecewise
linear decision rules with desirable scalability properties.
The approximation error of piecewise linear decision rules
can be estimated by a duality technique due to Georghiou
et al. [8]. While piecewise linear decision rules offer a
superior approximation quality relative to linear decision
rules, they result in an increased computational burden and
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require tedious fine tuning of multiple design parameters.
In the absence of structural information about the true
optimal solution of a stochastic program, it may therefore
be more appropriate to approximate the recourse decisions
by polynomial decision rules, which are fully specified by
a single design parameter, i.e., their degree. A polynomial
decision rule approximation for robust dynamic optimization
problems has recently been suggested by Bertsimas et al. [9].

In this paper we assess the potential of polynomial deci-
sion rules for solving multistage stochastic programs, that is,
we impose a polynomial structure on the recourse decision of
both the original stochastic program and its dual counterpart.
The solutions of the two arising approximate problems
provide upper and lower bounds on the true optimal value of
the stochastic program, respectively. By using recent results
on polynomial optimization and the general problem of
moments, we demonstrate that these bounds can be computed
in polynomial time by solving two tractable semidefinite
programs. A similar approach for simple linear decision rules
has been proposed in [4]. First numerical results indicate that
even low-degree polynomial decision rules can significantly
outperform linear (and even piecewise linear) decision rules.

The rest of the paper is structured as follows. In Sections II
and III we develop polynomial decision rule approximations
for single and multi-stage stochastic programs, respectively,
and in Section IV we assess the potential of our approach
for solving a capacity expansion problem from the literature.

Notation Uncertainty is modeled by a probability space
(Rk,B(Rk),P). The elements of the sample space Rk are
denoted by ξ, and the Borel σ-algebra B(Rk) represents
the set of events that are assigned probabilities by the
probability measure P. Let Lk,n denote the space of all Borel
measurable functions from Rk to R that are bounded on
compact sets. Also, denote by E(·) the expectation operator
with respect to P, and let Ξ denote the support of P, i.e.,
the smallest closed subset of Rk which has probability 1.
The trace of a square matrix is denoted by tr(·), and Sn
is defined as the space of all symmetric n × n matrices.
For A,B ∈ Sn, the relation A ≽ B means that A − B
is positive semidefinite. We denote by R[ξ] the ring of
real polynomials in ξ and let Rd[ξ] be its subspace of
polynomials of degree at most d. Moreover, we denote
by Bd(ξ) := (1, ξ1, ξ2, . . . , ξk, ξ

2
1 , ξ1ξ2, . . . , ξ1ξk, ξ

2
2 , . . . , ξ

d
k)

the canonical basis of Rd[ξ], whose dimension is denoted as
s(k, d) :=

(
k+d
d

)
. For α ∈ Nk

0 , ξα represents the monomial
ξα1
1 ξα2

2 · · · ξαk

k , and |α| is defined as
∑k

i=1 αi. Finally, we
define the set Ld :=

{
α ∈ Nk

0 : |α| ≤ d
}

. Thus, a polynomial
p ∈ Rd[ξ] is representable as p(ξ) =

∑
α∈Ld

pαξ
α =
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p⊤Bd(ξ). By a slight abuse of notation, we use the same
symbol p for a polynomial p ∈ Rd[ξ] and the vector of its
coefficients p ∈ Rs(k,d).

II. ONE-STAGE STOCHASTIC PROGRAMS

We study decision problems under uncertainty in which a
decision maker first observes a random vector ξ ∈ Rk and
then selects a decision x(ξ) ∈ Rn. The decision x(ξ) must
satisfy the inequality constraints A(ξ)x(ξ)≤b(ξ) and incurs
a cost c(ξ)⊤x(ξ). The objective is to choose the function
x ∈ Lk,n so as to minimize the expected cost while satisfying
the constraints with probability 1. The functions x ∈ Lk,n

that map observations to decisions are referred to as decision
rules or policies. This decision problem can be formulated
as the following one-stage stochastic program.

inf E
(
c(ξ)⊤x(ξ)

)
s.t. x ∈ Lk,n

A(ξ)x(ξ) ≤ b(ξ) P-a.s.
(SP)

In the remainder we assume that the objective function
coefficients and the right hand side function of the constraints
depend polynomially on the uncertain parameters ξ, that is,
we require that c(ξ) = CBθ(ξ) for some C ∈ Rn×s(k,θ)

and b(ξ) = BBθ(ξ) for some B ∈ Rm×s(k,θ). The as-
sumption that both polynomials share the same degree θ
is nonrestrictive but simplifies the notation in the rest of
the paper. Moreover, we assume that the recourse matrix is
independent of ξ, that is, A(ξ) = A for some A ∈ Rn×m.
We emphasize that all results to be developed below could
easily be extended to the case of a random recourse matrix
with a polynomial dependence on the uncertain parameters.
However, this would come at the expense of complicating
the notation. The support Ξ of the probability measure P is
a compact basic semi-algebraic set with nonempty interior
defined by polynomial inequalities,

