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Abstract— In this paper, the problems of stability analysis
and H∞ controller design of a class of switched nonlinear
systems are investigated. In a classical way, the modeling of the
systems is approached by switched fuzzy systems, and both fast
switching and slow switching are considered there. In particular,
for slow switching scheme, a new mode-dependent average dwell
time switching is proposed for the underlying switched fuzzy
systems. Based on a fuzzy-basis-dependent and mode-dependent
Lyapunov function, the H∞ state-feedback controller is derived.
A numerical example is given to show the validity and potential
of the theoretical results.

I. INTRODUCTION

In the past two decades, switched systems have been

extensively studied since switching feature exists in quite

many practical systems subject to internal parameters varia-

tions or external environmental changes [1], [2]. Switching

signals, either designable or not, are crucial in analysis

and design of switched systems. They are often considered

as either fast (arbitrary) or slow (dwell time or average

dwell time) switching. As a typical slow-switching rule,

the average dwell time (ADT) switching means that the

number of switches in a finite interval is bounded and

the average time between consecutive switching is not less

than a constant. So far, many results on ADT switching

have been obtained, see [3]–[6] for instance. However, the

ADT switching commonly considered in the literature is

independent of the system modes and probably leads to a

certain conservatism accordingly [7].

On the other hand, the most of studies are focused

on switched linear systems with vast systematical results

obtained, the investigation on switched nonlinear systems

are relatively somewhat limited. It has been well recognized

that, T-S fuzzy model provides an effective mathematical

tool to describe nonlinear systems in a general framework

[8]–[10]. Fuzzy logic control approach usually divide the

nonlinear system into several local dynamics, which are

represented by linear state-space models, and the overall

model can be described by fuzzy fusion of these local
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fuzzy models. Numerous stability analysis and H∞ control

results have been obtained in literature of fuzzy control and

fuzzy systems, e.g., [11]–[14], in which basic stability and

H∞ conditions are derived based on Lyapunov theory and

formulated in terms of linear matrix inequalities.

Alternatively, to approximate the switched nonlinear sys-

tems, some works have been initiated by considering the

switched fuzzy systems. Based on common Lyapunov func-

tion approach, the stability conditions for switched fuzzy

systems have been obtained [15]. Furthermore, the relaxed

stabilization conditions for discrete-time switched fuzzy sys-

tems by means of the switched quadratic Lyapunov function

for all local fuzzy systems have been available in [16],

[17]. In addition, some results on guaranteed cost control

of switched fuzzy systems have been obtained, readers are

referred to [18], [19] and the references therein for more

details. It is worth mentioning that, however, for neither fast

nor slow switching, the problems of l2-gain analysis and H∞

controller design for discrete-time switched fuzzy systems

have almost not been investigated so far.

In this paper, we are concerned with using a fuzzy-basis-

dependent and mode-dependent Lyapunov function to study

the problems of stability analysis and H∞ controller design

for discrete-time switched fuzzy systems. The stability anal-

ysis and H∞ controller design for arbitrary switching are

firstly derived and the corresponding results are extended to

the case of mode-dependent average dwell time (MDADT).

This paper is organized as follows. We review the definitions

and lemmas on stability and l2-gain of switched systems

in Section II. The case of switched systems under arbitrary

switching is first studied in Section III, the corresponding

results are extended to the case of MDADT switching in

Section IV. A numerical example is given in Section V, and

the paper is concluded in Section VI.

Notation: The notation used in this paper is fairly standard.

The superscript “T ” stands for matrix transposition, Rn

denotes the n dimensional Euclidean space, respectively. In

addition, in symmetric block matrices or long matrix expres-

sions, we use * as an ellipsis for the terms that are induced by

symmetry, and diag{· · · } stands for a block-diagonal matrix.

