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Abstract— This paper focuses on a systematic analysis for
the tracking problem in swarm-based missions for Unmanned
Aerial Vehicles (UAVs) with linear and angular velocity con-
straints. In this paper the nonlinear model of the dynamics are
represented by Takagi-Sugeno (TS) fuzzy models. A distributed
control law is introduced which is composed of both node
and network level information. Firstly feedback gains are
synthesised for the isolated UAVs ignoring interconnections.
The resulting common Lyapunov matrix is utilised at network
level, to incorporate into the control law the relative differences
in the states of the agents, to induce cooperative behaviour.
Eventually stability is guaranteed for the entire swarm. The
control synthesis is all performed subject to design criteria,
posed as Linear Matrix Inequalities (LMIs). An illustrative
example based on a UAV tracking scenario is included to outline
the potential of the analysis.

I. INTRODUCTION

The use of a single Unmanned Aerial Vehicle (UAV) can

jeopardise a mission since any degradation in performance

can have a serious effect on the objectives. For that reason,

there is an increasing interest in co-operative control which

can benefit swarm-based missions in many ways. For the

interested reader, reference [1] includes an exhaustive list of

work concerning different architectures used in cooperative

control.
Large-scale multi-agent systems can be represented accu-

rately by nonlinear models in a large domain of operation.

However this coupled with the dimensionality of the network

means the task of designing a control law may be a far

from trivial task. Most of the existing work has focused

on the interconnection of systems with linear dynamics. For

example, consensus was examined for multi-agent systems

with general linear dynamics in [2], [3]. In [4], [5] consensus

for agents with single/double or higher integrator dynamics

were studied. In reference [6] the authors focused on the

stabilisation of a network of identical agents with linear

dynamics. Unlike the previous methodologies which consider

first or higher order linear models for the vehicles’ motion,

in this work, a nonlinear representation of the dynamics of a

group of UAV systems with constraints on angular and linear

velocity is investigated.
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In particular, motivated by work in [7] where the global

stabilisation of a complex network of agents is considered

by applying local decentralised output feedback control law,

reference [8] developed a distributed control law for nonlin-

ear systems based on a two step procedure. This allowed a

decoupled design procedure at both node and network level

and offered a systematic analysis for stabilisation/tracking

problems in a reasonably large class of networks of nonlinear

systems represented in the Takagi-Sugeno (TS) framework

[9]. In this paper, the work in [8] is extended for a more

general case of nonlinear systems with a focus on tracking

for a swarm of UAVs. Through a special choice of the gain

matrix in the relative state information term, the utilisation of

the procedure suggested by the authors in [8] is adopted. Due

to the structure of the TS model, which is a fuzzy blending
of linear local models, this allows a systematic analysis for

proving stability, in a Lyapunov sense, of a general class of

nonlinear systems. Interesting work that addresses the design

aspects for Takagi-Sugeno controllers exists in the literature:

see for example, [10].

In this work, the model under investigation is the error

dynamics of the UAV as developed in references [11] and

[12]. At the first step of the procedure, the error dynamics

of the UAV system are isolated, and a node level control law

is designed ignoring interconnections. The node level con-

trol law utilises a Parallel Distributed Compensation (PDC)

structure as suggested in [13] and the feedback gains are

synthesised, subject to certain design criteria posed as Linear

Matrix Inequalities (LMIs). Subsequently in the second step,

now including dependencies among the UAVs, a distributed

control law is introduced and it is shown that stability is

guaranteed for the entire swarm.

The benefit of the proposed approach is that the analysis

and design is performed at node level, thus the problem of

stabilisation/tracking is decoupled from the network’s scale,

topology, and complexity. Also the methodology can be

applied to a reasonably large class of nonlinear systems.

The remainder of the paper is structured as follows: in

Section II the graph theory tools which are used, and their

relevance to a network of systems is presented. In Section

II-B the Takagi-Sugeno model is described for a general

network of nonlinear multi-agent systems. Thereafter in

Section IV the architecture of the controller and the LMI

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 4114



conditions to stabilise the system at node and network level

are described. A swarm based UAV tracking example is in-

cluded in Section V-A demonstrating the proposed analysis.