Ξ =
{
ξ ∈ Rk : wj(ξ) ≥ 0, j = 0, . . . , J

}
, (1)

where wj ∈ Rdj [ξ], j = 0, . . . , J . Without loss of generality,
we may set w0(ξ) = 1. Furthermore, we assume that there
exist polynomials uj ∈ R[ξ] such that the set

{ξ ∈ Rn :
∑J

j=0 uj(ξ)wj(ξ) ≥ 0}

is compact. This assumption, which is known as Putinar’s
compactness condition, is nonrestrictive and can always be
enforced by appending a dummy constraint a2 − ∥ξ∥2 ≥ 0
to the definition of Ξ for some large a ∈ R, see [10].

The above conditions ensure that problem SP is well-
defined. For the further argumentation it is convenient to
introduce a functional slack variable s ∈ Lk,m, which we
use to convert the inequality constraints in SP to equality
constraints.

inf E
(
c(ξ)⊤x(ξ)

)
s.t. x ∈ Lk,n, s ∈ Lk,m

A(ξ)x(ξ) + s(ξ) = b(ξ)
s(ξ) ≥ 0

}
P-a.s.

(2)

It is known that problem SP and its reformulation (2) are
#P-hard [11]; there is no efficient algorithm to compute
the optimal value of SP exactly unless P=NP. We thus
settle for the modest goal of finding efficiently computable
upper and lower bounds. This is achieved by restricting the
functional form of the primal and certain dual decision rules
in SP to polynomial functions of a fixed degree. Hence,
we reduce the feasible sets of the primal and dual problems.
The solutions of these two problems provide upper and lower
bounds on the optimal value of SP . We employ recent results
on polynomial optimization and the generalized problem of
moments to show that these upper and lower bound problems
admit tractable approximations.

A. Primal Polynomial Decision Rules

In order to derive a conservative approximation for SP , we
reduce the set of admissible decision rules from the space of
all measurable functions to the space of polynomial functions
of even degree 2d, that is, we set

x(ξ) = XB2d(ξ) for some X ∈ Rn×s(k,2d),
s(ξ) = SB2d(ξ) for some S ∈ Rm×s(k,2d).

(3)

For this restriction to result in a feasible approximate prob-
lem we require that 2d ≥ max{θ, d0, . . . , dJ}. Substituting
(3) into (2) yields

inf tr
(
T⊤
θ C⊤XM2d

)
s.t. X ∈ Rn×s(k,2d), S ∈ Rm×s(k,2d)

AXB2d(ξ) + SB2d(ξ) = BTθB2d(ξ)
SB2d(ξ) ≥ 0

}
P-a.s.,

(SPu)
where we use the symmetric moment matrix

M2d := E
(
B2d(ξ)B2d(ξ)

⊤)
and a truncation operator Tθ : Rs(k,2d) → Rs(k,θ) which
maps the monomial basis B2d(ξ) to the reduced basis Bθ(ξ).
As problem SPu is obtained by reducing the feasible set
of the original stochastic program SP , its optimal value
provides indeed an upper bound on the optimal value of SP .
Note that SPu involves finitely many decision variables, that
is, the coefficients X and S of the polynomial decision rules,
but infinitely many constraints parametrized by ξ. We first
observe that since polynomials are continuous, the almost
sure constraints in SPu hold in fact for all ξ in the support of
P, that is, for all ξ ∈ Ξ. Thus, the equality constraint in SPu

requires a vector-valued polynomial to vanish identically on
a set with nonempty interior. This is possible if and only if
all the coefficients of the polynomial vanish. The equality
constraint is therefore equivalent to

AX + S = BTθ.

The inequality constraint in SPu requires that each com-
ponent of the vector-valued function s(ξ) belongs to P2d(Ξ),
where P2d(Ξ) denotes the cone of polynomials of degree 2d
that are nonnegative on Ξ. For the further argumentation,
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we define the cone of polynomials of degree 2d that have a
sums-of-squares (SOS) decomposition relative to Ξ, that is,

Σ2d(Ξ) :=

{
s ∈ R2d[ξ] :

s(ξ) =
∑J

j=0 sj(ξ)wj(ξ),

sj ∈ Σ2d̃j
(Rk), j = 0, . . . , J

}
,

where d̃j = d− ⌈dj

2 ⌉ and

Σ2d̃j
(Rk) :=

{
s ∈ R2d̃j

[ξ] :
s(ξ) =

∑L
l=1 sl(ξ)

2,
for some s1, . . . , sL ∈ R[ξ]

}
stands for the cone of SOS polynomials. It is clear that any
s ∈ Σ2d(Ξ) is nonnegative on Ξ, and thus Σ2d(Ξ) ⊆ P2d(Ξ).
We remark that testing whether a generic polynomial is
nonnegative on Ξ (i.e., checking membership in P2d(Ξ)) is
NP-hard [12]. However, testing whether a polynomial has an
SOS decomposition relative to Ξ (i.e., checking membership
in Σ2d(Ξ)) is equivalent to solving a tractable semidefinite
program [13].

