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Abstract— This paper presents a new class of Lur’e type
Lyapunov functions for a discrete-time switched system in-
terconnected with a switched nonlinearity satisfying a mode-
dependent cone bounded condition. This function includes
the mode-dependent nonlinearity, but not its integral. Such
a Lyapunov function allows to obtain sufficient conditions in
terms of linear matrix inequalities (LMI), for the stability
analysis in two different frameworks: global stability analysis
for the considered systems and local stability analysis for
these systems with an additional saturating input consisting
of a switched linear state feedback. In the second case, an
optimization problem based on these sufficient conditions is
provided to enlarge the estimation of the basin of attraction,
which may be composed of non-convex and disconnected sets,
because of the presence of the nonlinearities in the Lyapunov
function. Some numerical examples are presented to highlight
the relevance of the new Lyapunov function and of the proposed
method.

I. INTRODUCTION

HYBRID dynamical systems consist of a finite set of
subsystems or modes, with only one active mode at

each time instant. This set is governed by a logical decision-
making automata defining the active mode. The automata
might be state-, or output- or external input-dependent.
Among the class of hybrid systems we may exhibit the
switching ones [12], where the switching rule is considered
as a priori unknown signal, but possible to estimate or
measure its current value. The properties to be ensured
should be, so, satisfied for any arbitrary switching rule. In
a large number of applications, the modes are formulated as
linear subsystems.

Nonetheless this is, in general, an approximation to model
physical systems with limited validity domain, because the
actuators cannot provide unbounded magnitude signals, and
the dynamics might be nonlinear. Thus, some nonlinearities
with respect to the state and/or ones with respect to the
control input, as saturation, should be taken into account to
refine the modeling step and make it more realistic. These
nonlinearities are naturally mode-dependent, and are here

C. A. Cavichioli Gonzaga, M. Jungers and J. Daafouz are with CRAN
UMR 7039 CNRS - Nancy Université ENSEM, 2 avenue de la foret de
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characterized by cone bounded sector conditions, which are
also mode-dependent.

The stability of a system formed by a linear system
connected to a cone bounded output nonlinearity has been
widely studied in continuous and discrete time domains. This
problem is called Lur’e problem, [11]. Among different can-
didates Lyapunov functions, one can point out the Lyapunov
Lur’e-type function. This function is composed of a quadratic
(in the state) term and an integral term, depending on the
nonlinearity. In the continuous-time case, [9], this choice
is natural because the function, by the aid of the sector
condition, induces the presence of the nonlinearity in the
time-derivative of Lyapunov function.

In the discrete-time domain, the same function was con-
sidered either for stability analysis (see [7], [8], [14] and
references therein), or for control synthesis purposes, [3].
The Lyapunov difference of the Lur’e type functions induces
a difference of integrals, which should be upper-bounded by
assuming that the nonlinearity maximal variation is finite and
upper-bounded.

Nevertheless, the original Lyapunov Lur’e-type function
requires that the nonlinearity is time-invariant (see [11]) to
ensure its positive definiteness and is thus not able to cope
with the interconnection between a switched linear system
and a mode-dependent nonlinearity.

Thus, in this paper, a new switching Lyapunov function
is proposed in order to firstly relax the assumption related
to the nonlinearity maximal variation and secondly to cope
with switched systems including mode-dependent nonlinear-
ities. Based on this new Lyapunov function, we tackle two
different stability analysis problems of switching systems. In
case of interconnection between a switching linear system
and switching nonlinearities, sufficient conditions are given
through Linear Matrix Inequalities (LMI) to ensure global
stability for any switching rule. When adding a saturating
switching state-feedback to such an interconnection, suffi-
cient conditions are provided to ensure the local stability for
any switching rule. In this last case, an optimization problem
under LMI constraints will be presented to maximize the
size of an estimation – given by a level set of the proposed
Lyapunov function – of the basin of attraction.

The paper is organized as follows: Section II recalls the
classical Lur’e type problem and its associated function
and emphasize the impossibility to extend the framework
to switched interconnections. In Section III, a new type of
switched Lyapunov function dependent on the switched cone
bounded nonlinearity is presented. A sufficient condition for
the global stability problem is proposed in Section IV and an
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academic example indicates the feasibility of the proposed
results. Closed-loop formulation considering a switched lin-
ear state feedback subject to input saturation is presented in
Section V. An optimization problem obtaining the largest
estimation of the basin of attraction, induced by a level
set of the Lyapunov function is provided in Section VI
and examples are given to illustrate our results. Concluding
remarks are presented in Section VII.