Matrices, if their dimensions are not explicitly stated, are

assumed to be compatible for algebraic operations. l2[0,∞)
refers to the space of square summable infinite vector se-

quences. C1 denotes the space of continuously differentiable

functions. The notation P > 0 (≥ 0) means that P is a real

symmetric positive (semi-positive) definite matrix, and I and

0 represent, respectively, the identity matrix and zero matrix.
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II. PRELIMINARIES

The T-S fuzzy systems, suggested by Takagi and Sugeno,

can represent a general class of nonlinear systems. Corre-

spondingly, switched nonlinear systems can be approximated

as switched fuzzy systems. If a switched nonlinear system is

modeled by switched fuzzy system, it can be represented by

the forms (include system model and controller) as follows

Subsystem i:
Local Plant Rule p:

If ξ1(k) is Mip1, and ..., ξr(k) is Mipr, then

xk+1 = Aipxk + Bipuk + Fipωk (1)

zk = Cipxk + Dipuk + Gipωk (2)

uk = Kipxk (3)

where ξj(k) are the premise variables, Mip are the fuzzy sets,

xk ∈ Rnx is the state vector, uk ∈ Rnu is the input vector,

ωk ∈ R
nω is the disturbance input and belongs to l2[0,∞),

zk ∈ Rnz is the output vector. The subsystem number i
is determined by switching signal σ, which is a piecewise

constant of time and takes its value in I = {1, ..., s}, s > 1
is the number of subsystems. At an arbitrary time k, σ may

be dependent on k or xk , or both, or other logic rules. For

a switching sequence k0 < k1 < k2 < ..., σ is continuous

from right everywhere. When k ∈ [kl, kl+1), we say the

σkl
th subsystem is active. (Aip, Bip, Fip, Cip, Dip, Gip) is

the pth local model of the ith subsystem. Through the “fuzzy

fusion”, the final closed-loop switched fuzzy system is given

by

xk+1 =

β(i)
∑

p=1

β(i)
∑

q=1

hiphiq (Aipqxk + Fipωk) (4)

zk =

β(i)
∑

p=1

β(i)
∑

q=1

hiphiq (Cipqxk + Gipωk) (5)

where Aipq = Aip + BipKiq, Cipq = Cip + DipKiq, and

ηip =
∏r

l=1
Mipl(ξl(k)), hip =

ηip
∑β(i)

p=1 ηip

(6)

in which Mipl(ξl(k)) is the grade of membership function

of ξl(k) in Mipl. It is assumed that ηip ≥ 0 for all k and p =
1, 2, ..., β(i). Therefore, the normalized membership function

hip satisfies

hip ≥ 0,
∑β(i)

p=1
hip = 1, for all k (7)

Our objective in this paper is to design a state-feedback

H∞ controller for the switched fuzzy system (4)-(5) under

arbitrary or mode-dependent average dwell time switching.

The following definitions are first recalled.

Definition 1: [7] For a switching signal σ(t) and any T ≥
t ≥ 0, let Nσi(t, T ) be the switching numbers that the ith
subsystem is activated over the interval [t, T ], and Ti denote

the running time of ith subsystem over the interval [t, T ],
i ∈ I. We say that σ(t) has a mode-dependent average dwell

time τai, if there exist positive number N0i (we call N0i

mode-dependent chatter bounds here), and τai such that

Nσi(t, T ) ≤ N0i +
Ti

τai

, ∀T ≥ t ≥ 0 (8)

Remark 1: Definition 1 has been proposed in [7], it means

that if there exist positive numbers τai, i ∈ I such that a

switching signal has the MDADT property, we only require

the average time among the intervals associated with the ith
subsystem is larger than τai.

Definition 2: [1] The switched system (4)-(5) with ωk ≡
0 is globally uniformly asymptotically stable (GUAS), if

there exists a class KL function α such that for all initial

condition x0, the solutions of (4)-(5) satisfy the inequality

‖xk‖ ≤ α(‖x0‖ , k), ∀k ≥ 0.