In Section VI concluding remarks are stated.

II. PRELIMINARIES

A. Graph theory

In this section the graph theory preliminaries and their

relevance with respect to multi-agent systems are stated.

Adopting the notation in [14], a graph G is an ordered

pair (V, E), where V is the set of vertices or nodes (V =
{1, . . . N}) and E is the set of edges, (E = {c1, . . . , cl}),
which represent every possible connection created between

a pair of nodes. In this paper a node coincides with a UAV

within the group, and the set E denotes the communication

links between UAVs i and j. A graph G can be represented

in the form of the adjacency matrix A(G) = [αij ] ∈ R
N×N

and is defined by:

αij =
{

1, ∀(i, j) ∈ E and i �= j
0, otherwise

(1)

The degree D(G) = [dij ] ∈ R
N×N of a graph is a diagonal

matrix for which dii =
∑N

i=1 αij and dij = 0, ∀i �= j. The

Laplacian of a graph L(G) = [�ij ] ∈ R
N×N is equal to:

L(G) = D(G) − A(G) = [�ij ] =

⎧⎪⎨
⎪⎩

N∑
j=1

αij , i = j

−αij , i �= j

(2)

According to [14], for undirected graphs (i.e. αij = αji)

the Laplacian matrix is symmetric, positive semi-definite and

satisfies
∑N

j=1 �ij = 0, ∀i ∈ V .

B. Model description and the Takagi-Sugeno model

Consider a group of systems i = 1, . . . , N described by:

ėi(t) = fi(ei(t)) + gi(ei(t))ui(t) (3)

where ei(t) ∈ R
n, and ui(t) ∈ R

m is the state, and

input vector, respectively. Assume fi(ei(t)) and gi(ei(t))
are functions that are dependent on the state. The nonlinear

model in (3) can be represented in a compact region of the

state-space X ⊆ R
n by a TS fuzzy model.

Adopting the notation in reference [10], for agent i, the

TS fuzzy model is formed by κ local linear subsystems. The

TS is represented by implications of IF − THEN form or

Input-Output form. The general layout for the κth model rule

is:

Model Rule κ [10]:

IF zi
1(t) is Mκ1 AND. . . AND zi

q(t) is Mκq THEN

ėi(t) = Aκei(t) + Bκui(t) (4)

where ei(t) = col([ei
1(t), . . . , e

i
n(t)]) ∈ R

n, and Aκ ∈
R

n×n, Bκ ∈ R
n×m are constant matrices. The vector

zi(t) = col([zi
1(t), . . . , z

i
q(t)]) is a known premise variable

which may depend on the state vector. Every premise vari-

able is a-priori bounded on a compact space (i.e. zi(t) ∈
[zi

min, zi
max]) since the state is assumed to belong to X .

The symbol Mκμ(zi
μ(t)) ∈ [0, 1] denotes the fuzzy sets and

r = 2|z| the number of rules. The notation |z| coincides

with the length of the vector. The fuzzy sets Mκμ(zi
μ(t)) are

generated utilising the sector nonlinearity approach [15].

In Input-output form, the defuzzification process of system

(4) can be represented by the following polytopic form:

ėi(t) =
r∑

κ=1

λκ(zi(t))[Aκei(t) + Bκui(t)] (5)

where the λκ(zi(t)) are normalised weighting functions

defined by:

λκ(zi(t)) =wκ(zi(t))/
r∑

κ=1

wκ(zi(t))

wκ(zi(t)) =
q∏

μ=1

Mκμ(zi
μ(t))

(6)

The weighting terms λκ(zi(t)) satisfy the convex sum prop-

erty for all t. Provided that bounds on the state space are

a-priori known, the TS model (5) is an exact representation

of the nonlinear model (3) inside X . Motivated by work

in reference [8] it will be shown in the sequel that such a

structure can be utilised in the UAV context.