Notation: The components of any vector x ∈ Rn are
denoted x(`), ∀ ` = 1, ..., n. Inequalities between vectors are
component-wise: x � 0 states that x(`) ≥ 0 and x � y means
that x(`) − y(`) ≥ 0. A(`) (resp. Ai,(`)) denotes the `th row
of matrix A (resp. Ai). For two symmetric matrices, A and
B, A > B means that A−B is positive definite. A′ denotes
the transpose of matrix A. The operator diag(x) means a
diagonal matrix obtained from vector x. The symbol ? stands
for symmetric block in matrices. The ellipsoidal set E(M,γ)
associated with M > 0 is given by {x ∈ Rn;x′Mx ≤ γ}
and E(M) = E(M, 1).

II. DISCRETE-TIME LUR’E SYSTEMS AND CANDIDATE
LYAPUNOV FUNCTIONS

A. Classical Lur’e problem

Consider the following discrete-time scalar system with a
cone-bounded nonlinearity ϕ(yk)

xk+1 = axk + fϕ(yk), (1)
yk = cxk, (2)

where |a| < 1, xk, yk ∈ R are respectively the state and
output of system (1)-(2) at the instant k ∈ N.

The nonlinearity ϕ(·) : R → R is assumed to satisfy a
cone bounded sector condition, i. e., ϕ(0) = 0 and ϕ(·) ∈
[0, ω], for some ω > 0, ∀y ∈ R: ϕ(y) [ϕ(y)− ωy] ≤ 0. The
stability analysis of this class of systems is known as the
Lur’e problem, which has been studied either in continuous-
or discrete-time domain.

Two different types of Lyapunov functions are commonly
considered for this problem: a purely quadratic in state func-
tion and the named Lur’e-type function, which is described
as follows

v(x) = x′Px+ η

∫ y

0

ϕ(s)ds, (3)

for some η ≥ 0 and assuming the nonlinearity ϕ(·) is time-
invariant, [11]. This function was, originally, proposed in
the continuous-time domain, [9] and is suitable because it
induces the presence of the nonlinearity in its time-derivative.

The function defined by (3), containing the nonlinearity
integral, was adapted firstly to the discrete-time domain
in [13] and has been discussed and refined in [4], [7], [8],
[10], [14], [15].

It is well known that the stability Lyapunov condition, for
discrete-time systems, is given by the Lyapunov difference
δv = v(xk+1)− v(xk). Thus, one has

δv = x′k+1Pxk+1 − x′kPxk + Ik+1 − Ik, (4)

with
Ik = η

∫ yk

0

ϕ(s)ds (5)

and where the integral term difference may be rewritten as
a single integral

I = Ik+1 − Ik = η

∫ yk+1

yk

ϕ(s)ds. (6)

In all mentioned references, one can notice that this re-
maining integral term is always upper-bounded, and requires
an extra assumption restricting the maximal nonlinearity’s
variation (either its derivative, dϕ(y)

dy ≤ Dmax, [7], [8], [14],
[15], or its discrete variation ϕ(yk+1)−ϕ(yk)

yk+1−yk
≤ Dmax, if it is

not differentiable, [3], [4], [10]).

B. Lur’e-type function and switching systems

Consider, now, a discrete-time switching system composed
of N nonlinear modes (N ∈ N, N ≥ 1)

xk+1 = Aσ(k)xk + Fσ(k)ϕσ(k)(yk), (7)
yk = Cσ(k)xk, (8)

where xk ∈ Rn, yk ∈ Rp are respectively the state and
output vector of the system (7)-(8) at the instant k ∈ N. This
system will satisfy the following assumptions:

Assumption 1: The switching rule σ(·) takes its values in
the finite set IN = {1, · · · , N}. σ(·) is assumed to be not
known a priori, but its current value σ(k) is assumed to be
available in real-time.

The notation Mσ(k) means that, at each time k, Mσ(k)

takes its value in the set {M1, · · · ,MN} indexed by σ(k).
The matrices Ai, Ci and Fi have appropriate dimensions.
Matrices Ai are assumed to be stable, ∀ i ∈ IN .

Assumption 2: The N nonlinearities ϕi(·) : Rp → Rp
associated with each mode i ∈ IN are assumed to satisfy
their own cone bounded sector conditions and to be decen-
tralized [11].