Definition 3: For γ > 0, system (4)-(5) is said to be

GUAS with l2-gain no greater than γ, if under zero ini-

tial condition, system (4)-(5) is GUAS and the inequality
∑

∞

k=0 zT
k zk ≤

∑

∞

k=0 γ2ωT
k ωk holds for all nonzero ωk ∈

l2[0,∞).
Definition 4: [6] For γs > 0, system (4)-(5) is said to be

GUAS with weighted l2-gain no greater than γs, if under zero

initial condition, system (4)-(5) is GUAS and the inequality
∑

∞

k=0(1 − λ)kzT
k zk ≤

∑

∞

k=0 γ2
sωT

k ωk, 0 < λ < 1 holds for

all nonzero ωk ∈ l2[0,∞).
In addition, the following lemmas are required for later

development.

Lemma 1: [5] The following arbitrarily switched system

xk+1 = Aixk + Fiωk (9)

zk = Cixk + Giωk (10)

is GUAS with l2-gain no greater than γ, if there exist C1

functions Vσ(k) : Rn → R, σ(k) ∈ I, class K∞ functions

κ1i and κ2i, i ∈ I, and a constant γ > 0, satisfying

κ1i(‖xk‖) ≤ Vi(xk) ≤ κ2i(‖xk‖) (11)

∆Vσ(k) + zT
k zk − γ2ωT

k ωk < 0 (12)

Lemma 2: [7] Consider the switched system (9)-(10) with

ωk = 0, and let 0 < λi < 1, µi > 1, i ∈ I. Suppose that

there exist C1 functions Vσ(k) : Rn −→ R, σ(k) ∈ I, and

class K∞ functions κ1i and κ2i, i ∈ I, such that

κ1i(‖xk‖) ≤ Vi(xk) ≤ κ2i(‖xk‖) (13)

∆Vi(xk) ≤ −λiVi(xk) (14)

and ∀(σ(kv) = i, σ(kv−1) = j) ∈ I × I, i 6= j,

Vi(xkv
) ≤ µiVj(xkv

) (15)

then the system (9)-(10) is GUAS with ωk = 0 for any

switching signal with MDADT

τai > τ∗

ai = − lnµi/ ln(1 − λi) (16)

Lemma 3: Consider the switched system (9)-(10) with

x0 = 0, and let 0 < λi < 1, µi > 1, i ∈ I. If the

system satisfying (13), (14), (15), and ∀i ∈ I, denoting

Γ(k) = zT
k zk − γ2ωT

k ωk

∆Vi(xk) + λiVi(xk) + Γ(k) ≤ 0 (17)
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then the switched system (9)-(10) is GUAS and has weighted

l2-gain
∑

∞

k=0(1 − λ)kzT
k zk < γ2

s

∑

∞

k=0 ωT
k ωk no greater

than γs =
√

λ
λ
γ for switching signal with MDADT (16),

where λ = max{λi}, λ = min{λi}.

Remark 2: The proof of Lemma 3 is cumbersome. We

omit them here due to space limitation, and we will include

them in the journal version of the paper.

Lemma 4: Given two matrices A ∈ Rm×n , B ∈ Rm×n,
and symmetric positive definite matrix P ∈ Rm×m, then

AT PB + BT PA ≤ AT PA + BT PB (18)

III. STABILITY ANALYSIS AND H∞

CONTROLLER DESIGN FOR FAST-SWITCHED

SYSTEMS

A. Stability and l2-gain Analysis

The aim here is to find less-conservative conditions ensur-

ing the globally uniformly asymptotic stability and l2-gain

of system (4)-(5). As a natural idea, choosing a common

quadratic Lyapunov function of the form V (xk) = xT
k Pxk,

we can obtain these conditions. However, such an approach

often yields overly conservative results. An improved method

is to construct fuzzy-basis-dependent and mode-dependent

quadratic Lyapunov function (FMDQLF) for switched fuzzy

systems. The form of FMDQLF is given by V (xk) =
xT

k Pσ(k)(ξ(k))xk . Now, based on the FMDQLF, we shall

present our first result on l2-gain conditions of switched

fuzzy systems (4)-(5) in the following theorem.

Theorem 1: The closed-loop discrete-time switched fuzzy

system (4)-(5) is GUAS with l2-gain no greater than γ, if

there exist a set of matrices Pip > 0, symmetric matrices

Xipq, Wipq , and matrices Uipq, such that ∀(i, j) ∈ I × I,

1 ≤ p ≤ q ≤ β(i), 1 ≤ l ≤ β(j).

