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Abstract— This paper addresses a fundamental property for
a class of multi-agent systems, i.e., stabilizability of a group
of single integrators, having external control inputs, under a
fixed and weighted directed network topology. A necessary and
sufficient condition for the stabilizability of the multi-agent
system is presented. In particular, it is shown that the multi-
agent system is stabilizable if and only if the external control
inputs are applied to certain agents (e.g., root node of the
communication network when the network is connected). The
framework proposed here puts an emphasis on its ability in
decentralized control; that is, each agent uses its own and its
neighbors’ state information as feedback, to stabilize the multi-
agent system. Based on these results, the decentralized set-point
control problem with formation is also addressed.

I. INTRODUCTION

For a decade the multi-agent systems (MASs), consisting
of several identical dynamic systems and communicating
some information through a local interaction among them,
have received considerable attention due to their importance
in biology and engineering. A major concern of the MAS is
to reach an agreement among the identical systems, which
is termed as consensus or synchronization problem. See,
e.g., [1], [2], [4], [6], [10], [11], [16], [17], [18]. When the
consensus problem is solved, the agreed value is often a
weighted average (in a certain sense) of the initial conditions
of the involved agents, and it is not a function of external
inputs to the MAS. However, in the perspective of control
engineering, there are some domains where the agreement
should be controlled by certain external inputs to the system.

This notion has naturally initiated the study of controlla-
bility in [19], which is followed by [3], [7], [8], [9], [13],
[14], [15]. The leader-follower controllability, discussed in
the reference above, can be summarized as follows. For a
group of N single integrators, represented by ẋ = −Lx with
x := [x1 · · · xN ]T ∈ RN (xi is the state of agent i) and the
Laplacian matrix L (obtained from the interaction topology
of the MAS), let us suppose that the last m agents are
chosen as leaders, while the first N−m agents as followers.
Then partitioning the overall state x as x = [zT rT ]T

with z ∈ RN−m and r ∈ Rm (i.e., z and r represent the
states of the followers and the leaders respectively), one has
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the dynamics of followers as ż = −Fz − Rr, in which
F ∈ R(N−m)×(N−m) and R ∈ R(N−m)×m. The MAS is
said to be controllable if the pair (F,R) is controllable; that
is, the state r of the leaders is treated as an independent
external control input. Once the controllability is guaranteed
for a given MAS, the standard open-loop control

r(t) = RT eF
T (tf−t)W−1(tf )(zf − eFtf z0) (1)

is used for placing each state of the followers to the de-
sired position (i.e., set-point control with formation), where
W (t) :=

∫ t
0
eFτRRT eF

T τdτ is the controllability Gramian
and z0 = z(0) and zf = z(tf ) are the initial and final states
of the followers [13].

However, we note that controllability notion intrinsically
includes the possibility of enforcement of arbitrary position-
ing at arbitrary time, which leads to a few drawbacks in the
MAS application and raises a question about whether we are
asking too much. Most of all, it has been shown in [19] that
a MAS with more than two agents under a complete graph
turns out to be uncontrollable for any choice of single leader.
It is also pointed out that a MAS is always uncontrollable if
the MAS is symmetric with respect to a leader (even though
the network is connected and the leader is a source of the
network) [13], [14], [15]. Moreover, if the control law (1) is
used in practice, it is actually a centralized control because
it requires the information (the initial and final states, i.e, z0
and zf ) of all the followers.

These restrictions suggest us to consider a relaxed notion
of ‘stabilizability’ for the MAS. Introducing the concept of
the independent strongly connected components (iSCCs) of
a graph, we show that any given MAS is stabilizable if and
only if an independent external control input is applied to
a node in each iSCC of the network. When the network is
connected, the node happens to be a root node of the network.
It is seen that stabilizability of a MAS does not depend on
the weights of the network graph, but only on the structure,
which is another benefit of considering stabilizability. It is
also shown that the MAS can be stabilized through self-
feedbacks to the suitably chosen nodes (that is, a node
in each iSCC). Similarly to [16, Section 3], we provide a
decentralized control law for the MAS that achieves the set-
point control with formation.