Thus, system nonlinearities verify the following state-
ment [11]: ϕi(·) ∈ [0p,Ωi], i.e., ϕi(0) = 0 and there
exist N diagonal positive definite matrices Ωi = Ω′i ∈
Rp×p such that independently, ∀y ∈ Rp and ∀` =
1, · · · , p, ϕi,(`)(y) [ϕi(y)− Ωiy](`) ≤ 0. Hence, we have the
following inequality, ∀i ∈ IN :

SC(ϕi(·), y,Λi) = ϕ′i(y)Λi[ϕi(y)− Ωiy] ≤ 0, (9)

where Λi
a

= diag{λq,i}q=1;··· ;p ∈ Rp×p are any diagonal and
positive matrices. Note that Ωi is given by the designer and
assumed to be known hereafter for each mode i ∈ IN .

It is simple, from Assumption 2, to show that the re-
lation (9) is equivalent to [Ωiy](`)[ϕi(y) − Ωiy](`) ≤ 0,
∀` = 1, · · · , p; ∀y ∈ Rp; ∀i ∈ IN , which implies, with
Λi diagonal positive definite, that

0 ≤ ϕ′i(y)Λiϕi(y) ≤ ϕ′i(y)ΛiΩiy ≤ y′Ω′iΛiΩiy, ∀y ∈ Rp.
(10)

The stability analysis of systems (7)-(8) cannot be formu-
lated by extending the function (3) because the nonlinearity
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is mode-dependent and also time dependent. To simplify the
notations, let us assume here that p = 1. To obtain an integral
term like (6), we should have the history dependent function,
that is a function depending not only of the current output
yk, but also on all the past outputs {yl}l=0,··· ,k−1.

Ik = η

k−1∑
l=0

∫ yl+1

yl

ϕσ(l)(s)ds. (11)

However, the positivity of function v(x) is not guaranteed
because of the integral term may be negative, for instance, in
case of yl+1 < yl. In fact, the choice of a Lur’e type function
containing an integral of the nonlinearity is only natural in
the continuous-time domain, not in the discrete-time domain.

Another candidate function might be the one presented
in [5]. This function is quadratic with respect to an aug-
mented vector, containing the system state and the non-
linearity evaluated q (for a given integer q ≥ 1) instants
ahead. The stability conditions are derived for an auxiliary
system defined recursively from the original one. However,
the system nonlinearity is assumed to be time-invariant.

In the following section, a Lyapunov function candidate
will be presented to relax the assumption about the maximal
variation of the mode-dependent nonlinearities and to allow
the time-dependency of the nonlinearities.

III. NEW CLASS OF LYAPUNOV FUNCTIONS

A new class of switched Lyapunov functions for discrete-
time switching system (7)-(8) is proposed. This candidate
function depends on the current value of the switching rule
and is composed of a quadratic term with respect to the
state and a cross term between the state and the switched
nonlinearities.

V :
{
IN × Rn × Rp −→ R,
(i, x, φ) 7−→ x′Pix+ 2φ′∆iΩiCix.

(12)
where matrix Pi ∈ Rn×n is symmetric positive definite and
∆i ∈ Rp×p is diagonal positive semidefinite (i ∈ IN ).

From inequalities (10), it is thus possible to define a
lower and an upper bounds given by the quadratic func-
tions V i(x) = x′Pix and V i(x) = x′(Pi+2C ′iΩ

′
i∆iΩiCi)x,

respectively, such that

V i(x) ≤ V (i;x;ϕi(Cix)) ≤ V i(x), ∀i ∈ IN . (13)

The function V can be considered as candidate, because
it verifies the following properties:
• V (i;x;ϕi(Cix)) ≥ 0, ∀x ∈ Rn, ∀i ∈ IN , due to the

first inequality in (13),
• V (i;x;ϕi(Cix)) = 0, if and only if x = 0, ∀i ∈ IN .

This is induced by inequality (13) and by Pi > 0,
• V (i;x;ϕi(Cix)) is unbounded, ∀i ∈ IN .
The Lyapunov difference is denoted by

δkV = V (σ(k + 1);xk+1;ϕσ(k+1)(Cσ(k+1)xk+1))
−V (σ(k);xk;ϕσ(k)(Cσ(k)xk)). (14)

In the following sections the Lyapunov function (12) will
be used as a tool to study several stability problems.

IV. GLOBAL STABILITY ANALYSIS

Let us consider the system (7)-(8). The problem of the
global stability analysis is given as follows.