Proposition 2.1: Assume that Ξ is defined as in (1). Then,
for any s ∈ R2d[ξ] the following statements are equivalent.

(i) s ∈ Σ2d(Ξ).
(ii) There exist positive semidefinite matrices Y j ∈ Ss(k,d̃j),

j = 0, . . . , J , such that s =
∑J

j=0 Λ
∗
j (Y

j), where Λ∗
j :

Ss(k,d̃j) → Rs(k,2d) is a linear operator defined through[
Λ∗
j (Y

j)
]
α
= tr

(
Qj

αY
j
)
, α ∈ L2d, (4)

and Qj
α ∈ Ss(k,d̃j) is a real symmetric matrix defined

through

[Qj
α]βγ =

{
[wj ]δ if α− β + γ = δ,
0 otherwise.

Proof: This result is due to Putinar [10]. The proof is
repeated here to keep the paper self-contained. For each j =
0, . . . , J define the linear operators Λj : Rs(k,2d) → Ss(k,d̃j)

through
Λj(B2d(ξ)) =

∑
α∈L2d

Qj
αξ

α.

By construction, we have that

Λj(B2d(ξ)) = Bd̃j
(ξ)Bd̃j

(ξ)⊤w⊤
j Bdj (ξ)

for all ξ ∈ Rk. The linear operators Λj and Λ∗
j are adjoint

to each other in the sense that

tr
(
Y jΛj(B2d(ξ))

)
= Λ∗

j (Y
j)⊤B2d(ξ)

for all ξ ∈ Rk and for all Y j ∈ Ss(k,d̃j). Assume now that
there exist matrices Y j ∈ Ss(k,d̃j) such that Y j ≽ 0 and
s(ξ) =

∑J
j=0 Λ

∗
j (Y

j)⊤B2d(ξ). Thus we have

s(ξ) =
J∑

j=0

Λ∗
j (Y

j)⊤B2d(ξ)

=
J∑

j=0

tr
(
Y jΛj(B2d(ξ))

)
=

J∑
j=0

tr
(
Y jBd̃j

(ξ)Bd̃j
(ξ)⊤w⊤

j Bdj (ξ)
)

=

J∑
j=0

Bd̃j
(ξ)⊤Y jBd̃j

(ξ)wj(ξ).

Since all Y j are positive semidefinite, s is an element of
Σ2d(Ξ). Thus (ii) implies (i). Conversely, assume that s ∈
Σ2d(Ξ). Thus, s =

∑J
j=0 sj(ξ)wj(ξ) for some polynomials

sj ∈ Σ2d̃j
(Rk), j = 0, . . . , J . Hence there exist positive

semidefinite matrices Y j ∈ Ss(k,2d̃j) such that sj(ξ) =
Bd̃j

(ξ)⊤Y jBd̃j
(ξ), j = 0, . . . , J , see e.g. [13]. A reversal

of the above argument then shows that (i) implies (ii).
Proposition 2.1 ensures that Σ2d(Ξ) has a manifestly

tractable representation as

Σ2d(Ξ)=

{
s ∈ R2d[ξ] :

s(ξ) =
∑J

j=0 Λ
∗
j (Y

j)⊤B2d(ξ),

Y j ≽ 0, j = 0, . . . , J

}
.

For convenience we define Pm
2d(Ξ) and Σm

2d(Ξ) as the sets
of all m× s(k, 2d)-matrices whose rows are all elements of
P2d(Ξ) and Σ2d(Ξ), respectively. The inequality constraint
in SPu is equivalent to S ∈ Pm

2d(Ξ), and therefore SPu

is generally intractable. To overcome this deficiency, we
approximate the inequality constraint by S ∈ Σm

2d(Ξ), which
yields the following approximate problem.

inf tr
(
T⊤
θ C⊤XM2d

)
s.t. X ∈ Rn×s(k,2d), S ∈ Rm×s(k,2d)

AX + S = BTθ

S ∈ Σm
2d(Ξ)

(S̃Pu)

By construction, S̃Pu represents a conservative approxima-
tion for SPu. Our insights can be summarized as follows.

Theorem 2.2: We have inf S̃Pu ≥ inf SPu ≥ inf SP , and
the approximate problem S̃Pu is computationally tractable,
that is, it can be solved in polynomial time.