The presentation of this paper slightly generalizes the
previous results [3], [7], [8], [9], [13], [14], [15], [19]. In
particular, we deal with directed graphs rather than undi-
rected ones. And, by considering external inputs to the MAS,
we could avoid the problem that the leaders do not join the
formation (which can be seen from (1) where r(t) is the

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 4829



1

3

5 6 7

8 92 4

Fig. 1. A graph having nine nodes. The number in each circle denotes the
node in the node set N = {1, 2, . . . , 9}. For brevity the weights αih’s are
omitted. There are three iSCCs of the graph, induced by the node sets {1},
{2}, and {8, 9}, each of which are marked by the red dashed boxes.

states of leaders but used as the inputs so that they are not
a part of formation).

The remainder of this paper is organized as follows. Sec-
tion II presents some preliminaries of the paper, especially
on the graph and matrix theory, and consensus problem. A
necessary and sufficient condition for the stabilizability of
the MAS is given in Section III, as well as its application to
the decentralized set-point control problem with formation.
After demonstrating the proposed result through an example
in Section IV, the paper concludes with some concluding
remarks in Section V.

II. PRELIMINARIES

A. Basics on Graph and Matrix Theory

In order to efficiently model the local interaction among
the identical systems, the graph theory is used. A (weighted
directed) graph, denoted by G = (N , E ,A), consists of a
finite nonempty set of nodes N = {1, 2, . . . , N}, an edge
set (excluding the self-connection) of ordered pairs of nodes
E ⊆ N ×N , and a weighted adjacency matrix A = [αih] ∈
RN×N . An edge (h, i) ∈ E , represented by an arrow tailed
at the node h and headed toward the node i, is related with
the adjacency matrix A by the rule that αih > 0 if and only
if i 6= h and (h, i) ∈ E . Otherwise αih = 0. The set N i

of neighbors of the node i is defined as N i = {h ∈ N :
(h, i) ∈ E}. A path (of length l) from the node h to the
node i is a sequence of nodes of the form {i0, i1, . . . , il}
so that i0 = h, il = i, ik ∈ N ik+1 , and ik’s are distinct.
A graph G is complete if (h, i) ∈ E for any h, i ∈ N and
h 6= i. A strongly connected graph G is the graph satisfying
that for any pairs of distinct nodes h and i, there is a path
from h to i in G. A graph G is connected1 if there is a node
h, called a root or source of the graph, such that for any
i ∈ N \ {h}, a path from h to i exists. Note that any node
of the strongly connected graph is a source. Note also that
a strongly connected graph is connected, but not vice versa.

Given a graph G = (N , E ,A), consider a subset N1 ⊆ N
of nodes of G. The subgraph G1 induced by the set N1 is
the graph G1 = (N1, E1,A1), in which E1 := {(h, i) ∈ E :
h, i ∈ N1} and A1 is the submatrix obtained by deleting the
ith row and column of A for all i 6∈ N1. An independent
strongly connected component (iSCC) of G = (N , E ,A)

1A connected graph here differs from the one in [22], which is sometimes
called weakly connected graph, in the sense that the latter uses a weak path
(or a semiwalk) in defining the notion. See, e.g., [12], [22] for further details.

is an induced subgraph G1 = (N1, E1,A1) such that it is
maximal subject to being strongly connected and satisfies
that (h, i) 6∈ E for any h ∈ N \N1 and i ∈ N1. Fig. 1 shows
an example of iSCCs of the given graph.

The Laplacian matrix L = [lih] ∈ RN×N of a graph
G = (N , E ,A) is defined as L := D − A, where D :=
diag(A1N ) and 1N ∈ RN is the column vector of all ones.
Note that any Laplacian matrix contains a zero eigenvalue
with the corresponding eigenvector 1N , and all the nonzero
eigenvalues lie in the open right-half complex-plane C>0 by
Gershgorin disc theorem. Without loss of generality, we sort
the eigenvalues of L as 0 = λ1(L) ≤ Re(λ2(L)) ≤ · · · ≤
Re(λN (L)), in which λi(L) denotes the ith eigenvalue of L.