Problem 1: (Global Stability Analysis) For the sys-
tem (7)-(8), under Assumptions 1 and 2, determine matrices
Pi = P ′i > 0n and diagonal matrices ∆i ≥ 0p such that
system (7)-(8) is globally stable, for any switching rule.

In this section, sufficient conditions to solve the Problem 1
are formulated by considering the function V .

Proposition 1: Let us consider the system (7)-(8), if
there exists matrices Gi ∈ Rn×n, symmetric positive def-
inite matrices Pi ∈ Rn×n and positive diagonal matrices
Ti,Wi,∆i ∈ Rp×p, such that the LMI

Pj −G′j −Gj G′jAi G′jFi 0n×p
? −Pi Π1 A′iΠ2

? ? −2Ti F ′iΠ2

? ? ? −2Wj

 < 0, (15)

where

Π1 = C ′iΩ̄i [Ti −∆i] ; Π2 = C ′jΩ̄j [Wj + ∆j ] , (16)

∀ (i, j) ∈ I2
N , are verified, then the origin of system (7)-(8)

is globally asymptotically stable, under any switching rule.
Remark 1: The inclusions {Ai}i∈IN

and {(Ai +
FiΩiCi)}i∈IN

should be both stable to allow the feasibility
of inequality (15). These necessary conditions are obtained
by considering the bounds of the sector condition (9).

Proof: If Inequality (15) holds, we have Pj − G′j −
Gj < 0 and Pi > 0. Thus, Gj is of full rank, and
so −G′jP

−1
j Gj ≤ Pj − G′j − Gj (see [2]). This implies,

combined with the change of basis diag[G−1
j ; In+2p] and a

Schur complement [1], inequality (30).
In the sequel, by multiplying Inequality (30) on the right

by [x′k ϕ
′
i(yk) ϕ′j(yk+1)]′ and on the left by its transpose

and by identifying i = σ(k) and j = σ(k + 1), it leads to
inequality

δkV − 2SC(ϕσ(k+1)(·), yk+1,Wσ(k+1)))
−2SC(ϕσ(k)(·), yk, Tσ(k))) ≤ 0. (17)

Since nonlinearities ϕσ(k+1)(yk+1) and ϕσ(k)(yk) verify
a global sector condition, inequality (17) defines an upper-
bound for the Lyapunov difference, implying δkV < 0, for
any xk 6= 0.

Example 1: Consider system (7)-(8) with N = n = 2;
p = m = 1, Ω̄1 = 0.5; Ω̄2 = 0.7, with

A1 =
[
0.8 0.1
0.3 −0.4

]
F1 =

[
0.7
0

]
;C ′1 =

[
0.5
0

]
;

A2 =
[
0.5 0.4
0.5 0.2

]
;F2 =

[
0.4
0

]
;C ′2 =

[
0.8
0

]
,

where matrices Ai and Ai + FiΩiCi are stable, ∀i ∈ IN .
Thus, by applying Proposition 1, the LMI (15) is feasible,
which proves the global asymptotically stability under any
switching rule. The numerical results are shown below.

P1 =
[

0.756 −0.095
−0.095 0.660

]
;P2 =

[
0.648 0.039
0.039 0.715

]
;

∆1 = 1.402; ∆2 = 0.2491.
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V. CLOSED-LOOP FORMULATION

Consider, now, a more general class of the discrete-time
switching system composed of N nonlinear modes (N ∈ N,
N ≥ 1), and saturating inputs

xk+1 = Aσ(k)xk + Fσ(k)ϕσ(k)(yk) +Bσ(k)sat(uk),(18)
yk = Cσ(k)xk. (19)

where uk ∈ Rm is the input vector of the system (18)-(19)
at the instant k ∈ N. The matrices Bi have also appropriate
dimensions.

Because of the control inputs are bounded in magnitude,
the standard saturation function is considered: sat(u(k))(`) =
sign(u(`)(k))min(ρ(`), |u(`)(k)|), ∀` = 1, . . . ,m, where
ρ(`) > 0 denotes the symmetric saturation level relative to
the `th control. The vector ρ is supposed to be given.