III. UNMANNED AERIAL VEHICLE MODELLING - ERROR

POSTURE MODEL

According to [16], under certain assumptions (i.e. an

electrically powered UAV flying at constant altitude and

ground speed, the thrust and velocity vector are collinear,

and no slip in lateral direction), the motion of the ith point-

mass UAV can be described by:

ẋi
c(t) = vi

er(t) cos θi
c(t)

ẏi
c(t) = vi

er(t) sin θi
c(t)

θ̇i
c(t) = wi

er(t)

(7)

where xi
c, yi

c, are the position coordinates, θi
c is the heading

angle, and vi
er, wi

er the linear and angular velocity.

For the purpose of tracking, the error posture is utilised

in this paper for every agent in the network, as in refer-

ences [11] and [12]. In particular, the error posture model

of a vehicle is generated with the aid of the reference

Pref (xref , yref , θref ) and the current posture P i
c(xi

c, y
i
c, θ

i
c)

utilising the kinematics in (7). The tracking error is governed

by:

ei(t) =

�
�

cos(θi
c(t)) sin(θi

c(t)) 0
−sin(θi

c(t)) cos(θi
c(t)) 0

0 0 1

�
� (Pref (t) − P i

c (t))

(8)

where ei(t) = [xi
e(t), yi

e(t), θi
e(t)] is the tracking error in

the state for the ith UAV in the x − y plane and direction,

respectively. Following the description in Section 3.1 of

reference [12], taking the time derivative of (8), the error

dynamics are generated. Hence assuming that there is no

side-slip (i.e. ẋrefsin(θref ) = ẏrefcos(θref )), and applying

a control action vector ui
er(t) = ui

F (t) + ui(t) (proposed
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in [11]), where ui
F (t) = [vref (t)cos(θi

e(t)), wref (t)]T and

ui(t) = [vi(t), wi(t)]T , then the error dynamics satisfy:

�
�

ẋi
e(t)

ẏi
e(t)

θ̇i
e(t)

�
� =

�
�

0 wref (t) 0
−wref (t) 0 vref (t)sinc(θi

e(t))
0 0 0

�
�

×
�
�

xi
e(t)

yi
e(t)

θi
e(t)

�
�+

�
�

−1 yi
e(t)

0 −xi
e(t)

0 −1

�
�ui(t)

(9)

where vref (t), vi(t) are the reference and current linear

velocities, wref (t), wi(t) the reference and current angular

velocities. The actual control law ui
er(t) applied in (7) con-

sists of feed-forward (ui
F (t)) and feedback (ui(t)) elements.

The structure of the error posture dynamics in (9) allow

its representation as a Takagi-Sugeno fuzzy model [12].

Motivated by the work in [8] the two step procedure is

adopted for a network of nonlinear error posture models in

(9) which are structured into the TS form in (5). For the

system, ui(t) is the control action vector to be calculated

which is described in the next section and is designed based

on TS concepts. The control law has the form referred to in

the literature as PDC [13].

IV. SWARM TRACKING AND CONTROL LAW DESCRIPTION

In this section the design of the control law for the

stabilisation of the error dynamics in (5) is described. The

task is for the error state ei(t) for i = 1, . . . , N to con-

verge to zero asymptotically at a local level. In this work

the assumption is that individual systems have common

Aκ,Bκ,∀ κ = 1, . . . , r, and the communication topology

is bidirectional static. As in [8], the control design for the

stabilisation problem is treated in two steps.

A. Step 1 - Node level tracking

The controller ui
τ (ei(t)), used to stabilise the error dynam-

ics for the ith UAV system at node level, is designed from

the rules of the TS fuzzy model and maintains the same

structure as the model rules. The κth control rule at node

level has the following structure:

Control Rule κ:

IF zi
1(t) is Mκ1 AND . . . AND zi

q(t) is Mκq THEN
ui

τ (ei(t)) = −Fκei(t),∀i, j = 1, . . . , N
for κ = 1, . . . , r and where q = |z|. In polytopic form the

node level state feedback control law is equal to:

ui
τ (ei(t)) = −

r∑
κ=1

λκ(zi(t))Fκei(t) (10)

where Fκ ∈ R
m×n are the feedback gains. By substitution

of the control law (10) into (5), the node level closed-loop

error dynamics are equal to:

ėi(t) =
r∑

κ=1

r∑
μ=1

λκ(zi(t))λμ(zi(t))Aκμei(t) (11)

where Aκμ = Aκ −BκFμ. According to reference [10] it is

not restrictive to expand equation (11) into:

ėi(t) =
r∑

κ=1

λκ(zi(t))2Aκκei(t)

. . . + 2
r∑

κ=1

r∑
κ<μ

λκ(zi(t))λμ(zi(t))(
Aκμ + Aμκ

2
)ei(t)

(12)

The rationale behind the expansion in (12) is the use of more

relaxed conditions, as argued in [10].

For the stabilisation of the node level error dynamics

Lyapunov theory is utilised. The task is to determine the

feedback gains Fμ, and a symmetric positive definite matrix

P ∈ R
n×n, such that a local performance criteria for stability

(in a locally optimal sense) is satisfied. The node level

fuzzy controller is designed by minimising the upper bound

of an a-priori known quadratic performance function. The

performance index for agent i is equal to:

J i =
∫ ∞

0

(
ei(t)T Qei(t) + ui(t)T Rui(t)

)
dt (13)

where Q = QT > 0 and R = RT > 0 are given weighting

matrices of appropriate dimensions. If the closed-loop system

satisfies

υ̇i(t) < −ei(t)T Qei(t) − ui(t)T Rui(t) (14)

where υ̇i(t) is the derivative of the positive definite Lyapunov

function υi(t) = ei(t)T Pei(t), ∀i = 1, . . . , N , then inte-

grating (14) over the interval [0,∞] results in the inequality

J i < υ(ei(0)) < η [10]. This denotes an upper bound on

J i with respect to the initial conditions of the state. Thus, in

this paper, υ(ei(0)) is minimised instead of J i. According

to [10], the stabilisation of the error dynamics for the system

(5) is guaranteed via the PDC control law in (10) if there

exists a common Lyapunov positive definite matrix P > 0
satisfying:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P > 0⎡
⎣ Π1

κ CT
κ −FT

κ

Cκ −Q−1 0
−Fκ 0 −R−1

⎤
⎦ < 0

⎡
⎢⎢⎢⎢⎣

Π2
κμ CT

κ −FT
μ CT

μ −FT
κ

Cκ −Q−1 0 0 0
−Fμ 0 −R−1 0 0
Cμ 0 0 −Q−1 0
−Fκ 0 0 0 −R−1

⎤
⎥⎥⎥⎥⎦ < 0

κ < μ s.t λκ(zi(t)) ∩ λμ(zi(t)) �= ∅

(15)

where κ, μ = 1, . . . , r, and

Π1
κ = A

T
κκP + PAκκ

and

Π2
κμ = (Aκμ + Aμκ)T P + P(Aκμ + Aμκ)

The notation λκ(zi(t)) ∩ λμ(zi(t)) �= ∅ implies that the

conditions hold for κ < μ except if λκ(zi(t))×λμ(zi(t)) = 0
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for all z(t). The conditions are valid provided that two rules

are active simultaneously. Conditions in (15) are transformed

into LMIs by pre/post multiplying with the block diagonal

matrix [X I I] where X = P−1, and substituting with Ξμ =
FμX. Hence combining the minimisation of the upper bound

of υ(ei(0)) and the resulting LMIs from the transformation

in (15), the stabilisation of the error dynamics for the system

in (5) is guaranteed via the PDC control law in (10), and an

upper bound on the performance index can be determined

if there exists a symmetric positive definite matrix, X > 0
(X ∈ R

n×n) and matrices Ξμ ∈ R
m×n for κ, μ = 1, . . . , r

such that the minimisation problem

min
X,Ξ1,...,Ξr

η (16)

subject to the transformed conditions from (15) and con-

straints ⎧⎨
⎩

X > 0[
η ei(0)T

ei(0) X

]
> 0

(17)

is solved for κ, μ = 1, . . . , r. Provided that the LMIs are

feasible, then a solution can be recovered from:

Fμ = ΞμX−1 (18)

Provided the feedback gains Fμ are chosen for a common

Lyapunov matrix P from the solution of the minimisation

problem (16) subject to the transformed conditions from

(15) and (17), then (14) is satisfied. Thus stability can be

guaranteed for any set of initial conditions ei(0) ∈ X . Once

the node level stabilisation is completed, a second step is

undertaken at a network level, as discussed in the sequel.

