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Abstract— A long standing problem in adaptive control is
the derivation of robustness properties in the presence of
unmodeled dynamics, a necessary and highly desirable property
for designing adaptive flight control for systems with trustable
autonomy. We provide a solution to this problem in this paper
for linear time-invariant plants whose states are accessible
for measurement. This is accomplished by using a Lipschitz
continuous projection algorithm that allows the utilization of
properties of a linear system when the adaptive parameter
lies on the projection boundary. This in turn helps remove
the restriction on plant initial conditions, as opposed to the
currently existing proofs of semi-global stability. A direct
implication of this result is the robustness of adaptive control
systems to time-delays, and the guarantee that the underlying
adaptive system will have a delay margin.

I. INTRODUCTION

Rapid development, technical transition, and insertion of
autonomous platforms into aerospace applications enabled
end-users with unique capabilities. Yet at the same time, a
variety of technical challenges arose. Standing amongst them
is the notion of trustable autonomous systems. The word
trustable implies that there is an inherent requirement for
any autonomous platform to resiliently operate in a realis-
tic environment. Moreover, performance of an autonomous
vehicle must be predictable, repeatable, and verifiable. In
order to operate autonomously, these platforms are equipped
with Guidance, Navigation & Control (GN&C) architectures
that are designed to generate the required input signals using
available online measurements (the system outputs) in a
feedback loop. Given an autonomous platform, its control
system must be designed to satisfy specific requirements
related to the vehicle stability, robustness, and performance.
These design specifications can be achieved and enforced
through a systematic usage of formal methods from control
and dynamics.

One of the key enablers for predictable stable operation
of autonomous platforms is the adaptive control technology,
which provides a prescription for stable on-line adjustment of
control parameters. This feature of adaptive flight controllers
becomes even more attractive in autonomous platforms due
to the inevitable need for self-governance especially in the
wake of unforeseen anomalies that can occur during the
flight operation. Any control candidate for these flight sys-
tems, however, needs to undergo Verification and Validation
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(V&V), in order to be flight certified. That is, the underlying
adaptive control system must have guaranteed performance
in the presence of perturbations in gains and delays, both
of which are inevitable in closed-loop, model-based, control
implementations.

Adaptive control theory is a mature control discipline,
evolved over the past four decades, and rigorously syn-
thesized. Major milestones of adaptive control of linear
plants are stability in 1980 [1], and robustness to bounded
disturbances in 1986 [2]. Several attempts have been made
since then to extend the robustness properties of adaptive
systems to the case when unmodeled dynamics are present.
The most general result to date in this direction can be found
in [3], [4] where semi-global stability is guaranteed for a
certain class of unmodeled dynamics with a small parameter
µ (see section 9.3 in [4], section 8.7 in [3]) and several
papers published in the ’90s (see [4] for example). Given
the nature of the semi-global result in [3], [4] and other
published results in the area of robust adaptive control [5],
it is clear that there is a gap between the needs of the flight
control application and theory.

In this paper, we show that this gap can be closed.
We demonstrate that boundedness can be guaranteed for
linear plants whose states are accessible for measurement,
when subjected to parameter uncertainties and unmodeled
dynamics, for arbitrary initial conditions of the plant states.
It is assumed that the parameter uncertainties lie in a bounded
hypercube, enabling the use of an adaptive law with a
parameter projection [6] using which the robustness result
is established. This is used to a computable delay margin for
adaptive systems with full state measurements.