Now we review reducible, irreducible, and strictly diago-
nally dominant matrices, which are closely related with the
strongly connected graphs. A matrix A ∈ Rk×k is reducible
if either (a) k = 1 and A = 0; or (b) for k ≥ 2, there
exist a permutation matrix P ∈ Rk×k and an integer m with
1 ≤ m ≤ k − 1 such that

PTAP =

[
B C
0 D

]
, (2)

where B ∈ Rm×m and D ∈ R(k−m)×(k−m). If a matrix A is
not reducible then it is said to be irreducible. A matrix A =
[aih] ∈ Rk×k is strictly diagonally dominant if it satisfies
that (a) |aii| ≥

∑
h6=i |aih| for all i = 1, . . . , k; and (b)

|aii| >
∑
h6=i |aih| for at least one i.

The following results will be used throughout the paper.
Theorem 1 ([5, Theorems 6.2.14 and 6.2.24]): Let

G = (N , E ,A). Then the adjacency matrix A is irreducible
if and only if the Laplacian matrix L is irreducible if and
only if the graph G is strongly connected. �

Lemma 1 ([5, Corollary 6.2.27]): Let a square matrix A
be irreducible and strictly diagonally dominant. Then it is
invertible. �

Theorem 2 ([21, Theorem 2.12]): Let G = (N , E ,A)
and i ∈ N . Then there exists at least one iSCC G1 =
(N1, E1,A1) of G such that either i ∈ N1 or there exists
a path from h to i for each h ∈ N1. �

It is worthwhile to note that by Theorem 2, any graph
contains at least one iSCC. In addition, a graph possesses at
most N iSCCs since |N | = N .2

Theorem 3 ([21, Theorem 2.13]): Let G = (N , E ,A)
and assume that G has c distinct iSCCs Gj = (Nj , Ej ,Aj)
with j = 1, . . . , c. Then dim(ker(LT )) = c and there
exist unique (modulo node permutations) vectors rj =
[r1j r2j · · · rNj ]T ∈ RN for j = 1, . . . , c, satisfying

rij > 0 if i ∈ Nj ,
rij = 0 if i 6∈ Nj ,

j = 1, . . . , c

and rTj 1N = 1, such that ker(LT ) = span{r1, . . . , rc}. �
Corollary 1 ([21, Corollary 2.14]): Let G = (N , E ,A).

Then the graph G is connected if and only if it contains
exactly one iSCC if and only if λ2(L) ∈ C>0. �

2In this paper, the operator |·| has two meaning. It denotes the cardinality
of the set if its argument is a set, while it means the absolute value when
the argument is a number.
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B. Consensus Problem and Its Use in Formation Control

Consider the N identical systems described by

ẋi = ui, i = 1, . . . , N, (3)

where xi ∈ Rn is the state and ui ∈ Rn the interagent
control. For the MAS (3), it is assumed that the interaction
among the agents is modeled by a weighted directed graph
G = (N , E ,A). More precisely, each element i in the node
set N corresponds to the identifier of the ith agent, and the
edge (h, i) ∈ E and the element αih of A imply that the
agent i receives the state information of the agent h with the
interaction strength αih.

Now we define the consensus problem of the MAS (3).
The consensus of the MAS is said to be reached if under a
certain interagent control ui, limt→∞ ‖xh(t) − xi(t)‖ = 0
for any h, i ∈ N .

In order to achieve the consensus of the MAS, the inter-
agent control is often given by

ui =
∑
h∈N i

αih(xh − xi) = −
∑
h∈N

lihxh. (4)

Then the overall dynamics of the MAS becomes

ẋ = −(L⊗ In)x,

where x := col(x1, . . . , xN ) is the stack of the vectors xi
for i ∈ N , L the Laplacian matrix of G, In the n×n identity
matrix, and ⊗ denotes the Kronecker product.

