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Abstract— This paper presents a novel approach to increasing
the information content in sensor measurements, with special
applications in images or video. The entropy of a signal gives a
measurement of the information content. In the case of images,
entropy is low when large parts of an image are uniformly
colored or shaded. This can occur due to poor camera settings,
poor lighting conditions, or the camera is facing a scene with
little interest or activity. Minor camera motions can often
alleviate these problems. We employ methods of extremum
seeking control to find a local maximum in the entropy map
surrounding the camera. Entropy maps often have local maxima
that do not correspond to a global maximum. Therefore we
combine the global properties of simplex optimization methods
with the local search properties and dynamic response of
extremum seeking control to create a novel algorithm that
is more likely to find a global maximum than conventional
extremum seeking control. Simulations and experiments are
presented to show the strength of this approach.

I. INTRODUCTION

Given limited sensors covering a wide area, a sensor
needs to isolate targets of interest to maximize the value of
its measurements. Alternately, given abundant sensors, the
amount of data may overwhelm communication channels,
processor bandwidth, or human observers, necessitating the
ability to transmit only the most useful data. This paper
presents an initial investigation to control the position of
a sensor to collect the most valuable measurements via
extremum seeking control (ESC) of sensor configuration. In
particular, we seek to maximize the information content of
image or video data to provide the most useful images.

ESC seeks to optimize the value of a measurable cost
function [1]. The strength of this method is that no a priori
knowledge of the cost function is necessary. A stability proof
of ESC was first provided by Krstic and Wang for a general
nonlinear SISO system [2]. Multivariable ESC was later
studied by Rotea, and a set of detailed design guidelines
for ESC were provided [3]. Recently, global ESC methods
were studied by Tan and Nesic [4].

In casting optimization as a control problem to be op-
timized, the measured output of ESC is the cost function,
while the control input is the vector of optimization variables.
ESC attempts to optimize the measured cost function by
adjusting the control inputs according to a gradient descent
algorithm implemented in real time. The gradient is esti-
mated by using an external, periodic perturbation (or dither
signal) and a series of filtering and modulation operations.
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The estimated gradient is integrated to produce the control
inputs, which constitute an estimate of the optimal set of
variables. If the ESC loop is stable, then the inputs to the
integrators will vanish when the system reaches steady state.
This results in a zero gradient, which is a necessary condition
for unconstrained optimization. Thus, in steady state, the
system is at a local extremum point.

One measure of information contained in a signal is the
signal entropy [5]. Shannon’s entropy measure of information
has found wide spread use in information and communication
theory, as it provides a limit to lossless compression [6].
Entropy also has applications in estimation theory [7], [8].

We posit that maximum entropy can indicate an informa-
tion rich data set. A DC signal will have zero entropy, while
a uniformly distributed signal will have maximum entropy.
In the context of images or video, a blank image, such as
a camera facing a wall, will have lower entropy than an
image of a busy environment. Using ESC to guide a sensor
to the location of maximum entropy is an ideal approach,
as knowledge of the entropy as a function of the sensor
workspace is not needed. As the ESC guides the sensor to
a point providing a signal of maximum entropy, we expect
the signal to have more information.

Entropy has been used in sensor placement in previous
research. Beni and Hackwood proposed that maximizing
entropy with a swarm of sensors would maximize the prob-
ability that a single event would be detected [9]. Similarly,
Abidi suggested using maximum expected entropy to choose
the camera view of an object that adds the most new
information [10]. These methods differ from the proposed
approach in that they utilized offline optimization methods
and knowledge of the scene and environment. The method
proposed in this paper runs in real time, can adapt to dynamic
environments, and does not require knowledge of the scene
or environment.

