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Abstract— In this paper, we consider the regulation problem
for uncertain linear discrete time systems with bounded dis-
turbance, bounded input and bounded output. Based on the
input-output representation, an extended state space model is
constructed via the delayed inputs and outputs of the systems
and hence there is no need for any estimate of the unmeasured
states. The control is obtained using an interpolation technique,
which assures feasibility and a robustly asymptotically stable
closed loop behavior.

I. INTRODUCTION

The output feedback synthesis problem for linear systems
with output and input constraints, subject to parametric
uncertainty in the model description and to bounded additive
disturbance has been a longstanding in the literature. We
mention here two main approaches which aim at solving
the state feedback constrained control problems. The first
one is based on the optimal control principles and earned a
good reputation under the name of Model Predictive Control
(MPC) [1].Most traditional MPC are based on mathematical
models which invariably present a mismatch with respect
to the physical systems. The robust MPC is meant to ad-
dress both model uncertainty and disturbances. However, the
nominal MPC extension to the robust case presents great
conservativeness and/or on-line computational burden [2],
[3]. A second constrained control design methodology for
linear systems is based on the explicit control action for the
extreme points of a certain region in the state space. The
approach is known in the literature as vertex control [4],
[5]. A weakness of this method is that the full control range
is exploited only on the border of the feasible invariant set
and hence the control action is poorly employed when the
trajectory leaves the region of constraint activation. For this
reason the regulation performance for a linear plant of vertex
control is poor compared to the classical linear quadratic
regulator.

Recently, a novel approach for state feedback control of
linear systems with output and input constraints, subject
to parametric uncertainty was proposed in [6]. The main
idea is to interpolate between the vertex control action uv
and the local control action uo around the equilibrium. For
the current state x, this strategy leads to a control action
in the form u(x) = cuv + (1 − c)uo, 0 ≤ c ≤ 1,
whereby c(x) is minimized in order to obtain a control
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action as close as possible to the unconstrained optimal one.
It was shown that with c as the objective function there
exists a Lyapunov function for the system controlled by the
interpolated controller u, thus guaranteeing stability.

The first aim of this paper is to extend the result in
[6] to the case of both model uncertainty and bounded
disturbances. Two interpolation schemes will be proposed.
The first interpolation scheme uses the global vertex control
and local unconstrained robust optimal control, while the
second one interpolates between the optimal contractive
control at the frontier of a controlled invariant set and local
unconstrained robust optimal control.

The second aim of this paper is to address the robust
peak to peak gain minimization using LMIs. Instead of
minimizing the robust induced L∞−norm, we minimize
its upper bound along the lines in [7], [8] and [5] with
a contribution towards the parametric uncertainty handling.
The optimal state feedback controller will be obtained by
solving line search + semidefinite (convex) optimizations.

The third feature of the current paper is the use of
an extended (non-minimal) state space, such that the state
variables correspond to the measured plant input, output and
their past measured values, as defined by the structure of the
system transfer function model. Since in that representation,
all the states are accessible, this approach eliminates the need
of using an observer and the proposed scheme can answer
the constrained output-feedback design demands.

II. PROBLEM STATEMENT

Consider the problem of regulating to the origin the
following linear discrete-time system, described by the input-
output relationship:

y(t+ 1) +D1y(t) +D2y(t− 1) + . . .+Dny(t− n+ 1)
= N1u(t) +N2u(t− 1) + . . .+Nmu(t−m+ 1) + w(t)

(1)
where y(t) ∈ Rq , u(t) ∈ Rp and w(t) ∈ Rq . For simplicity,
it is assumed that m = n.

The matrices Di and Ni, i = 1, . . . , n have suitable
dimensions and satisfy:

Γ =

(
D1 . . . Dn

N1 . . . Nn

)
=
∑s
i=1 αiΓi (2)

where αi ≥ 0 and
∑s
i=1 αi = 1 and

Γi =

(
Di

1 . . . Di
n

N i
1 . . . N i

n

)
are the vertices of the polytope. The output and control are
subject to the following hard constraints:

y(t) ∈ Y, u(t) ∈ U (3)
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where Y = {y : Fyy ≤ gy} and U = {u : Fuu ≤ gu} are
polyhedral sets and containing the origin in their interior.