Theorem 4 ([2], [17], [20]): Under the control (4), the
consensus of the MAS (3) is reached if and only if the graph
G is connected. In addition, limt→∞ ‖xi(t)−X0r‖ = 0 for
all i ∈ N , in which X0 := [x1(0) x2(0) · · · xN (0)] ∈
Rn×N and rT is the left eigenvector of L associated to
λ1(L) = 0 with rT 1N = 1. �

Inspired by the consensus problem of the MAS, one can
provide a solution [16, p. 35] to the formation problem by
modifying the interagent control (4) as

ui =
∑
h∈N i

αih{(xh − dh)− (xi − di)},

in which di ∈ Rn is a constant displacement vector that
describes the formation. In fact, defining x̃i := xi − di and
x̃ := col(x̃1, . . . , x̃N ), one obtains that ˙̃x = −(L⊗ In)x̃ and
hence concludes that by Theorem 4, x̃h(t) − x̃i(t) → 0 or
equivalently xh(t) − xi(t) → dh − di as t → ∞, whenever
G is connected. That is, the formation is achieved by the
N agents asymptotically. Note that the actual position of
the formation depends on the initial condition xi(0) of each
agent and on the displacement vector di, since xi(t)→ di+
X̃0r as t→∞ where X̃0 := [x1(0)− d1 · · · xN (0)− dN ].

III. MAIN RESULT

Having a close look at the Laplacian matrix and the iSCCs
of a graph G, this section provides the stabilizability results
for the MAS having external control inputs and presents their
application to the decentralized set-point control problem
with formation.

A. Stabilizability of a Group of Single Integrators

Consider a group of N systems given by

ẋi = ui + eiri, i = 1, . . . , N, (5)

where xi ∈ Rn is the state, ui ∈ Rn the interagent control,
and ri ∈ Rn the external control of the agent i. The
coefficient ei ∈ R models whether the agent i is affected
by the external input ri or not. In other words, ei = 1 if the
external input ri is applied to the agent i. Otherwise ei = 0.

Assume that the local interaction among the agents is
modeled by a weighted directed graph G = (N , E ,A) and
the interagent control ui is given by (4). Then the overall
dynamics of the MAS (5) is written as

ẋ = −(L⊗ In)x+ (E ⊗ In)r, (6)

in which x := col(x1, . . . , xN ), r := col(r1, . . . , rN ), E :=
diag(e1, . . . , eN ), and L is the Laplacian matrix of G.

Now we present the following result which implies that the
stabilizability of the MAS is closely related with the iSCCs
of the graph.

Theorem 5: Suppose that the given graph G = (N , E ,A)
contains c distinct iSCCs Gj = (Nj , Ej ,Aj) with j =
1, . . . , c. Then the MAS (6) is stabilizable if and only if
for each j = 1, . . . , c, there exists a node qj ∈ Nj such that
eqj = 1. �

Theorem 5 generalizes the results of [3], [7], [8], [9], [13],
[14], [15], [19] in the sense that any MAS that is controllable
with suitably chosen leaders (in terms of [19]) is stabilizable
if the external inputs are injected into the leaders, and that
there does exist a MAS that is uncontrollable with any choice
of leaders but is stabilizable.

Another important point of the theorem is about the stabi-
lizing control rqj . In view of the conventional stabilizability,
the stabilizing control is generally of the form rqj = −Kqjx
for some Kqj ∈ Rn×Nn, which may require the access to
the state xh for h 6∈ N qj . However, as will be seen shortly,
the decentralized feedback rqj = −kqjxqj is enough for
stabilizing the MAS (6).