Throughout this paper, the class of control law considered
is the switching linear state feedback:

uk = Kσ(k)xk (20)

where the m×n matrix Kσ(k) is the switching control gain.
The saturation is modelled through the dead-zone nonlin-

earity Ψ(uk) = uk − sat(uk). By replacing uk given in (20)
and using Ψ(uk) into (18), the closed-loop model is, thus

xk+1 = Acl,σ(k)xk + Fσ(k)ϕσ(k)(yk)−Bσ(k)Ψ(uk), (21)

where Acl,i = Ai +BiKi, ∀i ∈ IN .
Let us define the following set necessary to associate the

dead-zone with a generalized sector condition. For a given
set of matrices Hi ∈ Rm×(n+p), i ∈ IN , one defines

S({Hi}i∈IN
, ρ) =

{
θ ∈ Rn+p;−ρ ≤ Hiθ ≤ ρ, ∀i ∈ IN

}
.

(22)
Lemma 1: Consider m × (n + p)-matrices, K̂i =

[Ki 0m×p] and Ĵi = [J1,i J2,i]. If the vector x̂k =
[x′k ϕ′σ(k)(yk)]′ is an element of S({K̂i− Ĵi}i∈IN

, ρ), then,
with the control law uk = Kσ(k)xk, the nonlinearity Ψ(uk)
satisfies the following sector condition

SCuk
= Ψ′(uk)Ui [Ψ(uk)− J1,ixk − J2,iϕ(yk)] ≤0, (23)

for any diagonal definite matrix 0m < Ui ∈ Rm×m, ∀i ∈
IN .

Proof: The proof is straightforward from Lemma 1
in [16].

Remark 2: The switching auxiliaries gains J2,i related to
ϕi(Cix) are considered in the generalized sector condition
because the proposed Lyapunov function V (i;x;ϕi(Cix))
depends on the modal nonlinearities.

Let us define, also, the level sets associated with the
proposed Lyapunov function and a given γ > 0, which will
be used, in the sequel, to estimate the basin of attraction of
system (21). Consider the set

LV (γ) = {x ∈ Rn;V (i;x;ϕi(Cix)) ≤ γ,∀i ∈ IN} , (24)

which is naturally related to the two ellipsoids intersections
associated with the upper and lower-bounds V i(x) and V i(x)⋂
i∈IN

E(Pi + 2C ′iΩ
′
i∆iΩiCi, γ) ⊂ LV (γ) ⊂

⋂
i∈IN

E(Pi, γ).

(25)
Remark 1: Due to the presence of nonlinearities ϕi(·), the

set LV (1) may be non-convex and disconnected. These are
important properties, justified by the fact that in discrete-time
case, the transition between xk and xk+1 is not continuous.
In addition, not only ellipsoidal sets can be considered in the
estimation of the basin of attraction.

VI. LOCAL STABILITY ANALYSIS

In this section, we present a solution for the Problem of
local stability analysis related to the system (18)-(19) stated
as

Problem 2: (Local Stability Analysis) Given a switched
gain Ki, (i ∈ IN ), of the control law (20), determine a
region in the state space, as large as possible included in
the basin of attraction B0 of the system (18)-(19), for any
switching rule.

The following proposition solves the problem 2 by using
the function V .

Proposition 2: For given matrices Ki ∈ Rm×n and fixed
Ui ∈ Rm×m (i ∈ IN ), consider optimization variables
as matrices Gi ∈ Rn×n, J1,i ∈ Rm×n, J2,i ∈ Rm×p,
symmetric positive definite matrices Pi ∈ Rn×n and positive
diagonal matrices Ri, Qi, Ti,Wi,∆i ∈ Rp×p, and a scalar µ.
The optimization problem

min
Gi, Pi, J1,i, J2,i, Qi, Ri, Ti, Wi, ∆i, µ

µ

subject to LMIs:[
µIn − Pi −Π4

? 2Ri

]
> 0, ∀i ∈ IN , (26)Pi Π3 (Ki − J1,i)′(`)

? 2Qi −J ′2,i,(`)
? ? ρ2

(`)

 > 0, (27)

∀ i ∈ IN ; ∀ ` = 1, · · · ,m, and
Pj −G′j −Gj G′jAcl,i G′jFi −G′jBi 0n×p

? −Pi Π1 J ′1,iUi A′cl,iΠ2

? ? − 2Ti J ′2,iUi F ′iΠ2

? ? ? − 2Ui −B′iΠ2

? ? ? ? −2Wj

<0,

(28)
∀ (i, j) ∈ I2

N , where Π1, Π2 defined by (16) and

Π3 = C ′iΩ̄i (∆i −Qi) ; Π4 = C ′iΩ̄i [Ri + ∆i] (29)

allows to obtain an estimation LV (1) of B0, induced by the
Lyapunov function (12).