II. ROBUST ADAPTIVE CONTROL REVISITED

One of the very first problems where stable adaptive con-
trol was solved was for the case when states are accessible
[7], with the plant given by1

ẋp = Apxp + bλu (1)

where Ap ∈ Rn×n and the scalar λ are unknown parameters
with b and the sign of λ known, and (Ap, b) controllable. It
is well known that an adaptive controller of the form

u = θTx (t)xp + θr(t)r, (2)

adaptive laws
θ̇ = −ΓωbTPe, (3)

1The argument t is suppressed for the sake of convenience, except for
emphasis.
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where Γ = ΓT > 0, ω =
[
xp r

]T
, θ =

[
θTx θr

]T
, e =

xp − xm, and xm is the state of a reference model

ẋm = Amxm + br (4)

with Am Hurwitz, and P is the solution of the Lyapunov
equation ATmP + PAm = −Q, Q > 0, guarantees stability
when the matching conditions

Ap + bλθ?Tx = Am, λθ∗r = 1 (5)

are satisfied for some θ∗ = [θ∗Tx , θ∗r ]T . The controller in (2)
and (3) also ensures that x(t) tracks xm(t). The underlying
Lyapunov function is quadratic in e and the parameter error
θ̃ = θ − θ∗, with a negative semi-definite time-derivative V̇
[3].

When a bounded disturbance d is present, with the plant
dynamics changed as

ẋp = Apxp + bλ(u+ d(t)) (6)

robust adaptive laws need to be designed that modify (3) as

θ̇ = −ΓωbTPe− σg(θ, e) (7)

where g(θ, e) = θ, ||e||θ, or of the form2

g(θ, e) = θ

(
1− ||θ||

θmax

)2

(8)

where θmax is a known bound on the parameter θ. While the
boundedness of the overall adaptive systems is well known
and was established several decades ago, we briefly describe
it below. Without loss of generality, we assume that λ > 0.

A quadratic positive definite function is chosen as

V =
1

2
eTPe+

1

2
λθ̃TΓ−1θ̃ (9)

which yields a time-derivative

V̇ ≤ −1

2
eTQe+k1‖e‖‖d‖−

1

2
λσ‖θ̃‖g(θ, e), k1 > 0. (10)

The property of g(e, θ), together with the fact that d is
bounded, ensures that V̇ < 0 outside a compact set Ω in the
(e, θ̃) space. This ensures the global boundedness of both e
and θ̃. Boundedness of xp follows.

In all of the above methods, the idea behind adding the
term g(e, θ) is this: The parameter θ can drift away from
the correct direction due to the term k1‖e‖‖d‖, and the
construction of g(e, θ) is such that it counteracts this drift
and keeps the parameter in check, by adding a negative
quadratic term in θ̃. The boundedness of both e and θ are
simultaneously assured in the above since V has a time-
derivative V̇ that is non-positive outside a compact set in
the (e, θ̃) space. It should be noted however that this was
possible to a large extent because d was bounded and as a
result, the sign-indefinite term remained linear in ‖e‖.

An alternate procedure, originally proposed in [9] and
revised and refined in [10], [6] proceeds in a slightly different
manner. Here, the boundedness of θ is first established,

2One can choose to set γ to zero if ‖θ‖ ≤ θmax, as is done in [[4],[8]]
and many other references in the literature.

independent of the error equation. It should be noted that a
similar approach is adopted in the context of output feedback
in plants with higher relative degree by using normalization
and an augmented error approach[3]. In [10] and [6], no
normalization is used but a projection algorithm. In the
following section, we briefly present this algorithm, which
is the adaptive law of interest in this paper, as well as the
proof of boundedness for the sake of completeness.

A. Robust adaptive control in the presence of a projection
algorithm

We first state a few definitions and two lemmas. Let sets
Ω0 and Ω1 be defined as

Ω0 =
{
θ ∈ Rn|f(θ) ≤ 0

}
Ω1 =

{
θ ∈ Rn|f(θ) ≤ 1

}
,

(11)

and a Projection function, denoted as Proj, be defined as
follows:

Proj(θ, y) =


y − ∇f(θ)(∇f(θ))T

‖∇f(θ)‖2 yf(θ)

if [f(θ) > 0 ∧ yT∇f(θ) > 0]
y otherwise.