Proof: Since the graph contains c distinct iSCCs,
without loss of generality, we assume that L and E in (6)
are of the forms3

L=


L1 0

. . .
0 Lc

0

L01 · · · L0c L0

, E=


E1 0

. . .
0 Ec

0

0 · · · 0 E0

,
(7)

where for j = 1, . . . , c, Lj ∈ RNj×Nj is the Laplacian ma-
trix corresponding to the iSCC Gj with Nj := |Nj |, and L0 ∈
RN0×N0 with N0 := N −

∑c
j=1Nj . For h = 0, 1, . . . , c, the

diagonal matrix Eh ∈ RNh×Nh is appropriately defined with
its diagonal entries being 0 or 1. Note that by Corollary 1,
each Lj for j = 1, . . . , c contains the simple zero eigenvalue

3One can always obtain the forms through suitable node permutations
(i.e., renumbering the agents’ identifiers). See the definition of iSCC.
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and all the other Nj − 1 eigenvalues lie in C>0. Note also
that λ(L0) ⊂ C>0 since dim(ker(LT )) = c by Theorem 3
and λ(L) = λ(L1)∪ · · · ∪λ(Lc)∪λ(L0), where λ(A) is the
set of eigenvalues of A. With this description at hand, we
now prove the theorem.

(Necessity) Suppose that for some j with 1 ≤ j ≤ c,
there is no such a node qj . We assume j = 1 with no loss
of generality. Then E1 = 0. Let wT1 ∈ RN1 be a nonzero
left eigenvector associated to the zero eigenvalue of L1, i.e.,
wT1 L1 = 0. With wT := [wT1 0] ∈ RN and any nonzero row
vector vT ∈ Rn, one obtains

(wT ⊗ vT )
[
sINn + L⊗ In E ⊗ In

]
=
(
wT
[
sIN + L E

])
⊗ vT

=
[
swT1 + wT1 L1 0

]
⊗ vT = 0, with s = 0,

which contradicts the stabilizability of the MAS.
(Sufficiency) Without loss of generality, assume that the

node in the theorem is that qj = (
∑j
h=1Nh) − Nj + 1.

Then Ej = diag(1, ∗, . . . , ∗) for all j = 1, . . . , c, where the
asterisks stand for the numbers of no interest.

Now suppose that the MAS (6) is not stabilizable; that is,
there exist a complex number s ∈ C≥0 and a nonzero row
vector w̄T ∈ CNn such that w̄T [sINn+L⊗In E⊗In] = 0,
in which C≥0 denotes the set of complex numbers possessing
nonnegative real parts. Suppose that w̄T is partitioned as
w̄T = [w̄T1 · · · w̄Tc w̄T0 ], where w̄Th ∈ CNhn for h =
0, 1, . . . , c. Then it follows that

w̄Tj (sINjn + Lj ⊗ In) + w̄T0 (L0j ⊗ In)= 0, (8a)

w̄T0 (sIN0n + L0 ⊗ In)= 0, (8b)

w̄Th (Eh ⊗ In)= 0, (8c)

for j = 1, . . . , c and h = 0, 1, . . . , c.
We claim that w̄T0 = 0. If not, by (8b), it is a left eigen-

vector associated to the eigenvalue s ∈ C≥0 of −(L0 ⊗ In).
However, this is not possible since −(L0 ⊗ In) is Hurwitz.
The matrix −(L0 ⊗ In) being Hurwitz is implied by the
Hurwitz matrix −L0. Therefore (8) becomes

w̄Tj (sINjn + Lj ⊗ In)= 0, (9a)

w̄Tj (Ej ⊗ In)= 0, (9b)

for j = 1, . . . , c and for some s ∈ C≥0.
Moreover, we also claim that for 1 ≤ j ≤ c, the vector

w̄Tj ∈ CNjn is of the form w̄Tj = wTj ⊗vTj whenever w̄Tj 6= 0,
in which vTj ∈ Cn is a nonzero row vector and wTj ∈ CNj

is a left eigenvector associated to the zero eigenvalue of
Lj . For such j satisfying w̄Tj 6= 0, it is observed from
(9a) that w̄Tj is a left eigenvector corresponding to a zero
eigenvalue of −(Lj ⊗ In), since s ∈ C≥0 and all the
eigenvalues of −(Lj ⊗ In) lie in C<0 ∪ {0}. That is to say,
w̄j ∈ ker