B. Dual Polynomial Decision Rules

Similar techniques to those used in Section II-A can be
applied to the dual of the stochastic program SP . This
will allow us to construct a computationally tractable lower
bound on the optimal value of SP . A related approach has
been proposed in [4] to estimate the suboptimality of linear
decision rules.

For ease of exposition, denote by ‘infx,s’ the infimum
operator over all x ∈ Lk,n and over all s ∈ Lk,m that
are almost surely nonnegative, by ‘supy’ the supremum
operator over all y ∈ Lk,m and by ‘supY ’ the supremum
operator over all Y ∈ Rm×s(k,2d). We first introduce a
min-max reformulation of problem (2) in which the equality
constraints are dualized.

inf
x,s

sup
y

E
(
c(ξ)⊤x(ξ) + y(ξ)⊤ [Ax(ξ) + s(ξ)− b(ξ)]

)
s.t. s(ξ) ≥ 0 P-a.s.

(5)
Problems (2) and (5) are indeed equivalent since the maxi-
mization over the dual decision rules y ∈ Lk,m imposes an
infinite penalty on every primal solution (x, s) ∈ Lk,n×Lk,m

which violates the equality constraints Ax(ξ) + s(ξ) = b(ξ)
on a set of strictly positive probability. Using the equivalence
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of (2) and (5) we obtain

inf
x,s

SP

= inf
x,s

sup
y

E
(
c(ξ)⊤x(ξ) + y(ξ)⊤[Ax(ξ) + s(ξ)− b(ξ)]

)
≥ inf

x,s
sup
Y

E
(
c(ξ)⊤x(ξ) · · ·

· · ·+ (Y B2d(ξ))
⊤
[Ax(ξ) + s(ξ)− b(ξ)]

)
.

In the last expression we require the dual decision rules to
be representable as y(ξ) = Y B2d(ξ) for some matrix Y ∈
Rm×s(k,2d). Thus we restrict the dual feasible set to contain
only polynomial decision rules of even degree 2d, where
we require again that 2d ≥ max{θ, d0, . . . , dJ}. The inner
maximization in the third line can be carried out explicitly
to yield

inf E
(
c(ξ)⊤x(ξ)

)
s.t. x ∈ Lk,n, s ∈ Lk,m

E
(
[Ax(ξ) + s(ξ)− b(ξ)]B2d(ξ)

⊤) = 0
s(ξ) ≥ 0

}
P-a.s.

(SP l)
Notice that any (x, s) feasible in (2) satisfies Ax(ξ)+s(ξ)−
b(ξ) = 0 for P-almost all ξ and thus will satisfy the less
restrictive expectation constraint in SP l. This observation
confirms that problem SP l is a relaxation of (2) and that
its optimal value provides a lower bound on the optimal
value of SP . Problem SP l involves only finitely many
equality constraints, but it involves a continuum of decision
variables and inequality constraints. In the remainder of this
section we will show that SP l admits a tractable lower
bound approximation. Our reasoning relies on the following
technical results about the symmetric moment matrix M2d.

Proposition 2.3: M2d is positive definite and invertible.
Proof: By definition, M2d is positive semidefinite.

Assume now that there exists a v ∈ Rs(k,2d) such that

v⊤M2dv = 0 ⇐⇒ E
((

v⊤B2d(ξ)
)2)

= 0.

This implies that the polynomial v⊤B2d(ξ) vanishes iden-
tically on Ξ. Since Ξ has nonempty interior, we conclude
that v = 0. Hence M2d is positive definite and, a fortiori,
invertible.

Next, we define new decision variables X ∈ Rn×s(k,2d)

and S ∈ Rm×s(k,2d) in problem SP l, which are uniquely
determined by the decision rules x ∈ Lk,n and s ∈ Lk,m,
respectively, through the new constraints

XM2d = E
(
x(ξ)B2d(ξ)

⊤),
SM2d = E

(
s(ξ)B2d(ξ)

⊤). (6)

We can use the relations (6) to re-express the objective
function of SP l as tr(T⊤

θ C⊤XM2d), where the truncation
operator Tθ is defined as in Section II-A. Moreover, sub-
stituting (6) into the expectation constraints of SP l yields
AXM2d +SM2d = BTθM2d, which is equivalent to AX +
S = BTθ since M2d is invertible. Thus we can reformulate

SP l as

inf tr
(
T⊤
θ C⊤XM2d

)
s.t. X ∈ Rn×s(k,2d), S ∈ Rm×s(k,2d)

AX + S = BTθ

∃x ∈ Lk,n : XM2d = E
(
x(ξ)B2d(ξ)

⊤)
∃s ∈ Lk,m : SM2d = E

(
s(ξ)B2d(ξ)

⊤),
s(ξ) ≥ 0 P-a.s.