(12)
Lemma 1: Let f(θ) be a convex function. Let θ ∈ Ω1 and
θ? ∈ Ω1. Then for any vector y, the following inequality
holds:

(θ − θ?)T (Proj(θ, y)− y) ≤ 0. (13)

Lemma 2: Let f(θ) be a convex function. For any time
varying piecewise continuous vector y, if

θ(0) ∈ Ω0

θ̇ = ΓProj(θ, y)
(14)

where Proj(θ, y) is given by Eq. (12), then θ(t) ∈ Ω1, for
all t ≥ 0.
The reader is referred, for the proofs of Lemmas 1 and 2 to
[9] and to [6] for simpler versions applicable to linear plants.

The implications of Lemma 2 on robust adaptive control
are now obvious. If the adaptive law is chosen as in Lemma
2 with y = −eTPbω, then irrespective of the boundedness
of e, it follows that θ(t) is bounded and lies in Ω1 if θ(0)
and θ∗ belong to Ω0, Ω1 respectively. This is formally stated
in Lemma 3 below:
Lemma 3: Consider the IVP in (14) with

y = −eTPbω (15)

f(θ) =
‖ θ ‖2 −θ′2max

ε2 + 2εθ′max
(16)

where θ′max and ε are arbitrary positive constants, and Ω0 and
Ω1 are defined as in (11). Then,

θ(0) ∈ Ω0 =⇒ θ(t) ∈ Ω1.

In addition,

Ω0 =
{
θ ∈ Rn|‖θ‖ ≤ θ′max

}
Ω1 =

{
θ ∈ Rn|‖θ‖ ≤ θmax

}
where θmax = θ′max + ε.

(17)
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The proof of Lemma 3 follows immediately from Lemma 2.
Remark 1: We can also apply the projection algorithm
to an adaptive law in a slightly different way. Instead of
treating the vector θ as a whole, it is also possible to
implement the projection algorithm by parts, for θx and θr
independently. The design parameters in this case will be
θ′x,max, εx, and θ′r,max, εr, respectively. The boundedness
of the norm of θx by θx,max = θ′x,max + εx and that of θr
by θr,max = θ′r,max + εr are guaranteed as in Lemma 3.

With the boundedness of θ established using Lemma 3,
boundedness of e follows by the application of the Gronwall-
Bellman Lemma. This is summarized in the Theorem below.
Throughout the paper, we use the following notations. Let

sA = min
i

∣∣<(λi(A)
)∣∣

s̄A = max
i

∣∣<(λi(A)
)∣∣

where λi is ith eigenvalue of a matrix A and <(λi) is its
real part.
Theorem 1: Consider the closed-loop adaptive system given
by (6), the control law (2), the adaptive law (14) with y and
f(θ) chosen as in (15) and (16). If the reference model in
(4) and θmax are such that θ∗ in (5) belongs to Ω1, then for
any initial conditions xp(0) and xm(0), and θ(0) ∈ Ω0, the
closed-loop adaptive system has bounded solutions, with θ(t)
remaining in Ω1 for all t ≥ 0.

Proof: Lemma 3 implies that θ(t) ∈ Ω1 with a bound
as in (17). With a V as in (9), we obtain

V̇ = −1

2
eTQe+ 2eTPbλd

+
(
eTPbλθ̃Tω + λθ̃TProj(θ,−ωbTPe)

)
.

(18)

Equation (13) in Lemma 1 together with (15) implies that
the term within the parantheses in Eq. (18) is non-positive.
This in turn implies that

V̇ ≤ −eTQe+ k1‖e‖‖d‖. (19)

From (9) and (19) and the fact that θ(t) is bounded, it can
be shown that

V̇ ≤ −k2 (V − k3) + k4

√
V (20)

where

k1 = 2Pbλ, k2 =
sQ
s̄P
, k3 =

λθ2
max

sΓ
, k4 =

k1dmax√
sP

.