(
−(Lj ⊗ In)T

)
. Let {z1, . . . , zn} be the standard

basis in Rn. Then the set Wj := {wj ⊗ z1, . . . , wj ⊗ zn}
is linearly independent and −(Lj ⊗ In)T (wj ⊗ zh) = 0 for

h = 1, . . . , n. Hence ker
(
−(Lj ⊗ In)T

)
= span(Wj) since

dim
(
ker
(
−(Lj ⊗ In)T

))
= n.4 Hence the claim follows.

Finally from (9b), one obtains that (wTj Ej) ⊗ vTj = 0
whenever w̄Tj 6= 0. This necessarily implies wTj Ej = 0 since
vTj 6= 0. On the other hand, since Lj is the Laplacian matrix
corresponding to the iSCC Gj , all the elements of wTj have to
differ from zero by Theorem 3. But this contradicts wTj Ej =
0 because Ej = diag(1, ∗, . . . , ∗). Therefore w̄Tj = 0 for
all j = 1, . . . , c, and w̄T = 0 which again contradicts the
assumption that w̄T 6= 0.

Corollary 2: Suppose that the graph G = (N , E ,A) is
connected. Then the MAS (6) is stabilizable if and only if
there exists a source q ∈ N of G such that eq = 1. �

Proof: By Corollary 1, any connected graph contains
exactly one iSCC. Let the iSCC be G1 = (N1, E1,A1). Then,
by Theorem 5, the MAS is stabilizable if and only if there
is a node q ∈ N1 such that eq = 1. Thus the result follows
from the fact that each node in N1 is a source of G and vice
versa (see Theorem 2 and the definition of iSCC).

Now we investigate a stabilizing external control. The
proposed control ri is a self-feedback control and hence is
decentralized. In addition, in view of designing a stabilizing
control, it provides considerable flexibility to the designer
since the result below says that any negative self-feedback to
a node in each iSCC stabilizes the MAS. The result follows
from the irreducibility and strictly diagonally dominance of
L induced from strongly connected graph.

Theorem 6: Let Gj = (Nj , Ej ,Aj), j = 1, . . . , c be the
c distinct iSCCs of the graph G = (N , E ,A), and let

ri = −kixi, i ∈ N , (10)

in which ki’s are nonnegative numbers. Then the MAS (5)
with (4) and (10) is exponentially stable if for each iSCC,
there is a node qj ∈ Nj such that eqj = 1 and kqj > 0. �

Proof: Under the control of (4) and (10), the dynamics
of each agent becomes ẋi = −

∑
j∈N lijxj − eikixi and

hence the overall dynamics is written as ẋ = −{(L+EK)⊗
In}x, where K = diag(k1, k2, . . . , kN ). Without loss of
generality, it is assumed that the matrices L and E are of
the forms in (7) and K = diag(K1, . . . ,Kc,K0) where Kh’s
are the (Nh ×Nh) diagonal matrices suitably defined.

For each j = 1, . . . , c, we claim that all the eigenvalues of
the matrix L̄j := Lj +EjKj lie in C>0. If Nj = 1 then the
claim trivially follows from the definition of the Laplacian
matrix (i.e., Lj = 0) and the assumption of the theorem. Now
assume that Nj ≥ 2. Then L̄j is irreducible. If not, there
exist a permutation matrix Pj ∈ RNj×Nj such that PTj L̄jPj
is block upper triangular as in (2). Noting that QTEjKjQ is
diagonal for any permutation matrix Q, one observes that
PTj LjPj = PTj L̄jPj − PTj EjKjPj is also block upper
triangular, which is not possible because the Laplacian Lj
corresponding to the iSCC Gj is irreducible by Theorem 1.
Thus L̄j is irreducible. Moreover, it is strictly diagonally

4One of the properties of the Kronecker product is that for any A ∈
Rn×n and B ∈ Rm×m, the eigenvalues of A ⊗ B are λi(A)λh(B) for
i = 1, . . . , n and h = 1, . . . ,m. Thus the algebraic multiplicity of the zero
eigenvalue of (Lj ⊗ In) is n for j = 1, . . . , c.
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dominant since Lj is diagonally dominant and eqjkqj > 0.
Hence by Lemma 1, 0 6∈ λ(L̄j) and by Gershgorin disc
theorem, the claim follows.