(7)

The penultimate constraint in (7) is redundant and can
be omitted without affecting the problem’s feasible set.
Indeed, for any X ∈ Rn×(k,2d) the polynomial decision rule
x(ξ) = XB2d(ξ) ∈ Lk,n satisfies the postulated conditions.
However, the last constraint involves the solution of m
multidimensional moment problems.

For the further argumentation, we introduce the cone
M2d(Ξ) of moment sequences with a representing measure
supported on Ξ, that is, we set

M2d(Ξ) :=

{
y ∈ Rs(k,2d) :

∃µ ∈ N with
y =

∫
Ξ
B2d(ξ)µ(dξ)

}
,

where N denotes the set of nonnegative Borel measures
supported on Ξ. Moreover, we introduce the cone

M+
2d(Ξ) =

{
y ∈ Rs(k,2d) : Λj(y) ≽ 0 j = 0, . . . , J

}
,

where the matrix-valued functions Λj are defined as in the
proof of Proposition 2.1.

Proposition 2.4: The cones M2d(Ξ) and M+
2d(Ξ) satisfy

the following relations.

(i) P2d(Ξ) and M2d(Ξ) are dual to each other.
(ii) Σ2d(Ξ) and M+

2d(Ξ) are dual to each other.
(iii) M2d(Ξ) ⊆ M+

2d(Ξ).
Proof: This result is due to Haviland [14]. The proof is

repeated here to keep the paper self-contained. (i) The cones
P2d(Ξ) and M2d(Ξ) are dual to each other if and only if
P2d(Ξ) = (M2d(Ξ))

∗ and (P2d(Ξ))
∗ = cl M2d(Ξ). For

p ∈ P2d(Ξ) and y ∈ M2d(Ξ) we have

p⊤y =

∫
Ξ

p⊤B2d(ξ)µ(dξ) =
∫
Ξ

p(ξ)µ(dξ) ≥ 0

for some µ ∈ N . By the definition of cone duality we may
thus conclude that P2d(Ξ) ⊆ (M2d(Ξ))

∗. Suppose now that
p /∈ P2d(Ξ), which implies that there exists a ξ0 ∈ Ξ such
that p(ξ0) < 0. Let µ be the Dirac measure concentrated on
the set {ξ0} and let y = B2d(ξ0) be its sequence of moments.
Then, we find

p⊤y =

∫
Ξ

p⊤B2d(ξ)µ(dξ) = p(ξ0) < 0.

Thus, p is not contained in (M2d(Ξ))
∗, which implies that

(M2d(Ξ))
∗ ⊆ P2d(Ξ). Hence, P2d(Ξ) = (M2d(Ξ))

∗. As
M2d(Ξ) is convex and closed, this identity further implies
that (P2d(Ξ))

∗ = (M2d(Ξ))
∗∗ = M2d(Ξ).
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(ii) By cone duality, we have

y ∈ (Σ2d(Ξ))
∗

⇐⇒ p⊤y ≥ 0 ∀p ∈ Σ2d(Ξ)

⇐⇒
J∑

j=0

Λ∗
j (Y

j)⊤y ≥ 0

⇐⇒ tr(Y jΛj(y)) ≥ 0

 ∀Y j ≽ 0,
j = 0, . . . , J

⇐⇒ Λj(y) ≽ 0 ∀j = 0, . . . , J.

Hence, M+
2d(Ξ) is the dual cone of Σ2d(Ξ). As Σ2d(Ξ) is

convex and closed, this further implies that (M2d(Ξ))
∗ =

(Σ2d(Ξ))
∗∗ = Σ2d(Ξ).

(iii) The known inclusion P2d(Ξ) ⊇ Σ2d(Ξ) implies
via assertions (i) and (ii) that M2d(Ξ) = (P2d(Ξ))

∗ ⊆
(Σ2d(Ξ))

∗ = M+
2d(Ξ).

Inspecting problem (7), we see that the last constraint
requires each component si(ξ), i = 1, . . . ,m, of the vector-
valued function s(ξ) to be the density function of a measure
µi ∈ N whose moments coincide with the ith row of SM2d.
This implies via Proposition 2.4 that the ith row of SM2d

must be contained in M2d(Ξ) ⊆ M+
2d(Ξ). For the further

argumentation, define Mm
2d(Ξ) and Mm+

2d (Ξ) as the cones
of all m × s(k, 2d)-matrices whose rows are all contained
in M2d(Ξ) and M+

2d(Ξ), respectively. The above reasoning
implies that we obtain a tractable relaxation for problem
SP l if we replace the last existence constraint in (7) by
the requirement SM2d ∈ Mm+

2d (Ξ).

inf tr
(
T⊤
θ C⊤XM2d

)
s.t. X ∈ Rn×s(k,2d), S ∈ Rm×s(k,2d)

AX + S = BTθ

SM2d ∈ Mm+
2d (Ξ)

(S̃P l)

By construction, S̃P l represents a relaxation of SP l. This
result culminates in the following theorem.