Alternative approaches to sensor placement, and camera
placement in particular, have been investigated. Several
groups (e.g. Howard et al. [11], Murray et al [12], and Zou
and Chakrabarty [13]) focused on coverage, i.e. maximizing
the amount of area that is covered by at least one sensor.
Mittal and Davis worked on placing sensors to avoid occlu-
sions by static and moving objects [14]. Research by Zhao et
al. focused on arranging multiple sensors to simultaneously
measure areas or track targets [15]. Papanikolopoulos has
investigated sensor placement to reduce the amount of pro-
cessing that must be performed [16] or reducing the expected
error in the final estimation [17]. Similar work was done
by Ercan et al. [18]. Basar and his group has focused on
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an optimal transmission policy, in which an observer of a
stochastic process sends data to a remote estimator only if it
will change the current estimate more than some threshold
[19].

A contribution of this paper is a method to maximize
the information content of signals (particularly images) in
real time with no knowledge of the environment. This
environment may be dynamic, meaning the entropy map is
time varying. The proposed method will provide a general
framework to select among sensors, place sensors, or con-
trol movable sensors to improve estimation accuracy and
reduce transmission bandwidth. ESC methods have been
developed for over a decade, and sufficient conditions for
stability have been well established. This paper investigates
the environmental conditions that allow for stable ESC of
image entropy. We also investigate the choice of ESC design
parameters, such as frequency of the differ signal, necessary
for stability and performance given the slow sampling rate
of most cameras (approximately 30Hz).

We also propose a new extremum seeking method that
combines the dynamic properties of conventional ESC with
the global convergence properties of simplex optimization
algorithms [20]–[22]. This will increase the likelihood that
the system converges to a global maximum. Additionally,
it will ideally eliminate iterations of the simplex algorithm.
We refer to this method as Simplex Guided Extremum
Seeking (SGES). Simulations and experiments are performed
to demonstrate the proposed methods.

II. BACKGROUND

A. Extremum Seeking Control

ESC is designed to optimize a cost function in real time,
without any prior knowledge of the input-to-cost mapping.
References [2]–[4] concentrated on developing ESC meth-
ods. Fig. 1 shows a common scheme of ESC. The current
estimate of the optimal state of the system is θ(t) ∈ Rn. A
dither signal d1(t) ∈ Rn is added to θ(t) to give the current
state θ(t). The signal d1(t) is typically given by a vector of
sinusoids ai sin(ωit), i = 1 . . .n.

The output y(t)∈R can be expressed by the Taylor Series

y(t) = f (t, θ̄)+d1(t)T ∂ f (t, θ̄)
∂θ

+H.O.T. (1)

Neglecting higher order terms, passing y(t) through a high
pass filter block gives a signal correlated to the gradient
vector ∂ f (t,θ̄)/∂θ . The gradient is extracted via a demodulation
scheme that multiplies the output of the high-pass filter by
the dither signal d2(t)∈Rn, followed by application of a low-
pass filter. The resulting signal ζ (t)∈Rn is an estimate of the
gradient. A signed scalar gain term k determines the direction
and speed of motion (i.e. whether we seek maximum or
minimum and the rate of convergence). Integrating kξ gives
the current estimate of the optimal state θ(t) ∈ Rn.

ESC systems are generally nonlinear. However, when the
dither signal frequencies ωi are large enough, averaging the-
ory [23], [24] can provide a linear system that approximates

Fig. 1. Block Diagram of the Extremum Seeking Loop

the dynamics of the ESC loop. Using this linear approxi-
mation, reference [3] provides guidelines for selecting dither
signals and filters to ensure closed loop stability of the ESC
loop. In Section III-B we use these guidelines to design an
ESC system for entropy maximization.

B. Entropy

Shannon’s seminal work on communication defined the
entropy H of a discrete random variable X as

H(X) =−∑
x∈X

p(x) log(x) (2)

where p(x) is the probability mass function giving the
probability that X = x [5], [25]. The entropy gives a mea-
surement of the uncertainty associated with X . H(X) takes its
maximum when the random variable is uniformly distributed,
in which case any particular x is equally likely. Likewise,
H(X) takes its minimum when the value x is completely de-
termined, corresponding to p(x) = δ (x0), where δ (x0) is an
impulse function at (x0). In this case, there is no uncertainty
in X . Shannon’s entropy measure of information has found
wide spread use in information and communication theory, as
it provides a limit to lossless compression [6]. Entropy also
has applications in estimation theory. The maximum entropy
has been used to choose between distribution functions to
find one that best fit the true distribution [7], [8]. In the
context of real-time digital signal analysis, p(X) is given by
the histogram of the measured signal values. A DC signal
will have zero entropy. A signal with a wide distribution
band will have high entropy. In case of images, the variable
X is the value of a pixel, and p(X) is the histogram of pixel
values in the image.