(21)
For positive constants ∆1,∆2 such that ∆1 < k2 and
4∆1∆2 ≥ k2

4 , it can be shown that for any V ,

∆1V + ∆2 ≥ k4

√
V (22)

through a straight forward completion of squares. Inequalities
(20) and (22) imply that

V̇ ≤ −(k2 −∆1︸ ︷︷ ︸
K0

)V + k2k3 + ∆2︸ ︷︷ ︸
K1

. (23)

From the application of the Gronwall-Bellman Lemma [11]
[12] to (23), it follows that

V (t) ≤
(
V (0)− K1

K0

)
exp(−K0t) +

K1

K0
(24)

and therefore V (t) is bounded. This in turn implies the
boundedness of e(t) and therefore x(t) for any initial con-
ditions in e(0).

III. ROBUSTNESS OF ADAPTIVE SYSTEMS TO
UNMODELED DYNAMICS

We now consider an LTI plant in the presence of a
disturbance that may not be known to be bounded apriori,
such as a state-dependent disturbance η given by

ζ̇ = Aηζ + bηu, η = cTη ζ (25)

where Aη is a Hurwitz matrix. For ease of exposition, we
assume that the plant has the form

ẋp = Amxp + bλ(u− θ∗Tx xp + η) (26)

where λ and θ∗x are unknown, and Am and b are known.
With the same reference model and definitions as in Section
II, we obtain the error dynamics

ė = Ame+ bλ(θ̃Tω + η), (27)

We now show that an identical result as in Theorem 1 can
be derived in this case even though the disturbance η is not
known to be bounded apriori.

We introduce a few definitions and a key lemma. P and
Pη are the solutions of the Lyapunov equations

ATmP + PAm = −q1I

ATη Pη + PηAη = −q2I (28)

where q1 and q2 are positive scalars. Since Am and Aη
are Hurwitz, P and Pη exist and are positive definite and
symmetric. Let

xm0
= θx,max max

t≥0
(xm(t)) ,

c1 = xm0
, c2 = θr,max max

t≥0
(r(t))

pb = ‖Pb‖, pη = ||Pηbη||
c3 = (λpb‖cη‖+ pηθx,max) , c4 = 2pη(c1 + c2)

(29)

F (e, ζ) = q1‖e‖2 + q2‖ζ‖2 − 2c3‖e‖||ζ|| − c4‖ζ‖. (30)

Theorem 2: Consider the closed-loop adaptive system given
by (26), the unmodeled dynamics by (25), the control law
(2), the adaptive law (14) with y and f(θ) chosen as in (15)
and (16). If the reference model in (4) and θmax are such that
θ∗ in (5) belongs to Ω1, then for any initial conditions xp(0),
xm(0), and θ(0) ∈ Ω0, the closed-loop adaptive system has
bounded solutions, with θ(t) remaining in Ω1 for all t ≥ 0
if

q1q2 > c23. (31)

Proof: Let a Lyapunov function candidate be chosen
as

V = eTPe+ λθ̃TΓ−1θ̃ + ζTPηζ. (32)
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Taking the time derivative

V̇ ≤ −q1||e||2 − q2||ζ||2 + 2eTPbλη + 2ζTPηbηu

with some simplifications leads to

V̇ ≤ −q1||e||2 − q2||ζ||2 + 2||e||pbλ||cη|| ||ζ||
+2pη||ζ||(θx,max||x||+ θr,maxrmax).

(33)

Noting that e = xp − xm and xm is bounded, using the
definitions in (29) and (30), (33) can be simplified as

V̇ ≤ −F (e, ζ).