It is assumed that, the disturbance w(t) is unknown, but
contained in a bounded polytopic set W , i.e. w(t) ∈ W ,
where W = {w : Fww ≤ gw}.

III. STATE SPACE DESCRIPTION

The measured plant input, output and their past measured
values are used to represent the states of the plant:

x(t) = [y(t)T y(t− 1)T . . . y(t− n+ 1)T

u(t− 1)T u(t− 2)T . . . u(t− n+ 1)T ]T
(4)

The state space model is then defined as follows:

x(t+ 1) = Ax(t) +Bu(t) +Bww(t) (5)
y(t) = Cx(t) (6)

A =



−D1 −D2 . . . −Dn N2 . . . Nn−1 Nn

I 0 . . . 0 0 . . . 0 0
0 I . . . 0 0 . . . 0 0

...
...

. . .
...

...
. . .

...
...

0 0 . . . I 0 . . . 0 0
0 0 . . . 0 0 . . . 0 0
0 0 . . . 0 I . . . 0 0

...
...

. . .
...

...
. . .

...
...

0 0 . . . 0 0 . . . I 0


B =

[
NT

1 0T 0T . . . 0T ITp×p 0T . . . 0T
]T

Bw =
[
I 0 0 . . . 0 0T 0T . . . 0T

]T
C =

[
I 0 0 . . . 0 0 0 . . . 0

]
where I and 0 denote the identity and zero matrices.

From the equation (2), it is clear that matrices A and B
belong to a polytope:

(A,B) ∈ ∆ (7)

with ∆ = Convex hull{(A1, B1), (A2, B2) . . . , (As, Bs)}

The vertices (Ai, Bi) are obtained from the vertices of (2).
Although the obtained representation is non-minimal, it

has the merit that the original output-feedback problem
for the uncertain plant has been transformed into a state-
feedback problem where the matrices A and B lie in the
polytope defined by (7) and any state-feedback control which
is designed for this representation u = Kx can be translated
into a dynamic output feedback controller.

Using (3), it is clear that x(t) ∈ X ⊂ Rnx with nx =
n(q + p). Explicitly X is given by:

X = Y × Y × . . .× Y︸ ︷︷ ︸
n times

×U × U × . . .× U︸ ︷︷ ︸
n times

= {x ∈ Rnx : Fxx ≤ gx}.

IV. THE ROBUST PEAK-TO-PEAK CONTROLLER [7], [8]

In this section, we address the following problem:
The robust peak to peak control problem: For a

prescribed scalar ρ, find a controller that asymptotically
stabilizes the system and satisfies for all w(t), such that
w(t) ∈W :

J =
‖y‖∞
‖w‖∞

≤ ρ

over the uncertainty polytope ∆ and zero initial condition.

Here we make use of a linear matrix inequalities (LMI).
The main idea of the method is that, instead of minimizing
the robust induced L∞-norm, we minimize its upper bound.
The optimal state feedback controller is obtained by solving
a semidefinite convex optimization problem in conjunction
with line search. We extend the previously published results
[7], [8] to the case of uncertain systems. In addition, for
reducing the conservativeness, we adopt the parameter de-
pendent Lyapunov approach [9].

Before proceeding, consider the following autonomous
polytopic discrete time invariant system:{

x(t+ 1) = H(α)x(t) +Bww(t)
y(t) = Cx(t)

(8)

where x(t), y(t), w(t) are respectively the state, the output
and the disturbance input. The matrix H(α) satisfies:

H(α) =

s∑
i=1

αiHi (9)

where αi ≥ 0 and
∑s
i=1 αi = 1, and the matrices Hi

are given extreme realizations of H(α). Note that the time
invariant nature of the model (8) implies an unknown but
fixed parameter α.

It is assumed that, ρ(H(α)) < 1, where ρ(H(α)) is the
spectral radius of matrix H(α). This condition implies that
the system (8) is robustly stable.

The non-degenerate Ex ellipsoid in Rnx with the center
at the origin is defined as follows:

Ex = {x ∈ Rnx : xTP−1x ≤ 1}, P ≥ 0.

The disturbance w(t) satisfies w(t) ∈ W . By calculating
the maximal distance from the vertices of the polytope W to
the origin, one can find the minimal outer circle1 with radius
Rw that contains W . Furthermore by scaling the matrix Bw,
i.e. Bw = BwRw, it can be always assumed that Rw = 1.