In the case of images, an image that is a single shade
or color is a DC image and has zero entropy. An image
with many shades and colors has high entropy. Examples of
similar images with different entropy levels are seen in Fig.
2. There are several issue to consider with image entropy.
One is the issue of color spaces. In a color image, each
pixel has three color channel values. The image could be
converted to gray scale and the entropy of the resulting
intensity image can be calculated. However, information is
lost when color images are converted to grayscale, studies
have shown that color contributes heavily to interest in the
human visual system. An alternative is to estimate entropy
separately across each color channel and calculate an overall
entropy as the sum or norm of all channels (a similar
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Fig. 2. The two images on the left have lower entropy than the images
on the right. This is caused by exposure or lighting conditions causing
the left images to have large regions that are similarly colored or shaded.
Specifically the upper left image has H = 5.3, while the upper right image
has H = 7.5. The lower left image has H = 7.2 while the lower right image
has H = 7.7.

approach was followed in [26]). Alternately, a 3D color
histogram can be used. There may also be effects from using
different color channels parameterizations (e.g. red-green-
blue vs. hue-saturation-value). These issues will be explored
in future research.

III. ESC DESIGN FOR ENTROPY MAXIMIZATION

In this Section, we provide the design parameters of the
ESC loop to steer a camera to maximize the entropy of
captured images. In this initial investigation, robot/camera
motion is limited to a 2D vertical/horizontal plane, i.e. a
2D subspace of its 6DOF workspace, corresponding to the
camera image plane. Entropy is maximized by adjusting the
horizontal and vertical position of the camera. That is, the
optimization variables are

θ = [x, y]T

where x and y are the coordinates of the camera in a plane
perpendicular to the ground.

A. Entropy Mappings

ESC is an approach for unconstrained optimization.
Hence, a necessary condition for stability or convergence
is that the entropy map must posses a relative maximum
in interior of the camera workspace. To test this condition,
we conducted several experiments to build entropy mappings
as a function of camera position. The experiments were
conducted using a Staubli TX90 robot, with 6 degree of
freedom. A camera is mounted on the end effector, and
the offset from the camera to the end effector is previously
calibrated. The robot can accept a commanded velocity or
position of the camera, and motion was limited to a 2D plane.

We designed two experiments to represent common situa-
tions where maximizing the entropy would be useful. In the
first experiment, a monochrome poster board was placed in
front of the robot with a picture taped in the center. This
represents a single area of interest in a largely uninteresting
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Fig. 3. Entropy Mapping with a Dominate Maximum
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Fig. 4. Entropy Mapping with Multiple Extrema

field. The entropy, as a function of the camera position [x, y]T

is shown in Fig. 3. It clearly has global maximum in the
interior of the workspace.

The second experiment was designed to replicate poor
back lighting conditions, in which the camera is partially
blinded by a bright light behind a target of interest. This is
similar to the images of the cat in Fig. 2. For this experiment,
a picture was placed on an easel in front of the robot. A
projector was placed behind the easel and slightly to one
side. The resulting mapping is shown in Fig. 4. The light
from the projector will saturate the camera when they are
aligned along the camera optical axis, which gives the clear
global minimum of the entropy map. There are many local
maximum on the interior. The global maximum corresponds
to the camera blocking the light from the projector with the
picture on the easel.