Proof: If Inequality (28) holds, we have Pj − G′j −
Gj < 0 and Pi > 0. Thus, Gj is of full rank, and
so −G′jP

−1
j Gj ≤ Pj − G′j − Gj (see [2]). This implies,

combined with the change of basis diag[G−1
j ; In+2p+m] and

a Schur complement [1] inequality (31).
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A′iF ′i
0

Pj
A′iF ′i

0

′ +
−Pi C ′iΩi [Ti −∆i] A′iC

′
jΩj [Wj + ∆j ]

? − 2Ti F ′iC
′
jΩj [Wj + ∆j ]

? ? −2Wj

 < 0. (30)


A′cl,i
F ′i
−B′i

0

Pj

A′cl,i
F ′i
−B′i

0


′

+


−Pi C ′iΩi [Ti −∆i] J ′1,iUi A′cl,iC

′
jΩj [Wj + ∆j ]

? − 2Ti J ′2,iUi F ′iC
′
jΩj [Wj + ∆j ]

? ? − 2Ui −B′iC ′jΩj [Wj + ∆j ]
? ? ? −2Wj

 < 0. (31)

[
Pi Π3

? 2Qi

]
− 1
ρ2

(`)

[
(Ki − J1,i)′(`)
−J ′2,i,(`)

][
(Ki − J1,i)′(`)
−J ′2,i,(`)

]′
> 0. (32)

V (σ(k);xk;ϕσ(k)(yk)) + 2SC(ϕσ(k)(·), yk, Qσ(k))) ≥
1
ρ2

(`)

∥∥∥(K̂i − Ĵi)(`)x̂k

∥∥∥2

. (33)

In sequence, by multiplying Inequality (31) on the right by
[x′k ϕ

′
i(yk) Ψ′(uk) ϕ′j(yk+1)]′ and on the left by its transpose

and by identifying i = σ(k) and j = σ(k + 1), it leads to
inequality

δkV − 2SCuk
− 2SC(ϕσ(k+1)(·), yk+1,Wσ(k+1)))
−2SC(ϕσ(k)(·), yk, Tσ(k))) ≤ 0, (34)

which defines an upper-bound for the Lyapunov difference.
Further, by applying a Schur complement on Inequal-

ity (27), with respect to the last block, we obtain inequal-
ity (32). By multiplying the inequality (32) on the right by
x̂k = [ x′k ϕ′i(yk) ]′ and on the left by its transpose and
by identifying i = σ(k), it leads to inequality (33)

The nonlinearity ϕσ(k)(·) verifying the sector bounded
condition, and by noting K̂i and Ĵi as defined in Lemma 1,
we have

V (σ(k);xk;ϕσ(k)(yk)) ≥ 1
ρ2

(`)

∥∥∥(K̂i − Ĵi)(`)x̂k

∥∥∥2

, (35)

which induces the inclusion

LV (1) ⊂ S
({

(K̂i − Ĵi)
}
i∈IN

, ρ
)
. (36)

Thus, inside the Lyapunov level set LV (1), the sector
condition (23), related to the dead-zone function is verified.

By multiplying the inequality (26) on the right by x̂k =
[ x′0 ϕ′i(Cix0) ]′ and on the left by its transpose, one gets
the following inequality

µx′0x0 + 2SC(ϕi(·), Cix0, Ri) ≥ V (i;x0;ϕi(Cix0)). (37)

Due to the fact that the nonlinearity ϕi(·) verifies the sector
bounded condition, ∀ i ∈ IN , we have

E(µIn) ⊂ LV (1). (38)

Because of inclusion (36), the local sector condition
SCuk

≤ 0 for the dead-zone is verified inside LV (1), which
implies, in addition of the inequality (34), that δkV < 0,
∀ x 6= 0. That is asymptotic stability is proved inside LV (1).

Finally, by minimizing µ it implies the maximization of the
radius of the ball included in LV (1), thanks to Inequal-
ity (38).

Remark 3: A possible choice for setting matrices Ui may
be Ui = αIm (for a fixed α > 0) or, if available, the values
obtained by the algorithm which has designed the control
law, like in [6].

Two different examples are shown to highlight that Propo-
sition 2 is able to improve the size of the estimation of
the basin of attraction. In both examples, the switching
state-feedback gains are designed by following the method
proposed in [6].