Theorem 2.5: We have inf S̃P l ≤ inf SP l ≤ inf SP , and
the approximate problem S̃P l is computationally tractable.

III. MULTI-STAGE STOCHASTIC PROGRAMS

We now demonstrate how the polynomial decision rule
approximations developed for one-stage stochastic programs
can be extended to multi-stage problems of the form

inf E

(
T∑

t=1

ct(ξ
t)⊤xt(ξ

t)

)
s.t. xt ∈ Lkt,nt

∀t ∈ T
t∑

s=1

Ats(ξ
t)xs(ξ

s) ≤ bt(ξ
t) P-a.s. ∀t ∈ T.

(MSP)

We continue to work with the probability space
(Rk,B(Rk),P) and assume that P is supported on a
compact basic semi-algebraic set Ξ of the type (1) with
nonempty interior. Moreover, we assume that the elements of
the sample space are now representable as ξ = (ξ1, . . . , ξT ),
where the subvectors ξt ∈ Rkt are observed sequentially
at time points indexed by t ∈ T := {1, . . . , T}. The
history of observations up to time t is denoted by
ξt := (ξ1, . . . , ξt) ∈ Rkt

, where kt :=
∑t

s=1 ks. For

consistency, we require that ξT = ξ and kT = k. We
use Et(·) to denote conditional expectation with respect
to P given the random variable ξt. Finally, we introduce
truncation operators Pd,t : Rs(k,d) → Rs(kt,d) for any t ∈ T
and d ∈ N0 that map the monomial basis Bd(ξ) to the
reduced basis Bd(ξ

t).
The decision xt(ξ

t) is selected at time t after the outcome
history ξt has been observed but before the future outcomes
{ξs}s>t have been revealed. The objective is to find an
optimal sequence of decision rules xt ∈ Lkt,nt

, t ∈ T, which
map the available observations to decisions and minimize a
linear expected cost function subject to linear constraints.
The requirement that xt depends only on ξt reflects the
causality of the decision process.

Without much loss of generality, we assume henceforth
that MSP has fixed recourse and that the objective func-
tion coefficients and the right-hand side vectors are non-
anticipative polynomial functions of the uncertain parame-
ters. For notational convenience, we assume that all these
polynomials share the same degree θ. Thus, we postulate
that ct(ξ

t) = CtPθ,tBθ(ξ) for some Ct ∈ Rnt×s(kt,θ),
bt(ξ

t) = BtPθ,tBθ(ξ) for some Bt ∈ Rmt×s(kt,θ) and that
the matrices Ats(ξ

t) = Ats ∈ Rmt×ns are independent of ξ.
By introducing a sequence of non-anticipative slack vari-

ables st ∈ Lkt,mt
, t ∈ T, we can reduce MSP to the

following standard form.

inf E

(
T∑

t=1

ct(ξ
t)⊤xt(ξ

t)

)
s.t. xt ∈ Lkt,nt

, st ∈ Lkt,mt
∀t ∈ T

t∑
s=1

Atsxs(ξ
s) + st(ξ

t) = bt(ξ
t)

st(ξ
t) ≥ 0

P-a.s.
∀t ∈ T.

(8)

Problem MSP is generically computationally intractable
[3]. However, as in the single-stage case, it can be approxi-
mated from above and below by two semi-infinite problems
MSPu and MSP l, respectively, which are obtained by
restricting the primal and certain dual decision rules to
those that are representable as polynomial functions of the
uncertain parameters ξ. For a fixed degree of the polynomial
approximations, these semi-infinite problems can be approx-
imated by tractable semidefinite programs.

Problem MSPu is obtained by solving the original prob-
lem MSP in polynomial decision rules of degree 2d ≥
max{θ, d0, . . . , dJ}. The decision and slack variables can
thus be written as xt(ξ

t) = XtP2d,tB2d(ξ) for some Xt ∈
Rnt×s(kt,2d) and st(ξ

t) = StP2d,tB2d(ξ) for some St ∈
Rmt×s(kt,2d). To ensure that this approximation leads to a
tractable problem, we require that Et(B2d(ξ)) is essentially
polynomial in ξt, that is, Et(B2d(ξ)) = MtP2d,tB2d(ξ) P-a.s.
for some matrix Mt ∈ Rs(k,2d)×s(kt,2d) for all t ∈ T. Using
the truncation operator Tθ and the second order moment
matrix M2d defined in Section II and the fact that Ξ has
nonempty interior, problem MSPu can be approximated by

7810



the following semidefinite program.

inf
T∑

t=1

tr
(
CtPθ,tTθM2dP

⊤
2d,tX

⊤
t

)
s.t. Xt ∈ Rnt×s(kt,2d), St ∈ Rmt×s(kt,2d)

t∑
s=1

AtsXsP2d,s + StP2d,t = BtPθ,tTθ

StP2d,t ∈ Σm
2d(Ξ)

 ∀t ∈ T

( ˜MSPu)
By construction, ˜MSPu constitutes a tractable conservative
approximation for MSPu.