∆T
ipq

[

Pjl 0
0 I

]

∆ipq −

[

Pip 0
0 γ2I

]

+ Θipq < 0 (19)

Ξ̂i =











Θi11 Θi12 · · · Θi1β(i)

∗ Θi22 · · · Θi2β(i)

...
...

. . .
...

∗ ∗ · · · Θiβ(i)β(i)











> 0 (20)

where ∆ipq = (Γipq + Γiqp) /2,

Γipq =

[

Aipq Fip

Cipq Gip

]

, Θipq =

[

Xipq ∗
Uipq Wipq

]

Proof. Assume Pi(ξ(k)) to be of the form Pi(ξ(k)) =
∑β(i)

l=1 hilPil, where Pil > 0, thus, one obtains Pi(ξ(k)) > 0,
and the FMDQLF satisfies

κ1i(‖xk‖) ≤ Vi(xk) ≤ κ2i(‖xk‖)

for some class K∞ functions κ1i and κ2i. Consider the

closed-loop system (4)-(5) with ωk = 0, ∀(i, j) ∈ I × I,

taking the difference between V (xk+1) and V (xk), we have

∆V = xT
k

β(j)
∑

l=1

hjl

β(i)
∑

p=1

β(i)
∑

q=1

β(i)
∑

m=1

β(i)
∑

n=1

hiphiqhimhin

×
(

AT
ipqPjlAimn − Pip

)

xk

= xT
k

β(j)
∑

l=1

hjl

β(i)
∑

p=1

β(i)
∑

q=1

β(i)
∑

m=1

β(i)
∑

n=1

1

4
hiphiqhimhin

×
[

(Aipq + Aiqp)
T

Pjl (Aimn + Ainm) − 4Pip

]

xk

= xT
k

β(j)
∑

l=1

hjl

β(i)
∑

p=1

β(i)
∑

q=1

β(i)
∑

m=1

β(i)
∑

n=1

1

8
hiphiqhimhin

×
[

(Aipq + Aiqp)T Pjl (Aimn + Ainm) − 8Pip

+ (Aimn + Ainm)
T

Pjl (Aipq + Aiqp)
]

xk

then, according to Lemma 4, we obtain

∆V

≤ xT
k

β(j)
∑

l=1

hjl

β(i)
∑

p=1

β(i)
∑

q=1

β(i)
∑

m=1

β(i)
∑

n=1

1

8
hiphiqhimhin

×
[

(Aipq + Aiqp)
T

Pjl (Aipq + Aiqp) − 8Pip

+ (Aimn + Ainm)
T

Pjl (Aimn + Ainm)
]

xk

= xT
k

β(j)
∑

l=1

hjl

β(i)
∑

p=1

β(i)
∑

q=1

1

4
hiphiq

×
[

(Aipq + Aiqp)
T

Pjl (Aipq + Aiqp) − 4Pip

]

xk

= xT
k

β(j)
∑

l=1

hjl

β(i)
∑

p=1

1

4
h2

ip

×
[

(Aipp + Aipp)
T Pjl (Aipp + Aipp) − 4Pip

]

xk

+2xT
k

β(j)
∑

l=1

hjl

β(i)
∑

p=1

β(i)
∑

q>p

1

4
hiphiq

×
[

(Aipq + Aiqp)
T

Pjl (Aipq + Aiqp) − 4Pip

]

xk

from (19), it is not difficult to get

(Aipq + Aiqp)T Pjl(Aipq + Aiqp) − 4Pip + 4Xipq < 0

with the above inequality, we have

∆V

< −xT
k

β(j)
∑

l=1

hjl





β(i)
∑

p=1

h2
ipXipp

+ 2

β(i)
∑

p=1

β(i)
∑

q>p

hiphiqXipq



xk

= −xT
k











hi1I
hi2I

...

hiβ(i)I











T

X̂i











hi1I
hi2I

...

hiβ(i)I











xk

where

X̂i =











Xi11 Xi12 · · · Xi1β(i)

∗ Xi22 · · · Xi2β(i)

...
...