Example 2: Consider N = n = 2; p = m = 1; ρ = 1,
Ω1 = 1; Ω2 = 1.1, with U1 = U2 = Im

A1 =
[
0.4 0.5
0.3 0.9

]
;B1 =

[
0.9
0

]
;F1 =

[
1
0

]
;C ′1 =

[
−0.9

1

]
;

A2 =
[
0.9 0.6
0.4 0.7

]
;B2 =

[
1.1
0

]
;F2 =

[
1.3
0

]
;C ′2 =

[
0.9
−0.5

]
.

The nonlinearities are ϕ1(y) = Ω1
y(1+cos(40y))

2 and
ϕ2(y) = Ω2

y(1+exp(−y2/2))
2 . By applying the algorithm

in [6], based on a switched quadratic Lyapunov function,
we obtain µ = 0.5498; U1 = 1.2846; U2 = 1.0987; K1 =[
−0.012 −0.934

]
; K2 =

[
−0.574 −0.836

]
. Proposi-

tion 2 provides µ = 0.5485; ∆1 = 0.0381; ∆2 =
5.3189.10−8;

P1 =
[
0.2640 0.0925
0.0925 0.4674

]
; P2 =

[
0.3436 0.1327
0.1327 0.4626

]
.

As shown in Fig. 1, our estimation of B0, which is the
LV (1) sets, contains the one (consisting in the intersection
of ellipsoids) of [6]. Moreover, the estimation is composed
of disconnected sets and the global area ALV (1) = 7.99
provided for the proposed method, is 12% larger than the
one of [6] (AE = 7.12).

Two trajectories with initial conditions located in the
disconnected sets of LV (1) are also depicted in Fig. 1. One
can notice both trajectories that converge to the origin. Also,
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Fig. 1. Disconnected LV (1) (blue solid line) obtained by Proposition 2
and Level Sets given by [6] (dashed line). Trajectories for two different
initial conditions inside disconnected LV (1), with initial condition given
by a cross and a square. The following points are given by a square.

it should be pointed out that every point of the trajectories
are located inside of the set LV (1).

Example 3: Consider, now, N = n = 2; p = m = 1;
ρ = 1.5, Ω1 = 0.9; Ω2 = 1.9, U1 = U2 = 5Im, where
ϕ1(y) = Ω1

y(1+cos(40y))
2 and ϕ2(y) = Ω2

y(1+sin(35y))
2 . The

matrices are

A1 =
[
−1.25 0.2

0.2 0.2

]
;B1 =

[
0.5
0

]
;F1 =

[
1.2
0

]
;C ′1 =

[
1
−0.9

]
;

A2 =
[
0.4 0.3
0.6 1.1

]
;B2 =

[
0

0.7

]
;F2 =

[
1
0

]
;C ′2 =

[
0.7
0.5

]
.

The algorithm in [6], provides µ = 4.0253 and K1 =[
1.2087 0.8253

]
; K2 =

[
−1.3854− 1.9464

]
.

By applying Proposition 2, one gets µ = 3.6451, ∆1 =
2.0459.10−10; ∆2 = 0.3027;

P1 =
[
0.9263 0.5606
0.5606 3.5261

]
; P2 =

[
1.2219 1.2628
1.2628 2.1955

]
.

In addition, in respect with basin of attraction B0 es-
timation, it is possible to see, as shown in Fig. 2, that
the proposed method estimation contains the one given
by [6]. The resulting areas of the estimation, are respectively

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

x(1)

x (
2)

Fig. 2. LV (1) (blue solid line) obtained by Proposition 2 containing the
Level Sets given by [6] (dashed line).

ALV (1) = 1.5860 for the proposed method, and AE =
1.3497, which means a region enlargment of 17%.

VII. CONCLUSION

The extension of Lur’e problem to the switched framework
is investigated via a new Lyapunov function which is mode-
dependent and which includes the switching nonlinearity by
avoiding the integral term. For an interconnection between a
switching linear system and a mode-dependent nonlinearity
satisfying a sector condition, sufficient conditions are given
to ensure the global stability via this Lyapunov function.
If a saturating switched state feedback is added to this
interconnection, an optimization problem is presented to
maximize an estimation of the basin of attraction based on
a level set of the Lyapunov function. This estimation may
be non-convex and disconnected due to the presence of the
nonlinearity. Numerical examples are given to highlight the
obtained improvements.
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