Definition 1: The ellipsoid Ex is robustly positively
invariant (RPI) with respect to (8) if and only if:

∀x ∈ Ex ⇒ Hix+Bww ∈ Ex,∀i = 1, 2, . . . , s and ∀w ∈W

If Ex is a RPI ellipsoid, then for x ∈ Ex, the output
y = Cx belongs to the ellipsoid:

Ey = {y ∈ Rp : yT (CPCT )−1y ≤ 1}

Remark 1: In the following we will be interested in
the description of an RPI set with respect to the system
(8) starting from ellipsoidal positive invariant sets for the
extreme realizations of the polytopic system in (8). We will
concentrate on the minimization of the norm of this ellipsoid
as it will be defined in the following result. Subsequently,
whenever using minimal ellipsoids is in the sense of this
optimization problem. Note however that the resulting RPI
set is not preserving an ellipsoid structure but rather the
convex hull of finite number of ellipsoidal sets.

1In general terms we can employ ellipsoidal description of the additive
uncertainty, but for simplicity of the presentation we choose to work with
a scaled unitary norm 2 ball.

5517



Theorem 1: If there exist symmetric matrices Pi, a matrix
G and a number 0 < r < 1 such that: Pi HiG Bw

GTHT
i (1− r)(G+GT − Pi) 0

BTw 0 rI

 � 0 (10)

for all i = 1, 2, . . . , s then there exists 0 ≤ αi ≤ 1, i =
1, . . . , s and

∑s
i=1 αi = 1 such that the set

Eh = {x ∈ Rn : xT (

s∑
i=1

αiPi)
−1x ≤ 1} (11)

is a collection of positively invariant (and attractive) sets for
all possible realizations of polytopic system (8).

Proof: Consider the quadratic Lyapunov function

V (x) = xTQ(α)x

for the uncertain system (8) with Q(α) = (
∑s
i=1 αiPi)

−1

and Pi � 0, ∀i = 1, . . . , s.
For the invariant property of the set {x : V (x) ≤ 1},

we require that V (x(t + 1)) ≤ 1 for all x and w such that
xTQ(α)x ≤ 1 and wTw ≤ 1.That is

(H(α)x(t) +Bww(t))TQ(α)(H(α)x(t) +Bww(t)) ≤ 1

or equivalently(
x(t)
w(t)

)T (
H(α)TQ(α)H(α) H(α)TQ(α)Bw

BT
wQ(α)H(α) BT

wQ(α)Bw

)(
x(t)
w(t)

)
≤ 1

for all x and w such that xTQ(α)x ≤ 1 and wTw ≤ 1.
By using the S−theorem [10] with two quadratic con-

straints, one can rewrite the condition (10) as follows:(
H(α)TQ(α)H(α)− τ1Q(α) H(α)TQ(α)Bw

BTwQ(α)H(α) BTwQ(α)Bw − τ2I

)
� 0

for some values of τ1 ≥ 0, τ2 ≥ 0, such that τ1 + τ2 ≤ 1.
It is clear that H(α)TQ(α)H(α) � 0, BTwQ(α)Bw � 0

as a consequence of the fact that Q(α) � 0. Hence τ1 and
τ2 must be strictly positive. It is also well known that it is
nonrestrictive to use τ1 = 1− τ2 [10].

Using the Schur complements, from the preceding condi-
tion one obtains:

H(α)TQ(α)H(α)− (1− r)Q(α)
−H(α)TQ(α)Bw(BTwQ(α)Bw − rI)−1BTwQ(α)H(α) � 0

(12)
where r = τ2.