B. Step 2 - Tracking at network level

At a network level an additional term which represents the

relative state information among neighboring UAVs and the

reference trajectory is introduced in the control law so that:

u(ei(t)) = −
r∑

κ=1

λκ(zi(t))Fμei(t) + γF
N∑

j, i �=j

�ije
j(t) (19)

where F ∈ R
m×n and γ a positive scalar. Using the control

law in (19), at a network level the error-dynamics are equal

to:

ėi(t) =
r�

κ=1

r�
μ=1

λκ(zi(t))λμ(zi(t))

(
Aκμei(t)+γBκ F

N�
j=1

�ije
j(t)

)
(20)

In a compact form the expression above can be conveniently

written using the Kronecker product notation [17] as:

ė(t) = [A(z(t)) + γB(z(t))(L ⊗ In)]e(t) (21)

where

A(z(t)) = diag

�
r�

κ=1

r�
μ=1

λ1
κλ1

μAκμ, . . . ,

r�
κ=1

r�
μ=1

λN
κ λN

μ Aκμ

�

(22)

and

B(z(t)) = diag

�
r�

κ=1

λ1
κBκF, . . . ,

r�
κ=1

λN
κ BκF

�
(23)

and e(t) is the concatenation of the state vector ei(t) so that

e(t) = col([e1(t), . . . , eN (t)]).
Define a candidate Lyapunov function for the swarm as

V (t) =
N∑

i=1

ei(t)T Pei(t) (24)

where the symmetric positive definite matrix P is from the

earlier node level synthesis in Subsection IV-A. Taking the

time derivative of (24), and substituting for (20) yields

V̇ (t) = V1 + V2 (25)

where

V1 =
N∑

i=1

r∑
κ=1

r∑
μ=1

λκ(zi(t))λμ(zi(t))ei(t)T
[
A

T
κμP+PAκμ

]
ei(t)

(26)

and

V2 = 2γeT (t)(IN ⊗ P)B(z(t))(L ⊗ In)e(t) (27)

For the swarm of UAVs to track the virtual leader system,

which is moving according to a prescribed reference tra-

jectory, it is sufficient to show that V̇ (t) < 0. Utilising

the stabilisation procedure from the first step of the design

process in subsection IV-A, for the choice of a common

Lyapunov matrix P and feedback gains Fμ, V1 < 0. Hence

all that needs to be shown is that V2 is negative semi definite

for all e(t) �= 0. It is evident from the TS model that the input

matrix Bκ is time varying because of (9); however the first

column is constant: i.e. Bκ = [B1,B2κ]. Here by choice

F = −[B1, 0]T P (28)

which means that B(z(t)) = I⊗B1BT
1 P. As a result of this

choice in (27)

V2 = −2γeT (t)(L ⊗ PB1BT
1 P)e(t) (29)

The physical interpretation of this is the fact that less

communication load is required among the UAVs. Since the

representation of the Laplacian L is positive semi definite,

and by construction PB1BT
1 P ≥ 0, it follows −(L ⊗

PB1BT
1 P) ≤ 0 by Corollary 4.2.13 [17]. Thus (25) is

negative definite for all e(t) �= 0 and the error dynamics

of the swarm is stable.