Theorem 3.1: We have inf ˜MSPu ≥ inf MSPu ≥
inf MSP , and the approximate problem ˜MSPu is com-
putationally tractable.

Next, we aim at estimating the degree of suboptimality of
the best polynomial policy obtained from problem ˜MSPu.
To this end, we reexpress the standardized stochastic program
(8) as a min-max problem in which the dual variable of the t-
th equality constraint is given by a non-anticipative decision
rule yt ∈ Lkt,mt

, t ∈ T. To obtain a lower bound on the
optimal value of MSP we require these dual decision rules
to be representable as polynomials of degree 2d, i.e., we set
yt(ξ

t) = YtP2d,tB2d(ξ) for some Yt ∈ Rmt×st(k
t,2d) for all

t ∈ T. Carrying out the inner maximization over the variables
{Yt}t∈T we obtain the following semi-infinite program.

inf E

(
T∑

t=1

ct(ξ
t)⊤xt(ξ

t)

)
s.t. xt ∈ Lkt,nt

, st ∈ Lkt,mt
∀t ∈ T

E
([ t∑

s=1

Atsxs(ξ
s) + st(ξ

t)− bt(ξ
t)
]
· · ·

· · · × B2d(ξ)
⊤P⊤

2d,t

)
= 0 ∀t ∈ T

st(ξ
t) ≥ 0 P-a.s. ∀t ∈ T

(MSP l)

It is easy to verify that any (x, s) feasible in (8) is also
feasible in MSP l with the same objective value. Hence,
MSP l is indeed a relaxation of MSP . To obtain a tractable
approximation for MSP l, we employ similar arguments as
in Section II-B. In particular, we introduce new decision
variables Xt ∈ Rnt×s(kt,2d) and St ∈ Rmt×s(kt,2d) which
are uniquely determined by the decision rules xt ∈ Lkt,nt

and st ∈ Lkt,mt
, respectively, through the new constraints

XtP2d,tM2d = E
(
xt(ξ

t)B2d(ξ)
⊤),

StP2d,tM2d = E
(
st(ξ

t)B2d(ξ)
⊤). (9)

In the following lemma we demonstrate that the new con-
straints (9) do not restrict the choice of xt and st.

Lemma 3.2: For any given xt ∈ Lkt,nt
and st ∈ Lkt,mt

there exist unique matrices Xt and St satisfying (9).
Proof: Define Xt ∈ Rnt×s(kt,2d) through

E(xt(ξ
t)B2d(ξ)

⊤)P⊤
2d,t = XtP2d,tM2dP

⊤
2d,t. (10)

Notice that P2d,tM2dP
⊤
2d,t is a principal submatrix of M2d,

and hence it is invertible. This implies that Xt is uniquely de-
termined by (10). Recall that Et(B2d(ξ)) = MtP2d,tB2d(ξ)

P-a.s. Thus, we conclude that

E
(
xt(ξ

t)B2d(ξ)
⊤)

= E
(
xt(ξ

t)Et(B2d(ξ))
⊤)

= E
(
xt(ξ

t)B2d(ξ)
⊤)P⊤

2d,tM
⊤
t

= XtP2d,tM2dP
⊤
2d,tM

⊤
t

= XtE
(
P2d,tB2d(ξ)B2d(ξ)

⊤P⊤
2d,t

)
M⊤

t

= XtE
(
P2d,tB2d(ξ)Et

(
B2d(ξ)

⊤))
= XtP2d,tE

(
B2d(ξ)B2d(ξ)

⊤)
= XtP2d,tM2d.

Hence, Xt defined through (10) satisfies (9). A matrix St

satisfying the second relation in (9) can be constructed in a
similar manner.

If we replace the decision rules xt and st in problem
MSP l with the finite dimensional variables Xt and St, the
following existence constraints appear.

∃xt ∈ Lkt,nt
:XtP2d,tM2d = E

(
xt(ξ

t)B2d(ξ)
⊤) (11a)

∃st ∈ Lkt,mt
:StP2d,tM2d = E

(
st(ξ

t)B2d(ξ)
⊤) , (11b)

st(ξ
t) ≥ 0 P-a.s.

Constraint (11a) is redundant and can be omitted without
affecting the problem’s feasible set. Indeed, for any matrix
Xt ∈ Rnt×s(kt,s2d), the polynomial decision rule xt(ξ

t) =
XtP2d,tB2d(ξ) ∈ Lkt,nt

satisfies the postulated condition
(11a). To obtain a tractable relaxation to constraint (11b) we
use Proposition 2.4, which is applicable due to the following
lemma.