From the Woodbury formula [11], one has:

Q(α)Bw(BTwBw − rI)−1BTwQ(α) =
= Q(α)− (Q(α)−1 − r−1BwB

T
w)−1

Then the condition (12) can be rewritten as:

−(1− r)Q(α)+H(α)T (Q(α)−1− r−1BwB
T
w)−1H(α) � 0

By using the Schur complements, one obtains:(
(1− r)Q(α) H(α)T

H(α) Q(α)−1 − r−1BwB
T
w

)
� 0

or equivalently:

Q(α)−1 − r−1BwB
T
w − (1− r)−1H(α)Q(α)−1H(α)T � 0

⇔ P (α)− r−1BwB
T
w − (1− r)−1H(α)P (α)H(α)T � 0

where P (α) = Q(α)−1 =
∑s
i=1 αiPi. By using Schur

complements, the above condition can be written as:(
(1− r)P (α)− (1−r)

r BwB
T
w H(α)P (α)

P (α)H(α)T P (α)

)
� 0 (13)

Lemma: Condition (13) is satisfied if and only if there
exists a matrix G such that(

(1− r)P (α)− (1−r)
r BwB

T
w H(α)G

GTH(α)T G+GT − P (α)

)
� 0

(14)
Note that, from (13) one can easily recover (14) by

choosing G = GT = P (α) � 0, hence (13) implies (14).
Conversely, by multiplying (14) by Ξ =

(
I −H(α)

)
on the left and by ΞT on the right one gets (13), hence (14)
implies (13) and concludes the proof of the Lemma.

It is worth noticing that, by introducing a new additional
matrix G, we obtain an LMI in which the Lyapunov matrix
P (α) is not involved in any product with the matrix H .

From (14) by using the Schur complements, one can
obtain: P (α) H(α)G Bw

GTH(α)T (1− r)(G+GT − P (α)) 0
BTw 0 rI

 � 0

(15)
The condition (15) can be treated as a linear function of

α and which reaches the minimum on one of the vertices of
H(α) and P (α), so the set of LMI conditions to be satisfied
to check an invariant property is the following: Pi HiG Bw

GTHT
i (1− r)(G+GT − Pi) 0

BTw 0 rI

 � 0 (16)

for i = 1, 2, . . . , s. �
Theorem 1 states that, for a given realization of 0 ≤ αi ≤

1, i = 1, . . . , s,
∑s
i=1 αi = 1, the set Ex(α1, . . . , αs) = {x :

xT (
∑s
i=1 αiPi)

−1x ≤ 1}, where Pi is a solution of (15), is
a positively invariant set for the respective realization of the
system (8).

It is very useful to know the shape of the set Eh in (11).
By denoting Qi = P−1

i , it is well known that Eh is the
convex hull of the ellipsoids Ei = {x : xTQix ≤ 1} [12].

If the system is robustly stable, then there exists a unique
invariant ellipsoid, which minimizes some convex objective
J(P (α)). In this paper this objective function is chosen as
J(P (α)) =

∑s
i=1 trace(CPiC

T ). Here the trace of a square
matrix is defined to be the sum of the elements on the main
diagonal of the matrix. Minimization of the trace of matrices
corresponds to the search for the minimal sum of eigenvalues
of matrices. It is important to note that when r is fixed, the
conditions (15) are LMIs, for which nowadays, there exist
several effective solvers (see for example [14]).

For the synthesis problem, given the system (5), a linear
controller structure in the form

u(t) = Kx(t) (17)

which yields the following closed loop matrices:

H(α) = A+BK, Bw = Bw, C = C

5518



The following linearizing change of variable L = KG is
able to preserve the linearity of the condition given in the
Theorem 1 with respect to the synthesis variables P , G and
L, providing the set of LMI given in the following corollary:

Corollary 2: Let P , G and L be solutions of the following
semidefinite problem:

min trace
∑s

i=1 CPiC
T ,

subject to

 Pi AiG+ BiL Bw

GTAT
i + LTBT

i (1− r)(G+GT − Pi) 0

BT
w 0 rI

 � 0

in the matrix variables Pi = PTi , G, L and the scalar
parameter r ∈ (0, 1). Then the control u = Kx, K = LG−1

is stabilizing and among all stabilizing control it provides the
minimum of invariant ellipsoid size (in the sense of trace
criterion) for the output of the closed loop system.

V. INTERPOLATION BASED CONTROLLER WITH LINEAR
PROGRAMMING

It is assumed that, the set Eh = {x ∈ Rn :
xT (

∑s
i=1 αiPi)

−1x ≤ 1} is inside the constrained poly-
hedral set X . With this assumption, based on procedures
in [6], [5] one can find a maximal robustly positively
invariant (MRPI) set O∞ in the form O∞ = {Fox ≤ go}.
Furthermore, with some given and fixed N , one can find a
controlled invariant set PN = {FNx ≤ gN} such that all
x ∈ PN can be steered into O∞ in no more than N steps
when a suitable control is applied [6].