B. ESC Design

As shown in [3], there are design variables that affect the
stability and performance of ESC systems. These variables
include the two dither signals, the high-pass filter, the low-
pass filters, and the gain k. The sensors and system plant, i.e.
images from a video camera and a robot manipulator, further
restrict the choice of design variables. In this initial investiga-
tion only two degrees of freedom are used. Hence we need a
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dither signal of of the form d1(t)= [a1 sin(ω1t), a2 sin(ω2t)]T

The choice of frequencies for the dither vector must satisfy
the following constraints [3]:

1) ω1 6= ω2
2) ω1 and ω2 are smaller than one half the sampling rate.
3) ω1 and ω2 are in the pass band of the high-pass filter

and stop band of the low-pass filter.
Video systems generally have frame rate around 30Hz.
After the time required for image processing and control
calculation, the sampling rate is approximately 20Hz. We
employ dither frequencies in the range 5Hz - 9Hz, which
can be tuned for performance through trial and error.

The dither signal amplitudes a1 and a2 affect the seeking
accuracy, convergence speed of the ESC loop. A larger dither
amplitude lowers the time for convergence but decreases the
accuracy of the final estimate for θ̄ . Designers must also
consider the forces necessary to generate dither signals with
large amplitudes. For experiments in this paper, considering
the speed limit of robot actuators, we chose a1 = a2 = 5cm.

The cutoff frequency of the high-pass filter should be
lower than ω1 and ω2. We employ a second order Chebyshev
type I filter with a cutoff frequency of 3Hz, given by

G1(z) =
0.5768z2−1.1536z+0.5768

z2−1.0900z+0.4735
. (3)

The cutoff frequency of low-pass filter should also be lower
than ω1 and ω2. We use a second order FIR filter with a
cutoff frequency of 1Hz, given by

G2(z) = 0.0680+0.8640z−1 +0.0680z−2 (4)

IV. SIMPLEX GUIDED EXTREMUM SEEKING

As shown in Fig. 4, the entropy function can have multiple
local extrema. ESC is very likely to be trapped at a local
maximum and can never reach the global global maximum.
Therefore, the final result can be heavily affected by initial
positions. It has been shown that increasing the amplitude
of dither signal can improve the chance to reach the global
extremum [27]. However, high amplitude signals can saturate
the actuators and make it hard to demodulate the signal to
gather the gradient information.

Alternately, a multi-directional algorithm that searches for
extrema through the whole workspace, is more likely to find
a global maximum [20]–[22]. Multi-directional search algo-
rithms are approaches to linear programming that construct
a point simplex and iteratively optimize the point members
to converge to the extremum, therefore they are referred to
as simplex methods. The maximum point in the simplex is
always kept, and a group of linear combinations (reflection,
extension, and contraction) are used to predict points with
a better value. This continues until the best point is located
or a termination condition is met. The downside to simplex
methods is poor dynamic response, in that they are not well
suited to changing maps, such as the entropy of a changing
scene.

Therefore, we propose a combined ES algorithm that can
employ simplex methods to search for a global maximum

while preserve the dynamic tracking abilities of ESC. We
call this method Simplex Guided Extremum Seeking (SGES),
which uses a simplex method for large scale searching, and
ESC for small-scale local searching. SGES shows strong
promise for optimizing other cost functions that have many
local extrema that are not global extrema.

For a n dimensional search space, SGES executes ESC
at n + 1 initial trial points to obtain n + 1 local maxima.
The maxima are taken as simplex vertices and denoted as
x0

0, x0
1, x0

2...x0
n. The superscript represents iteration time, and

they are ordered after every vertex update, such that f (xk
0)>

f (xk
i ) for i = 1,2...n in any kth iteration.

As xk
0 is the current best maximum, it is reasonable to

assume this vertex lies in a more optimal region of the
workspace. So we perform reflection to generate n initial
trial points rk

i = xk
0−α(xk

i −xk
0) for i = 1,2...n, where α > 0

is a constant. ESC is performed from each trial point, leading
to a new group of local maxima, denoted as r̂k

i .
If there is a local maximum r̂k

jr , such that f (r̂k
jr)> f (xk

0)
and 0< jr ≤ n, it is possible that better points could be found
further along this direction. So we perform on extension step,
generating n initial trial points ek

i = xk
0−λ (xk

i −xk
0) for i =

1,2...n, where λ > α is a constant. ESC is ran from each
trial point, producing one more group of maxima êk

i .
If there is a local maximum êk

je , such that f (êk
je)> f (r̂k

jr)>

f (xk
0), and 0 < je ≤ n, we accept êk

i to update the vertices,
i.e. xk+1

i = ek
i for i = 1,2...n, else we accept r̂k

i , i.e. xk+1
i =

r̂k
i for i = 1,2...n.