. . .
...

∗ ∗ · · · Xiβ(i)β(i)










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by inequality (20), one has

X̂i > 0

that is, ∆V < 0, the stability of system (4)-(5) with ωk =
0 is guaranteed. On the other hand, by some mathematical

operations, l2-gain of system (4)-(5) can be proved. Consider

the closed-loop system (4)-(5) with zero initial condition, we

have

∆V = ζT
k

β(j)
∑

l=1

hjl

β(i)
∑

p=1

β(i)
∑

q=1

β(i)
∑

m=1

β(i)
∑

n=1

hiphiqhimhin

×

([

AT
ipq

FT
ip

]

Pjl

[

Aimn Fim

]

−

[

Pip 0
0 0

])

ζk

zT
k zk − γ2ωT

k ωk = ζT
k

β(i)
∑

p=1

β(i)
∑

q=1

β(i)
∑

m=1

β(i)
∑

n=1

hiphiqhimhin

×

([

CT
ipq

GT
ip

]

[

Cimn Gim

]

−

[

0 0
0 γ2I

])

ζk

where

ζk =
[

xT
k ωT

k

]T

it follows from Lemma 1 that

∆V + zT
k zk − γ2ωT

k ωk

= ζT
k

β(j)
∑

l=1

hjl

β(i)
∑

p=1

β(i)
∑

q=1

β(i)
∑

m=1

β(i)
∑

n=1

hiphiqhimhin

×

([

AT
ipq CT

ipq

FT
ip GT

ip

] [

Pjl 0
0 I

] [

Aimn Fim

Cimn Gim

]

−

[

Pip 0
0 γ2I

])

ζk

using the same technique as stability analysis, we can obtain

(12). Then, according to Lemma 1, system (4)-(5) has the

l2-gain no great than γ. This completes the proof. �

B. H∞ Controller Design

Now, based on stability and l2-gain results in Theorem

1, the conditions of a switched fuzzy-dependent controller

ensuring the GUAS and H∞ performance of system (4)-(5)

can be obtained, which is given in the following theorem.

Theorem 2: If there exist a set of matrices Qip > 0,
symmetric matrices Xipq, Wipq, and matrices Ωi, Uipq, Yip,
such that ∀(i, j) ∈ I × I, 1 ≤ p ≤ q ≤ β(i), 1 ≤ l ≤ β(j).









Oipq ∗ ∗ ∗
Uipq Wipq − γ2I ∗ ∗

Mipq
Fip+Fiq

2 −Qjl ∗

Nipq
Gip+Giq

2 0 −I









< 0 (21)

Ξ̂i > 0 (22)

where

Oipq = Qip −
(

Ωi + ΩT
i

)

+ Xipq

Mipq = (AipΩi + AiqΩi + BipYiq + BiqYip) /2

Nipq = (CipΩi + CiqΩi + DipYiq + DiqYip) /2

holds. Then the closed-loop system (4)-(5) is GUAS with

H∞ performance index γ, and the H∞ controller is given

by

Kip = YipΩ
−1
i (23)