A. Vertex control law [4]

Given a positve invariant polytope PN ∈ Rn, this polytope
can be decomposed in a sequence of simplices P kN each
formed by n vertices x

(k)
1 , x

(k)
2 , . . . , x

(k)
n and the origin.

These simplices have following properties:
• P kN has nonempty interior,
• Int(P kN ∩ P lN ) = ∅ if k 6= l,
•
⋃
k P

k
N = PN ,

Denote by X(k) = (x
(k)
1 x

(k)
2 . . . x

(k)
n ) the square ma-

trix defined by the vertices generating P kN . Since P kN
has nonempty interior, X(k) is invertible. Let U (k) =

(u
(k)
1 u

(k)
2 . . . u

(k)
n ) be the matrix defined by the admissible

control values at these vertices. For x ∈ P kN consider the
following linear gain Kk:

Kk = U (k)(X(k))−1 (18)

Theorem 3: The piecewise linear control u = Kkx is
constraint admissible and asymptotically stable ∀x ∈ PN .

Proof: The proof of this theorem is not reported here. The
reader is referred to [4] or [5] for more details. �

B. Interpolation via linear programming - Algorithm 1

Any state x(t) in PN can be decomposed as follows:

x(t) = cxv(t) + (1− c)xo(t) (19)

where xv(t) ∈ PN , xo(t) ∈ O∞ and 0 ≤ c ≤ 1.
Consider the following control law:

u(t) = cuv(t) + (1− c)uo(t) (20)

where uv(t) is obtained by applying the vertex control law
and uo(t) = Kxo(t) is the feasible control law in O∞.

Theorem 4: The control law (20) is feasible ∀x ∈ PN .
Proof: Corresponding to the decomposition, the control

law is given by (20).
One has to prove that Fuu(t) ≤ gu and x(t+1) = Ax(t)+

Bu(t)+Bww(t) ∈ PN for all x(t) ∈ PN and all w(t) ∈W .
One has

Fuu(t) = Fu(cuv(t) + (1− c)uo(t))
= cFuuv(t) + (1− c)Fuuo(t) ≤ cgu + (1− c)gu = gu

and

x(t+ 1) = Ax(t) +Bu(t) +Bww(t)
= A(cxv(t) + (1− c)xo(t)) + . . .

+B(t)(cuv(t) + (1− c)uo(t)) +Bww(t)
= c(Axv(t) +Buv(t) +Bww(t)) + . . .

+ (1− c)(Axo(t) +Buo(t) +Bww(t))

We have Axv(t) + Buv(t) + Bww(t) ∈ PN and Axo(t) +
Buo(t) +Bww(t) ∈ O∞ ⊂ PN ⇒ x(t+ 1) ∈ PN . �

Referring to the discussion in the introduction to give a
maximal control action, one would like to minimize c, so the
following program is optimized:

c∗(x) = min
c,xv,xo

c, s.t.


FNxv ≤ gN ,
Foxo ≤ go,
cxv + (1− c)xo = x,
0 ≤ c ≤ 1

(21)

Denote rv = cxv , ro = (1 − c)xo. It is clear that rv ∈
cPN and ro ∈ (1− c)O∞ or equivalently FNrv ≤ cgN and
Foro ≤ (1−c)go. The above non-linear program is translated
into a linear program (LP) as follows.

Algorithm 1: Interpolation based on LP

c∗(x) = min
c,rv

c, s.t.

 FNrv ≤ cgN
Fo(x− rv) ≤ (1− c)go
0 ≤ c ≤ 1

(22)

Remark 2: If instead of minimization, one maximizes c in
(22), it is obvious that c = 1 for all x ∈ PN . In this case the
controller turns out to be the vertex controller.

Theorem 5: The control law using interpolation based
on linear programming (19), (20), (22) guarantees robustly
asymptotic stability for all initial state x(0) ∈ PN .

Proof: First of all we will prove that all solutions starting
in PN will reach the set O∞ in finite time.

For this purpose, consider the positive function V (x) = c∗

for all x(t) ∈ PN \ O∞. V (x) is the Lyapunov function
candidate.