If there is no r̂k
jr , such that f (r̂k

jr)> f (xk
0), we accept the

xk
0 as the current global optimal and contract all xk

i for i =
1,2...n towards xk

0. In this case, generate n initial trial points
ck

i = xk
0 + θ(xk

i − xk
0), for i = 1,2...n, where 0 < θ < 1.

Again performing ESC from each trial point leads to one
more group of local maxima ĉk

i . If there is some ĉk
jc ,

such that f (ĉk
jc) > f (xk

0), we accept contraction step and
update vertices as xk+1

i = ĉk
i , for i = 1,2...n. Otherwise, we

update vertices as xk+1
i = ck

i , for i = 1,2...n to guarantee
convergence.

Under specific conditions, simplex methods can guarantee
convergence of the simplex points set. Given local the stabil-
ity properties of ESC and global convergence properties of
simplex methods, the SGES method should perform well in
a variety of problems. Simulations and experiments demon-
strate it does work well, outperforming ESC or simplex
methods in numerous cases. Future work will attempt to
prove that, under specific conditions, SGES will converge
to an optimal local maximum and that this optimum will be
the maximum point visited.

V. SIMULATION RESULTS

Using the entropy mappings shown in Section III-A,
simulations were conducted to demonstrate the performance
of both basic ESC and SGES to maximize image entropy.
Three points in the workspace are chosen as initial points for
each simulations, [x, y]T = [78,−18], [−22, 32] and [78, 72].

Using the entropy mapping shown in Fig. 3, the results are
shown in Fig. 5. The background of the figure is a contour
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Fig. 5. ESC Simulation on Entropy Mapping I. All initial points converge
fairly close to the global maximum.
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Fig. 6. ESC Simulation on Entropy Mapping II. All initial points converge
to local maxima, some quite far from the global maximum.

plot of entropy mapping. The initial point of each trial is
denoted as a triangle, and the end points are noted as circles.
ESC starting from one of the initial points can converge
near the global maximum. This is due to the fact that this
mapping has few local maxima. In contrast, when using the
mapping in Fig. 4, which has many local maxima, ESC does
not converge close to the global maximum. The results are
shown in Fig. 6.

SGES is used in a simulation on the map originally shown
in Fig. 4. The three initial conditions are used to construct
the initial simplex. The SGES algorithm converges very near
to the global maximum, as shown in Fig. 7. In Fig. 7, each
dash line triangle represents the simplex update step motion.

Fig. 8 is the simplex update plot. The solid line in the
top plot indicates the maximum value point in the simplex
set, which monotonously increase. The bottom plot indicates
the area of the triangle constructed by the three simplex
points, which monotonically decreases. This demonstrates
the convergence of the SGES in terms of the optimization
variables.

The entropy extrema found for each initial condition in
each simulation is given in Table I. This indicates that the
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Fig. 7. Simplex Guided ESC Simulation on Entropy Mapping II. The
simplex algorithm allows the system to find the global maximum.
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Fig. 8. Simplex Update for SGES Simulation. The simplex points converge
in the measure of entropy. At the same time, the area of the polygon the
simplex points define gets smaller, indicating they converge in space.

SGES can improve the ability to find converge near the
global maximum in terms of the optimization variables and
in value of the cost function.

VI. EXPERIMENT RESULTS

We conducted experiments to demonstrate the effective-
ness of the proposed control method. The ESC scheme is
implemented on a six degree of freedom Staubli TX90 robot
arm with a camera mounted on the end effector. Two degrees
of freedom are used, translation in the x− y plane.

The ESC experiment is implemented for the first scene
described in Section III-A, a monochrome poster board with
a picture fixed near the center. The result is shown in Fig.