It can be shown that F (e, ζ) = 0 is an ellipse in the
(‖e‖, ‖ζ‖) space if (31) holds. Defining z = [eT , ζT ]T , and

M =

[
q1 −c3
−c3 q2

]
,

(33) can be rewritten as

V̇ ≤ −zTMz + 2c4‖z‖ (34)

where M is positive definite due to (31), and ‖ζ‖ ≤ ‖z‖.
We note that the form of the inequality (34) is identical to
that of (19), and that V is a function of z and θ with θ
bounded. Therefore, identical arguments to that of Theorem
1 can be used to conclude the boundedness of z for any initial
conditions e(0) and ζ(0). Boundedness of xp(t) follows in
a straight forward manner.
Remark 2: It should be noted that the global nature of the
above result was possible primarily because boundedness
of the parameter was established independent of the error
dynamics. The former allowed the sign-definiteness terms
to be bounded by a quadratic function, thereby leading
to boundedness of all signals in the system with arbitrary
initial conditions in the state. In other words, the parameter
projection algorithm allowed the overall adaptive system,
by virtue of Lemma 2, to be treated as a linear time-
varying system, thereby leading to a global result. This
could not have been accomplished by other adaptive laws
with robustness–based modifications than the projection
algorithm discussed above.

We now show that a class of unmodeled dynamics
(Aη, bη, cη) as in (25) exists for any Am, b, λ, and θ∗ in
(26). The following lemma is useful in this regard.
Lemma 4: Let P be the solution of the Lyapunov equation
ATP + PA = −qI for a matrix A that is Hurwitz. Then

s̄P =
q

2sA
. (35)

Proof: Since A is Hurwitz,

P =

∫ ∞
0

eA
T tQeAtdt. (36)

If λi and vi are ith eigenvalue and corresponding normalized
eigenvector of A, respectively, it follows that

Pvi =
(
q

∫ ∞
0

eλ
∗
i teλitdt

)
vi

=
q

2|<(λi)|
vi

(37)

since Avi = λivi, AT vi = λ∗i vi, and eAtvi = eλitvi.
Therefore we can derive (35).

We note using Lemma 4 that we can express c3 in (29) as

c3 ≤ q1
‖b‖‖cη‖λmax

2sAm
+ q2

‖bη‖θx,max

2sAη
. (38)

Defining

α =

√
q1

q2
, βm =

‖b‖‖cη‖
2sAm

, βη =
‖bη‖
2sAη

(39)

and
g(α, βm, βη) = βmλmaxα+

βηθx,max

α
, (40)

it follows that the sufficient condition (31) is satisfied if

g(α, βm, βη) < 1 (41)

or equivalently, since α > 0, if

βmλmaxα
2 − α+ βηθx,max < 0. (42)

For ease of exposition, we set ‖cη‖ = 1. This implies
that the known parameters Am and b determine βm and
the parameters of the unmodeled dynamics determine βη .
The question that needs to be answered can be posed as
follows: Given βm and θx,max, does a βη exist such that
(42) is satisfied? The answer is affirmative, since it can be
derived that there exists α > 0 with which (42) is satisfied
if

4βmβηθx,maxλmax < 1, (43)

and α, defined in (39), is a free parameter. The above
discussions are summarized in the following proposition:
Proposition 1: If βη satisfies the inequality (43), then the
sufficient condition (31) in Theorem 1 is satisfied.

Proposition 1 implies that for any Am, b, λ, and θ∗, a class
of unmodeled dynamics always exists for which the sufficient
condition (31) is satisfied. This conclusively demonstrates
that the closed-loop adaptive system described in this section
is robust with respect to a class of unmodeled dynamics that
satisfies (43) with the relevant quantities defined in (39).

IV. ROBUSTNESS OF ADAPTIVE SYSTEMS TO
TIME-DELAY

Suppose the input into the plant is delayed so that the
plant equations are given by

ẋp = Amxp + bλ(u(t− τ)− θ∗Tx xp). (44)

Equation (44) can be rewritten as

ẋp = Amxp + bλ
(
(u(t) + η(t))− θ∗Tx xp

)
(45)

where

η(t) = [G(s)]u(t), (46)

and G(s) is an operator defined by G(s) = [e−τs−1], whose
rational approximation of order 2N (where N ∈ Z>0) can be
obtained by using the Pade approximation of e−τs:

e−τs ≈
∑2N
k=0(−1)kckτ

ksk∑2N
k=0 ckτ

ksk
(47)
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where the coefficients are

ck =
(4N − k)!(2N)!