For any x(t) ∈ PN , one has x(t) = c∗(t)xv(t) + (1 −
c∗(t))xo(t) and u(t) = c∗(t)uv(t) + (1 − c∗(t))uo(t). It
follows that:

x(t+ 1) = Ax(t) +Bu(t) +Bww(t)
= c∗(t)xv(t+ 1) + (1− c∗(t))xo(t+ 1)

where xv(t + 1) = Axv(t) + Buv(t) + Bww(t) ∈ PN and
xo(t+ 1) = Axo(t) +Buo(t) +Bww(t) ∈ O∞.

By using the interpolation based on linear programming,
one can obtain x(t+ 1) = c∗(t+ 1)xov(t+ 1) + (1− c∗(t+
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1))xoo(t+1), where xov(t+1) ∈ PN and xoo(t+1) ∈ O∞ . It
follows that c∗(t+ 1) ≤ c∗(t) and V (x) is a non-increasing
Lyapunov function.

The asymptotically stable property of the vertex control
law and the feasible controller over O∞ assures that there
is no initial condition x(0) ∈ PN \ O∞ such that c∗(t) =
c∗(0),∀t ≥ 0. It follows that V (x) = c∗ is a Lyapunov
function for x ∈ PN \O∞.

Using the vertex controller, an interpolation between the
vertices of the feasible invariant set and the origin is
obtained. Conversely using the controller (19), (20), (22)
an interpolation is constructed between the vertices of the
feasible invariant set and those of the MRPI which contains
the origin as an interior point. This last property proves that
the vertex controller is a feasible choice for the interpolation
based technique. From these facts we conclude that the
closed sets defined by the Lyapunov function level curves
for the closed loop system with the controller (19), (20), (22)
are subsets of the closed sets defined by the corresponding
Lyapunov function level curves for the closed loop with
vertex control. The latter ones are, in fact, homothetical
polyhedra with respect to the border of the vertex control
feasible invariant set.

The proof is complete by noting that inside the set
O∞ the feasible asymptotically stable controller u = Kx
has contractive properties and thus the interpolation-based
controller is assuring asymptotic stability for all x ∈ PN . �

C. Interpolation via linear programming - Algorithm 2

The following properties can be exploited at the construc-
tion stage:

1) For x ∈ O∞ the result of the optimal interpolation
problem has a trivial solution x∗0 = x and thus c∗ = 0
in (22).

2) Let x ∈ PN \O∞ with a particular convex combination
x = cxv + (1 − c)xo, where xv ∈ PN and xo ∈
O∞. If xo is strictly inside O∞, one can set x∗o =
Fr(O∞)∩x, xo (the intersection between the frontier of
O∞ and the line connecting x and xo). Using convexity
arguments x = c∗xv + (1 − c∗)x∗o with c∗ ≤ c. In
general terms, the optimal interpolation process leads
to a solution (xv, xo)

∗ with x∗o ∈ Fr(O∞).
3) On the other hand, if xv is strictly inside PN by

setting x∗v = Fr(PN ) ∩ x, xv(the intersection between
the frontier of PN and the line connecting x and xv)
one can obtain x = c∗x∗v + (1 − c∗)xo with c∗ ≤ c
leading to the conclusion that for the optimal solution
(xv, xo)

∗ we have x∗v ∈ Fr(PN ).
From the previous remark we conclude that c will reach

a minimum in (22) if x is written as a convex combination
of two points, one belonging to the frontier of O∞ and the
other on the frontier of PN .

As a consequence of the above remark, the vertex control
law is only one of several candidates of the controller at the
frontier of PN . It is clear that, any control law that steers
the states on the frontier of PN go inside PN will make the
interpolated control (19), (20, (22) asymptotically stable.

An intuitive approach is to devise a controller, that steers
the state at the frontier of the controlled invariant set PN
with the maximal contraction factor.

In order to give a precise definition for far points, the
following definition is introduced [5].

Definition 6: Given a C-set2 Θ, the Minkowski functional
ΓΘ of Θ is defined by:

ΓΘ(x) = min{µ ≥ 0 : x ∈ µΘ} (23)

So we will try to minimize the Minkowski functional for
the state xv at the frontier of the feasible set. This can be
done by solving the following program:

J = min
µ,u

µ

s.t.