V. SIMULATION EXAMPLE

In this section a tracking scenario is considered where

a swarm of UAVs is deployed to collectively follow the

prescribed trajectory of a virtual leader from any initial

conditions satisfying bounds on the state space. The path is

assumed to be a-priori known. The reference track considered

for the virtual leader in this example is referred to in the

literature as the Dubins path [18].
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A. Description of the Tagaki Sugeno UAV model

For the purpose of illustration consider a swarm of iden-

tical UAV models. The TS fuzzy model has been derived

as described in section II-B. For the model illustrated in

(9) zi
1(t) = wref (t), zi

2(t) = vref (t)sinc(θi
e(t)), zi

3(t) =
yi

e(t) and zi
4(t) = xi

e(t) are chosen as the premise vari-

ables with zi
1(t) ∈ [−0.513, 0.513], zi

2(t) ∈ [18.0048, 20],
zi
3(t) ∈ [−10, 10] and zi

4(t) ∈ [−10, 10]. In addition

θi
e(t) ∈ [−π/4, π/4]. Hence the number of rules of the

fuzzy system is equal to r = 16 and the length of the

premise vector is equal to q = 4. It should be noted that

the latter bounds are not chosen in an arbitrary manner,

and are selected in order not to lose controllability of the

system. Utilising the sector nonlinearity approach in [15] the

membership functions Mκμ(zi(t)) are determined and the

weighting terms are calculated according to (6). All sixteen

rules are developed as prescribed in Subsection II-B equation

(4), where Aκ and Bκ are shown in the sequel. Finally,

the defuzzification is carried out with respect to equation

(5). Hence the equivalent TS fuzzy model (5) for the full

nonlinear is derived. For model (5):

Aκ =

[
0 −ε1

κwr,max 0
ε1
κwr,max 0 μi

κ
0 0 0

]
Bκ =

[
−1 ε3

κei
max

0 ε4
κei

max
0 −1

]

where wr,max = 0.513 [rad/sec], ei
max = 10 [m] and

ε1
κ =

{ −1, for 1 ≤ κ ≤ 8
+1, otherwise

ε4
κ = (−1)κ+1

ε3
κ =

{
+1, otherwise
−1, for κ ∈ {1, 2, 5, 6, 9, 10, 13, 14}

μi
κ =

{
18.0048, for 1 ≤ κ ≤ 4 and 9 ≤ κ ≤ 12
20, otherwise

B. Tracking a Virtual Leader

In this example 20 UAVs are interconnected through

control law (19). The contribution factor for the global

information is chosen as γ = 0.7. The task is given a

reference trajectory, from the preflight planning, for the entire

swarm to track the virtual leader. The Laplacian matrix has

the form in (2). The graph considered here is G(20, 184) and

the task is for the error state ei(t) → 0 as t → ∞.

Following the procedure introduced in Section IV, firstly

the LMIs are synthesised at node level for the closed loop

error posture model (11). This leads to the choice of the

feedback gains Fμ and a common positive definite matrix P
by minimising (16) subject to the LMI conditions in (17),

and the transformed conditions from (15). The gains Fμ are

shown in (30) and the positive definite matrix returned is:

P =

[
0.1084 −0.0099 −0.2314
−0.0099 0.0968 1.6264
−0.2314 1.6264 56.1980

]

From the minimisation problem of (16) subject to LMIs

(17), and the transformed conditions from (15) η = 74.4979.

In (15), Q = 10−2 × diag {1, 1, 4} and R = 10−2 × I2×2.

Altering the elements in the Q and R matrices results in

different responses of the system. This gives the designer

the possibility of obtaining another control performance

according to design specifications.

From Figure 3 the bounds on the state space ei(t) are

not violated and thus the TS model represents exactly the

nonlinear model of the error dynamics of the UAV. Utilis-

ing the stabilisation procedure at node level, F is chosen

as (28) at the second step according to Subsection IV-B.

Hence the overall control law (19) is synthesised and is

added to the feed-forward control action vector ui
F (t) =

[vref (t)cos(θi
e(t)), wref (t)]T to generate ui

er(t). The control

input ui
er(t) consists of the angular wi

er(t) and the linear

vi
er(t) velocities which are fed to the ith UAV model (7).