Sim. # Extremum H achieved Global Max. H
1 10.48, 10.48, 10.52 10.54
2 12.07, 11.88, 11.87 12.59
3 12.59, 12.59, 12.59 12.59

TABLE I
ENTROPY EXTREMA FOUND IN SIMULATION OF THE DIFFERENT

ALGORITHMS

4989



2 4 6 8 10 12 14
−200

0

200

x(
m

m
)

2 4 6 8 10 12 14
−100

0

100

y(
m

m
)

2 4 6 8 10 12 14
8

9

10

E
nt

ro
py

(b
it/

pi
x)

Time(s)

Fig. 9. ESC Experiment results for single maxima scenario
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Fig. 10. Experiment result of SGES looking in an empty lab.

9. In this experiment, the camera was placed at an initial
position away from the global maximum, and the ESC
algorithm quickly guides the camera towards the maximum
entropy position, bringing the picture into full view.

An experiment of the SGES system is first implemented
for the common scene of our lab. This entropy map is rather
flat and has multiple local maximum. We start SGES with
three random simplex points. At each point, ESC is employed
to find the local maximum. When the system has detected
a gradient less than 1.0 for 2 seconds, the system moves
to the next predicted simplex point. This switch condition
can be tuned for desired performance. The position of the
camera and entropy measure over time is shown in Fig. 10.
The periods when ESC is operating are identifiable by the
periodic dither. The relative straight periods are the times
when the system is moving to a new simplex predicted point.
Without the simplex process, the system would have settled
at the first end point of the ESC section. However, with the
simplex, the system does find a higher entropy measure. The
simplex update plot is shown in Fig. 11.

The simplex step of SGES improves the global extremum
seeking properties. However, without ESC, the system can
not respond to a dynamic, changing scene after settling. The
following experiment shows the dynamic property of SGES.
We conduct this experiment in the second scene described in
Section III-A, a picture is placed on an easel with a bright
light behind it which can partially blind the camera. This
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Fig. 11. Simplex Update for SGES Experiment. The simplex vertices
converge in terms of entropy value. As the area of the polygon defined by
vertices becomes smaller, the location of them converges.
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Fig. 12. Experiment of SGES looking at a picture backlight with a bright
light. The simplex algorithm allows the system to converge, which entails
block out the light. After convergence, the picture is moved. The ESC
algorithm alters the simplex points and allows for a second convergence.

can be seen in Fig. 14. The system does converge near the
global maximum, which places the picture in front of the
blinding light. After the system has been settled for about
80 seconds, the picture was moved to change the scene. As
illustrated in Fig. 12, SGES reaches a second convergence
point, again blocking the light with the picture. The simplex
points are shown in Fig. 13. Several corresponding images
are collected in Fig. 14.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an approach to use extremum seeking
control to maximize the entropy of a sensor signal. Focusing
on mobile cameras, a robot can guide the camera to capture
image with maximum entropy. This can focus attention on
objects on interest and correct common imaging problems,
such as poor lighting conditions. Since entropy maps often
have local maxima, we presented a novel approach that com-
bines the global properties of simplex optimization methods
and dynamic properties of extremum seeking control.

Experimental validation of the approach shows strong
potential. However, this is an initial investigation, and there
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Fig. 13. Simplex Update for the dynamic SGES Experiment. While the
entropy measures do not converge as closely in the second convergence, it
can be seen that they are very close in space.

Fig. 14. Critical Scenes for Dynamic SGES Experiment. The backlight can
be seem to partially blind the camera in the initial images, and maximization
of entropy causes the camera to block the light source.

are many area of future work. Firstly, a formal analysis
must be done to prove stability and convergence of the
SGES approach. Additionally, this approach may not be well
suited for some entropy maps, such as an extremum on the
boundary of the workspace, which violates the conditions
for ESC and simplex methods. A modified approach may
address this. Adding degrees of freedom is an important step.
Ultimately, we hope to implement this on mobile robots,
requiring consideration of their unique velocity constraints
and incorporating obstacle avoidance.
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