Lemma 3.3: For any given St ∈ Rmt×s(kt,2d) constraint
(11b) is equivalent to

∃s̃t ∈ Lk,mt :StP2d,tM2d = E
(
s̃t(ξ)B2d(ξ)

⊤) , (11c)
s̃t(ξ) ≥ 0 P-a.s.

Proof: It is clear that (11b) implies the less restrictive
condition (11c). Assume now that (11c) holds and define
st(ξ

t) = Et(s̃t(ξ)). Then, we find

E
(
st(ξ

t)B2d(ξ)
⊤) = E (Et (s̃t(ξ))B2d(ξ))

= E
(
s̃t(ξ)B2d(ξ)

⊤)P⊤
2d,tM

⊤
t

= StP2d,tM2d,

where the last equality follows from Lemma 3.2.
Using the above results and the fact that the moment

matrix M2d is invertible, MSP l can be approximated by
the following tractable semidefinite program

inf
T∑

t=1

tr
(
CtPθ,tTθM2dP

⊤
2d,tX

⊤
t

)
s.t. Xt ∈ Rnt×s(kt,2d), St ∈ Rmt×s(kt,2d) ∀t ∈ T

t∑
s=1

AtsXsP2d,sP
⊤
2d,t + StP2d,tP

⊤
2d,t · · ·

· · · = BtPθ,tTθP
⊤
2d,t ∀t ∈ T

StP2d,tM2d ∈ Mm+
2d (Ξ) ∀t ∈ T.

(MS̃P l)
By construction, problem MS̃P l represents a tractable pro-
gressive approximation for MSP l.
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TABLE I
INPUT PARAMETERS

Parameter Value Random Variable Range
ḡn 3.5,∀n ∈ N δ1 [0.3,1.5]
f̄m 3.5,∀m ∈ M δ2 [0.36,1.8]
c1 1 δ3 [0.42,2.1]
c2 0.4 δ4 [0.48,2.4]
c3 1.5 δ5 [0.54,2.7]
d1 5 ζ1 [0.2,1]
d2 0.2 ζ2 [0.2,0.5]
d3 0.4 ζ3 [1,2]
d4 0.6
d5 0.1

Theorem 3.4: We have inf MS̃P l ≤ inf MSP l ≤
inf MSP , and the approximate problem MS̃P l is com-
putationally tractable.

IV. NUMERICAL RESULTS

To evaluate the performance of the proposed decision rule
approximations, we consider an instance of the electricity
capacity expansion model discussed in [8]. The underlying
power system consists of a set R = {1, . . . , 5} of regions
with uncertain electricity demands δr, r ∈ R. Demands are
satisfied by a set N = {1, 2, 3} of power plans, where
each plant n ∈ N can produce up to ḡn units of energy
at uncertain costs ζn. Regions are connected by a set M =
{1, . . . , 5} of directed transmission lines. Each line m ∈ M
has a capacity of f̄m units of energy. The system topology
is visualized in Figure 1.

The capacity expansion problem is modeled as the fol-
lowing two-stage stochastic program. In the first stage, we
decide by how much the existing capacity of each plant
n ∈ N will be expanded at unit cost cn and by how much the
capacity of each transmission line m ∈ M will be expanded
at unit cost dn. Then, the uncertain demands δr and operating
costs ζn are revealed, which are assumed to be independent
and uniformly distributed. In the second stage the expanded
system is put into operation. The goal is to minimize the
sum of investment costs and expected operating costs while
satisfying all regional demands. We refer to [8] for more
details.

Fig. 1. Power System Configuration

The input parameters are summarized in Table I. We
generate upper and lower bounds on the optimal value of
the problem by using polynomial decision rules of various

degrees and compute the relative optimality gaps. We com-
pare these gaps with those obtained with existing methods
based on linear [4] and piecewise linear [8] decision rules.
The relative optimality gaps are computed by dividing the
difference by the midpoint of the upper and lower bounds.
All computations are performed within Matlab 2010b and
using the Yalmip interface [15] of the SDPT3 optimization
toolkit [16]. The employed piecewise linear decision rules
have a general segmentation with 9 breakpoints per (prim-
itive and composite) random parameter as described in [8].
The resulting relative optimality gaps for linear, piecewise
linear, quadratic and cubic polynomial decision rules amount
to 41%, 16% and 13% and 7%, respectively. Solving a
capacity expansion problem of the type described here to
within 7% accuracy is indeed sufficient for all practical
purposes. The superior performance of polynomial decision
rules with respect to linear and piecewise linear decision
rules reflects their ability to adapt to different problem
instances even if no structural information about the true
optimal solution is available.
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