Thereafter the measured state of the vehicle is used to

calculate the tracking error as in (8). The initial conditions for

each UAV were chosen in a random manner (whilst satisfying

the a-priori assumed bounds on the state space).

The swarm trajectories which are converging to the vir-

tual leader reference track are depicted in Figure 1. Fig-

ure 2 shows the heading angle of each UAV versus the

virtual leader’s. The states of the tracking error (ei(t) =
[xi

e(t), y
i
e(t), θ

i
e(t)]

T ) are given in Figure 3. The firing of the

weighting functions λκ(zi(t)) are depicted in Figure 4. The

control action vector ui
er(t) is given in Figure 5.
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Fig. 1. Trajectories of the swarm in x − y plane (solid lines) versus the
virtual leader’s trajectory (dashed line).
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Fig. 2. Heading angle profile for each UAV (solid lines) and heading angle
of the virtual leader (dashed line).

The benefit of the proposed analysis is that the design of

the controller is decoupled from the size of the network and

its topology. This is due to the fact that there are only r LMIs

that are utilised to stabilise each node locally. Additionally,

due to the decoupled structure of the network it allows a

convenient choice for gain F. The advantage is that through

the special choice of feedback gains (28) for the relative state

information, the methodology can be applied to a large class

of nonlinear large-scale network of systems.
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F1 =
� −0.914 0.202 5.181

0.006 −0.079 −2.986

�
F2 =

� −0.925 0.193 4.92
0.019 −0.143 −5.071

�
F3 =

� −0.885 −0.054 −3.924
0.025 −0.097 −3.545

�
F4 =

� −0.879 −0.046 −3.826
0.026 −0.113 −3.844

�

F5 =
� −0.917 0.204 5.257

0.006 −0.085 −3.208

�
F6 =

� −0.926 0.192 4.938
0.019 −0.147 −5.232

�
F7 =

� −0.883 −0.057 −4.035
0.025 −0.096 −3.49

�
F8 =

� −0.881 −0.048 −3.864
0.027 −0.12 −4.119

�

F9 =
� −0.945 0.197 7.534

0.006 −0.099 −3.517

�
F10 =

� −0.924 0.193 7.48
0.003 −0.082 −2.76

�
F11 =

� −0.893 −0.05 −1.232
0.014 −0.068 −2.51

�
F12 =

� −0.91 −0.04 −0.967
0.016 −0.12 −4.27

�

F13 =
� −0.946 0.20 7.61

0.005 −0.1 −3.557

�
F14 =

� −0.926 0.193 7.51
0.004 −0.09 −3.069

�
F15 =

� −0.893 −0.052 −1.327
0.015 −0.072 −2.63

�
F16 =

� −0.91 −0.04 −1.025
0.017 −0.124 −4.42

�
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Fig. 3. Tracking error ei(t) = [xi
e(t), y

i
e(t), θ
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e(t)]

T of every UAV within
the swarm.
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Fig. 5. Control action vector ui
er(t) = [vi

er(t), wi
er(t)].

VI. CONCLUSIONS

This work proposes a systematic analysis for tracking

problems in swarm-based UAV missions with linear and

angular velocity constraints. The communication topology

among the UAVs is represented using graph theory tools.

The intermediate step of representing a network of nonlinear

systems with TS models circumvents the difficulty in design-

ing a control law when dependencies among the UAVs are

considered. This is possible due to the structure of the TS

representation as it allows a decoupling of the network into

node level dynamics, which simplifies the stability analysis

and allows established tools from linear control theory to be

applied. A special choice of feedback gains for the relative

state information allows the methodology to be applied to a

reasonably large class of nonlinear systems. The distributed

control law which is proposed, is composed of both node and

network level information. The two step design procedure

is performed subject to criteria, posed as Linear Matrix

Inequalities (LMIs). The methodology proposed shows that

the design of the controller is decoupled from the size

and topology of the network, and it allows a convenient

choice of feedback gains for the network level dynamics. An

illustrative example, where a swarm of UAVs is deployed

to follow the track of a virtual leader, was included to

demonstrate the potential of the analysis.
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