 FN (Aixv +Biu) ≤ µgN −maxFNBww,
Fuu ≤ gu,
0 ≤ µ ≤ 1.

(24)
for all i = 1, . . . , s and for all w ∈W .

In summary, the interpolation based controller involves
two steps:

Algorithm 2:
1) For any state x ∈ PN , solve the program (22). In the

result one get xv , xo and c∗ with xv ∈ Fr(PN ), xo ∈
Fr(O∞) and x = c∗xv + (1− c∗)xo.

2) For xv ∈ Fr(PN ), one gets the control value uv by
solving the program (24).

3) The control u is defined as a convex combination of
uv and uo: u = c∗uv + (1− c∗)uo.

It is worth noticing that, for the algorithm 2, one has
to solve two linear programs at each time instant, hence
this algorithm is more computationally demanding than the
algorithm 1. However if the number of vertices of the
feasible set PN exceeds the number of facets, the algorithm
2 is preferable, due to the complexity of the global vertex
controller of the algorithm 1. In order to guarantee the
stability of the control scheme over the entire set PN , this
has to enjoy contractiveness properties with respect to the
control degree of freedom

VI. EXAMPLES

Consider the following discrete time system:

y(t+ 1)− (2− 0.1k2)y(t) + (1− 0.1k2)y(t− 1) =
= 0.1k1u(t) + (0.01− 0.1k1)u(t− 1) + w(t)

with k1 = 0.787, 0.1 ≤ k2 ≤ 3 and the sampling time 1sec.
The constraints are −10 ≤ y(t) ≤ 10 and −8 ≤ u(t) ≤ 8

and −0.01 ≤ w ≤ 0.01 and the state vector x(t) is:

x(t) = (y(t) y(t− 1) u(t− 1))T

with the state space model (5) given by:

A =

 (2− 0.1k2) −(1− 0.1k2) (0.01− 0.1k1)
1 0 0
0 0 0


B =

[
0.1k1 0 1

]T
, Bw =

[
1 0 0

]T
C =

[
1 0 0

]
2A C-set is a convex and compact set containing the origin in its interior.
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Using the polytopic uncertainty description, one has

A = αA1 + (1− α)A2, where

A1 =

 1.99 −0.99 −0.0687
1 0 0
0 0 0


A2 =

 1.7 −0.7 −0.0687
1 0 0
0 0 0


0 ≤ α ≤ 1 is a fixed and random number. At each

time instant −0.01 ≤ w ≤ 0.01 is an uniformly distributed
pseudo-random number.

Using the robust peak to peak controller, the feedback gain
is obtained without knowledge of α:

K =
(
−22.7894 10.6006 0.8729

)
It is worth noticing that, this controller can be described in
the output-feedback form

K(z) =
−22.7894 + 10.6006z−1

1− 0.8729z−1

Overall the control scheme is described by a second order
plant and a first order local controller which provides a
reduced order solution for the stabilization problem. By using
procedures in [5], [6], one obtains the set O∞ and PN . Due to
the limited space, the Figure, presenting the set O∞ and PN
is not shown here. Using algorithm 2 for an initial condition
x0 =

(
3.8890 5.8079 −8.0000

)T
and the realization

of α = 0.1016, we obtain the input and output trajectories
in Figure 1.

Fig. 1. The input and output trajectory for example 1.

Figure 2 shows the interpolating coefficient c(t) and the
realization of w(t). As expected, c(t) is a positive and
non-increasing function, assimilated to the decrease of a
Lyapunov function for the closed-loop system.

VII. CONCLUSION

This paper discussed the output-feedback constrained con-
trol law design. The invariant set techniques are used to
derive a robust peak to peak controller by the optimal rejec-
tion of unknown but bounded disturbances for an uncertain
linear time-invariant discrete time systems. As a second

Fig. 2. The interpolating coefficient c(t) and the realization of w(t) for
example 1.

contribution, an interpolation scheme based on linear pro-
gramming is introduced in two formulations. Both schemes
use the local peak to peak controller around the origin.
The other term of the interpolation is given either by a
predefined global vertex control action or by the optimal
(on-line computed) contractive control action at the frontier
of the controlled invariant set. The resulting interpolation
based control assures the asymptotic stability in presence of
constraints.
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