Now it remains to show that λ(L0+E0K0) ⊂ C>0. Define
M0 := −[L01 · · · L0c], D̄0 := diag(M01N−N0

) +E0K0,
and L̄0 := L0−diag(M01N−N0

). Note that all the elements
of D̄0 are nonnegative and the matrix L̄0 corresponds to
the Laplacian matrix of the subgraph induced by the set
N0. Then, with the fact that L0 + E0K0 = L̄0 + D̄0, one
can show the invertibility of L̄0 + D̄0 from [21, Appendix
A.3.2] with the matrices L0 and D0 in [21, Appendix A.3.2]
replaced by L̄0 and D̄0, respectively. On the other hand, all
the Gershgorin discs of L0+E0K0 = L̄0+D̄0 are subsets of
C>0 ∪ {0}, since L̄0 is a Laplacian matrix and the diagonal
matrix D̄0 is nonnegative. Thus λ(L0 + E0K0) ⊂ C>0.

By the claims proven so far, one concludes that −(L +
EK) is Hurwitz and in turn, so the matrix −(L+EK)⊗In
is.

Corollary 3: Let G = (N , E ,A) be any connected graph
and let the external controls be as in (10). Then the MAS (5)
with (4) and (10) is exponentially stable if there is a source
node q ∈ N such that eq = 1 and kq > 0. �

Proof: Let G1 = (N1, E1,A1) be the iSCC of the
connected graph. Then the node q in the theorem belongs
to N1. Thus the result follows from Theorem 6.

Remark 1: On the basis of the theorems and corollaries
presented so far, it is worthwhile to mention about the
number of external controls that is necessary to stabilize the
MAS. In view of Theorem 5, only one external control to
each iSCC is sufficient, that is, c external controls are enough
in the case of the graph having c distinct iSCCs. All the other
stabilizing external controls, especially including the controls
acting on the nodes that do not belong to any iSCCs, are
redundant. Moreover, from Theorem 6, it turns out that any
negative self-feedback to a node in each iSCC stabilizes the
MAS, even for arbitrarily small gains kqj > 0. ♦

B. Application: Decentralized Set-Point Control Problem
with Formation

Consider a group of N systems (5) with the interaction
topology modeled by a graph G = (N , E ,A). Let Gj =
(Nj , Ej ,Aj), j = 1, . . . , c be the c distinct iSCCs of
the graph G. In order to avoid notational complexity, it is
assumed that for j = 1, . . . , c, there is exactly one node qj ∈
Nj with eqj = 1 (so that ei = 0 for all i 6∈ {q1, . . . , qc}).
When there are additional external controls, one can solve
the problem (defined below) by appropriately modifying the
proposed scheme.

For the given N displacement vectors di ∈ Rn, i ∈ N
and a set-point d0 ∈ Rn, the decentralized set-point control
problem with formation for the MAS (5) is said to be solved
if there exist the controls ui and rqj such that (a) each
agent is allowed to use the state information of its own and
its neighboring agents for feedback, as well as the desired
displacements di’s; (b) the information on the set-point d0 is
available only for the nodes qj’s; and (c) under the controls,
the MAS satisfies that limt→∞ ‖xi(t) − (di + d0)‖ = 0 for

1 2

3

4

5 6

Fig. 2. An example of MAS consisting of six agents. The number in the
circle denotes the agent’s identifier. The red dashed box corresponds to the
iSCC of the connected interaction topology. The external control, namely
r1, is assumed to be applied only to the agent 1.

each i ∈ N . Note that the problem here differs from the
formation problem given in Section II-B in the sense that the
formation eventually reached by the MAS does not depend
on the initial conditions xi(0)’s. In addition, the formation
can be put in any location by setting d0.