Proof. Consider the closed-loop system (4)-(5), applying

the change of variable Yip = KipΩi to (21), one has









Oipq ∗ ∗ ∗
Uipq Wipq − γ2I ∗ ∗

Aipq+Aiqp

2 Ωi
Fip+Fiq

2 −Qjl ∗
Cipq+Ciqp

2 Ωi
Gip+Giq

2 0 −I









< 0

with the inequality (Qip − Ωi)
T Q−1

ip (Qip − Ωi) ≥ 0, which

is equivalent to ΩT
i Q−1

ip Ωi ≥ Ωi + ΩT
i − Qip, yields









Xipq − ΩT
i Q−1

ip Ωi ∗ ∗ ∗

Uipq Wipq − γ2I ∗ ∗
Aipq+Aiqp

2 Ωi
Fip+Fiq

2 −Qjl ∗
Cipq+Ciqp

2 Ωi
Gip+Giq

2 0 −I









< 0

it follows from (21) , (22) that 0 < Qip < Ωi + ΩT
i −Xipp,

Xipp > 0, one has 0 < Qip < Ωi + ΩT
i , which implies

that Ωi is invertible. Pre-multiplying diag(Ω−T
i , I, I, I) and

post-multiplying diag(Ω−1
i , I, I, I) to above inequality, lead

to









Ω−T
i XipqΩ

−1
i − Q−1

ip ∗ ∗ ∗

UipqΩ
−1
i Wipq − γ2I ∗ ∗

Aipq+Aiqp

2
Fip+Fiq

2 −Qjl ∗
Cipq+Ciqp

2
Gip+Giq

2 0 −I









< 0

setting Q−1
ip = Pip, Ω−T

i XipqΩ
−1
i = X̂ipq , UipqΩ

−1
i = Ûipq.

We have










X̂ipq − Pip ∗ ∗ ∗

Ûipq Wipq − γ2I ∗ ∗
Aipq+Aiqp

2
Fip+Fiq

2 −P−1
jl ∗

Cipq+Ciqp

2
Gip+Giq

2 0 −I











< 0

by Schur complement, the above inequality is equivalent

to (19). In addition, pre-multiplying diag{Ω−T
i ,I ,Ω−T

i ,I ,...,

Ω−T
i ,I} and post-multiplying diag{Ω−1

i ,I ,Ω−1
i ,I ,...,Ω−1

i ,I}
to (22), one has (20). Therefore, by Theorem 1, switched

fuzzy system (4)-(5) is GUAS and has a H∞ performance

index γ. �

Remark 3: Note that, if we omit subscript i and j in

Theorem 2, we will get the corresponding H∞ controller

design conditions for non-switched fuzzy systems, which

have been proposed in [13].

IV. EXTENSION TO SLOW-SWITCHED SYSTEMS

Based on the similar techniques used in the previous

developments, we consider a class of MDADT switching

defined as (8), and have the following propositions:

Proposition 1: Consider the closed-loop system (4)-(5),

and let 0 < λi < 1, µi ≥ 1 be the given constant. If

there exist matrices Pip > 0, symmetric matrices Xipq,
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Wipq , and matrices Uipq, such that ∀(i, j) ∈ I × I, i 6= j,
1 ≤ p ≤ q ≤ β(i), 1 ≤ l ≤ β(i).

∆T
ipq

[

Pil 0
0 I

]

∆ipq −

[

(1 − λi)Pip 0
0 γ2I

]

+

[

Xipq ∗
Uipq Wipq

]

≤ 0 (24)

Ξ̂i ≥ 0 (25)

Pjl − µjPip ≤ 0 (26)

where

γs =

√

λ

λ
γ, ∆ipq =

Γipq + Γiqp

2
, Γipq =

[

Aipq Fip

Cipq Gip

]

then system (4)-(5) under MDADT switching (16) is GUAS

with weighted l2-gain no greater than γs.
Proposition 2: Consider the closed-loop system (4)-(5),

and let 0 < λi < 1, µi ≥ 1 be the given constant. If there

exist a set of matrices Qip > 0, symmetric matrices Xipq,
Wipq , matrices Ωi, Uipq, Yip, such that ∀(i, j) ∈ I × I,
i 6= j, 1 ≤ p ≤ q ≤ β(i), 1 ≤ l ≤ β(i).









Oipq ∗ ∗ ∗
Uipq Wipq − γ2I ∗ ∗

Mipq
Fip+Fiq

2 −Qil ∗

Nipq
Gip+Giq

2 0 −I









≤ 0 (27)

Ξ̂i ≥ 0 (28)

Qip − µjQjl ≤ 0 (29)

where

Oipq = Qip/(1 − λi) −
(

Ωi + ΩT
i

)

+ Xipq

Mipq = (AipΩi + AiqΩi + BipYiq + BiqYip) /2

Nipq = (CipΩi + CiqΩi + DipYiq + DiqYip) /2

holds. Then system (4)-(5) is GUAS with weighted l2-gain

no greater than γs =
√

λ
λ
γ under MDADT switching (16)

and the controller is given by (23).