(4N)!k!(2N − k)!
, k = 0, 1, . . . , 2N. (48)

It is easy to see that the rational approximation, GPade(s),
of G(s) admits a state-space representation (25), with the
parameters

Aη =
1

τ


−w1 1 0 · · ·
−w2 0 1 · · ·
−w3 0 0 · · ·

...
...

...
. . .


︸ ︷︷ ︸

AN

,

bη =
1

τ


−v1

−v2

−v3

...


︸ ︷︷ ︸
bN

, cTη =
[
1 0 0 · · ·

]
.

(49)

It is important to note that in (49), while the 2N × 2N
dimensional matrix Aη and the 2N × 1 dimensional matrix
bη depend on τ , the matrix AN , bN , and cη are independent
of τ , with AN Hurwitz. This allows us to conclude from
Theorem 2 that there exists a family of the adaptive controller
given by (2) and the projection algorithm in (14) with y
and f(θ) chosen as in (15) and (16) which guarantees
boundedness for Aη, bη , and cη . This is summarized in
Theorem 3, with the introduction of additional parameters
βτm, β

τ
η as

βτm =
‖b‖

2sAm
, βτη =

‖bN‖
2sAN

.

Theorem 3: Consider the closed-loop adaptive system given
by the plant (45), the disturbance η due to time delay which
is represented by (25) with parameters (49), the control law
(2), the adaptive law (14) with y and f(θ) chosen as in (15)
and (16). If the reference model in (4) and θmax are such that
θ∗ in (5) belongs to Ω1, then for any initial conditions xp(0),
xm(0), and θ(0) ∈ Ω0, the closed-loop adaptive system has
bounded solutions, with θ(t) remaining in Ω1 for all t ≥ 0,
if

βτη <
1

4βτmθx,maxλmax
. (50)

Proof: From the definitions of βτm, βτη and since
Aη = (1/τ)AN , bη = (1/τ)bN , it follows that βm = βτm
and βη = βτη . Therefore condition (50) immediately implies
that (43) holds. Theorem 2 and Proposition 1 imply that if
(43) is satisfied, then boundedness of the overall adaptive
system follows, which proves Theorem 3.

Remark 3: As in Section III, whether it exists a class of
Pade approximations for which βτη satisfies (50) remains to
be shown. Unlike (43), we note that βτη depends on bN and
AN both of which are independent of τ . In other words, βτη
is a fixed constant. Therefore the class of reference models
and θ∗ that satisfy the matching condition (5) are more

limited in this case compared to those in Section III, for a
given Pade approximant GPade(s). In fact, it is possible to
show that the sufficient condition (50) essentially requires
the uncertain open-loop plant to be stable. The main reason
for this limitation is the nature of ”unmodeled dynamics”
of GPade(s), where both the zeros and poles diverge as
τ becomes smaller, which makes the condition (50) quite
restrictive.
Remark 4: Another point to note is that the sufficient
condition is independent of τ . That is, if for a given Am
and θ∗, condition (50) is satisfied, then it continues to hold
for any τ . However, this sufficient condition is a function
of the order of GPade(s), since ‖bN‖ increases with N ,
which imposes a limit on N for a given Am and θx,max.
This in turn imposes a limit on the maximum τ that results
in boundedness. This is because a fixed N ensures that
the corresponding Gpade(s) is a good approximation of the
actual time-delay over the frequency range of interest only
for a certain range of delays. This is formally stated in the
following Proposition.
Proposition 2: Let the frequency range of interest be Ω =
[0, ωf ]. Then given a positive constant ε and N ∈ Z>0, there
exists a τ∗N ∈ R+ such that

|∠GPade(2N,2N),τ (jω)− ∠G(jω)| ≤ ε ∀ω ∈ Ω

for all τ ∈ [0 τ∗N ). The time-delay margin τ∗ can then be
defined as

τ∗ = max
N

(τ∗N )

where N is the set of all N such that βτη satisfies (50).
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