Under these setups, we propose the following interagent
and external controls

ui =
∑
h∈N i

αih{(xh − dh)− (xi − di)}, i ∈ N , (11a)

rqj = −kqj (xqj − dqj − d0), j = 1, . . . , c, (11b)

where kqj ’s are any positive numbers.
To show that the MAS under the decentralized control (11)

solves the problem, define x̃i := xi−di−d0. Then the overall
dynamics of the MAS is written as ˙̃x = −{(L + EK) ⊗
In}x̃, where L is the Laplacian matrix of G and the diagonal
matrices E and K are appropriately defined from ei’s and
kqj ’s. By Theorem 6, it follows that the overall dynamics
is exponentially stable and thus, that limt→∞ ‖xi(t)− (di +
d0)‖ = 0 for i ∈ N .

IV. EXAMPLE

An example of the decentralized set-point control problem
with formation is addressed in this section. Consider the
MAS (5) with xi := col(xi1, xi2) ∈ R2, consisting of six
agents, and suppose that each agent of the MAS interacts
with the others as depicted in Fig. 2. Suppose also that only
the agent 1 has the external control r1; namely, e1 = 1 and
for i = 2, . . . , 6, ei = 0. Note that the overall dynamics (6)
derived from Fig. 2 is uncontrollable in the sense of [19]
because the subgraph induced by the node set {4, 5, 6} is
unweighted and complete.

For the MAS, we consider the scenario that, starting
from an arbitrary configuration, the MAS is driven by the
interagent control (11a) (without the external control) so as
to achieve the formation, where the displacement vectors are
assumed to be given as[
d1 d2 d3 d4 d5 d6

]
:=

[
0 −5 5 −10 0 10

0 −5
√

3 −5
√

3 −10
√

3 −10
√

3 −10
√

3

]
.

After that, by additionally controlling the 1st agent through
the external control (11b), we move the agent 1 to the set-
point d0 = d0 +d1 = col(35, 35) maintaining the formation.
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Fig. 3. Simulation result with the snapshots at the times t = 0, 20,
and 40 seconds. The agents’ identifiers are omitted for brevity and all the
initial conditions of the agents are randomly chosen. The black circles, blue
squares, and red triangles represent the configuration of the MAS at t = 0,
20, and 40 seconds, respectively.

Fig. 3 shows the simulation result. In the simulation, the
external control is applied to the agent 1 in a way that
r1(t) = 0 for t ∈ [0, 20) and r1(t) = −5(x1(t) − d1 − d0)
for t ∈ [20, 40]. From the figure, one can observe that the
MAS reaches the formation at t = 20 seconds, although the
location of the formation depends on the initial conditions
and the displacement vectors of the agents as mentioned in
Section II-B. On the other hand, the formation is moved
to another location by successfully pulling the agent 1 to
the set-point d0 through the external control r1, during
t ∈ [20, 40].

V. CONCLUSIONS AND FUTURE WORKS

In the paper, we have studied the stabilizability of a group
of single integrators, having external control inputs, under
the interaction topology modeled by a weighted directed
graph. The key concept that characterizes the stabilizability
of the multi-agent system (MAS) was shown to be the
independent strongly connected components (iSCCs) of the
graph. In fact, it was shown that the MAS is stabilizable if
and only if in each iSCC, there is an agent that has access
to an external control. This result is a generalization of the
(leader-follower) controllability-based results, e.g., [3], [7],
[8], [9], [13], [14], [15], [19], if the controllability of the
MAS is replaced by the stabilizability. Based on the result,
we proposed a decentralized external self-feedback control
that stabilizes the MAS. Moreover, the decentralized set-
point control problem with formation is dealt with as an
application of the problem.

Finally, consideration of the extension to the MAS having
general linear dynamics is under further study.
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