Remark 4: Incorporating the slow switching considered in

Lemma 2 and Lemma 3, the proof for the aforementioned

propositions can be obtained using the same techniques in

previous section, and we will include them in the journal

version of the paper.

V. NUMERICAL EXAMPLE

In this section, to illustrate the effectiveness of the results

developed in previous sections, we consider the following

discrete-time switched fuzzy system (4)-(5) consists of two

subsystems, and each subsystem has two fuzzy rules.

A11 =

[

0.9 0.28
−0.02 0.72

]

, A12 =

[

0.8 0.1
0.09 0.84

]

,

A21 =

[

0.85 0.1
0.11 0.85

]

, A22 =

[

0.86 0.11
0.41 0.95

]

,

B11 =

[

0.6
−0.6

]

, B12 =

[

0.5
0.3

]

, B21 =

[

0.4
0.5

]

, B22 =

[

0.3
0.8

]

,

F11 =

[

0.5
0

]

, F12 =

[

0.4
0

]

, F21 =

[

0.5
1

]

, F22 =

[

0.6
2

]

,

C11 =
[

0.5 0.2
]

, C12 =
[

0.8 0.4
]

,

C21 =
[

0.9 0.8
]

, C22 =
[

0.85 0.7
]

,

D11 = 0.1, D12 = 0.72, D21 = 0.3, D22 = 0.92,

G11 = 0.2, G12 = 0.7, G21 = 1.3, G22 = 0.8.

The fuzzy membership functions are taken as

h11 = sin2(x1 + 0.5), h12 = 1 − h11,

h21 = 1 −
1

1 + exp(−3x2/(0.5 − π/2))

×
1

1 + exp(−3x2/(0.5 + π/2))
, h22 = 1 − h21

Our purpose here is to design a set of fuzzy-basis-

dependent and mode-dependent state-feedback controllers

such that the resulting closed-loop system is stable with an

optimized H∞ disturbance attenuation performance.

By using the LMI toolbox in Matlab to solve the condi-

tions in Theorem 2, we can get γ = 3.1371 and the H∞

controllers gains as

K11=[-0.1794 -0.0300], K12=[-0.7554 -0.5348],

K21=[-1.3135 -1.3078], K22=[-1.0707 -0.9476]. (30)

Applying the controllers in (30) and generating an arbitrary

switching sequence, one can get the steady-response of the

resulting closed-loop system as shown in Fig.1 for ω(k) =
1 × exp(−0.5k).

Then, we consider the MDADT switching. Given λ1 =
0.1, λ2 = 0.2, µ1 = 1.4, µ2 = 2 and solving the conditions in

Proposition 2. We can obtain γs = 7.3746 and the controllers

gains as

K11=[-0.0867 0.0176], K12=[-0.1182 -0.0147],

K21=[-1.0359 -1.1985], K22=[-1.0192 -0.9932]. (31)

Using the controllers and generating switching sequences

with MDADT property τ1a = 3.1935, τ2a = 3.1063.

The steady-response of the system is given in Fig.2 with

ω(k) = 1× exp(−0.5k). Fig.3 gives the comparison on H∞

performance indices that the resulting closed-loop systems

can achieve when applying (30) and (31), respectively. It

can be seen from Fig.3 that the designed controllers in (30)

and (31) under the admissible switching signals are effective.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, the problems of stability analysis and H∞

controller design of a class of switched nonlinear systems,

which are switched discrete-time fuzzy systems, have been

studied. A fuzzy-basis-dependent and mode-dependent Lya-

punov function is proposed for the system, and a new H∞
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Fig. 1. System response of the closed-loop system in arbitrary switching
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Fig. 2. System response of the closed-loop system in MDADT switching

controller is derived via linear matrix inequalities formula-

tions. We also remarked that the obtained conditions cover

the case of non-switched fuzzy systems, which has been

widely studied. Future works will be concerned with the

investigations on the applications of switched fuzzy systems

to real systems, such as vehicle suspension systems, robotic

fish systems, etc.
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