

Abstract— In this work we present an evaluation of the ability of

interpreted and centralized implementation techniques of Petri

nets. The main purpose of this work is the analysis of the

performance of the Petri Net execution algorithms, comparing

the performance of algorithms through a parameter that does not

depend on the execution platform. This parameter is the ability of

the implementation that is independent of the execution platform.

Firstly there is a study of the size of data structures of the Petri

Net execution algorithms. There is also a review of the term

ability, defining the ability of the Representing Places technique,

therefore allowing a comparative study of the ability of the

different techniques.

I. INTRODUCTION

Petri Nets (PN) is a formalism well suited to model
concurrent discrete event systems. It has been satisfactorily
applied in fields such as communication networks, computer
systems, discrete part manufacturing systems, etc. Net
models are often regarded as self-documented specifications,
because their graphical nature facilitates communication
among designers and users. Moreover, these models are
executable and can be used to animate and simulate the
behavior of the system and also for monitoring purposes
once the system is readily working. The final system can be
derived from a Petri Net model by means of hardware and
software (code generation) implementation techniques. In
this paper we assume that the reader is familiar with the
basic concepts of Petri Nets [1].

In the last 25 years, researchers have devoted
considerable attention to the software implementation of PN;
see for example [2] [3] [4] [5] [6]. A software
implementation is a program that triggers the firing of the
net transitions, observing the marking evolution rules, i.e., it
plays the token game. Depending on the criteria, a Petri net
implementation can be classified as compiled or interpreted,
sequential or concurrent, and centralized or decentralized.

Manuscript received September 7, 2011. This work was funded by the

Discrete Event Systems Engineering Group and the Robotics, Perception
and Real Time Group of the University of Zaragoza, Spain.

R. P. Corresponding author is with Aragón Institute for Engineering
Research (I3A), Universidad de Zaragoza. 50018, Zaragoza, Spain (34 976
762335; fax: 34 976 761914; e-mail: piedrafi@unizar.es).

J. L. V. Author is with Aragón Institute for Engineering Research (I3A),
Universidad de Zaragoza. 50018, Zaragoza, Spain (e-mail:
jlvilla@unizar.es).

In a centralized implementation, the token player is
executed by a single task, which is commonly called the
coordinator. In this kind of implementation the algorithm to
determine which transitions are enabled and can fire
determines its performance. Several algorithms have been
proposed in the literature as brute force, place driven or
transition driven.

An analysis of centralized implementation algorithms was
carried out in [7]. Brute Force (BF), Enabled Transitions
(ET), Static Representing Places (SRP) and Dynamic
Representing Places (DRP) algorithms were analyzed. The
main ideas obtained in [7] are: (1) the implementation of the
Enabled Transitions, Static and Dynamic Representing
Places algorithms can lead to enormous savings in execution
time compared to the Brute Force algorithm; (2) the choice
of the most suitable type of algorithm to execute a Petri Net
depends on the Petri Net behavior (effective concurrency vs.
effective conflicts).

In conclusion, the best algorithm to implement a Petri net
depends on its structure and on its dynamic behavior
(making and events). Enabled Transitions is better in nets
with few conflicts or with conflicts of small size.
Representing Places is better in nets with a high number of
conflicts or with conflicts of medium-great size.

In a second work [8] we have developed a technique
which allows the choice in real time of the most suitable
algorithm to execute a Petri Net in accordance with the
behavior observed at any time. With this aim in mind, we
decided to design a supervisor controller, which we have
called Execution Time Controller (ETC). The aim of the
ETC is to determine in real time which algorithm executes
the Petri Net fastest and to change the execution algorithm
when necessary.

In the case of system control, this minimizes the controller
reaction time and also the power consumed by the controller.
One application of the technique is the minimization of
execution time of the Programmable Logic Controllers
programs developed in SFC language.

The main purpose of the present work is the analysis of
the performance of the Petri Net execution algorithms,
analyzing the behavior of the algorithms compared to a
parameter which does not depend on the execution platform.
This parameter is the ability of the implementation that is
independent of the execution platform.

In [9] defines the ability of a PN implementation as a
mean number of enabled transitions per unit of time divided
by the mean number of transitions analyzed in order to
establish their enabling per time unit.

Evaluation of the Ability of Petri Net Centralized Implementation

Techniques

Ramón Piedrafita. José Luis Villarroel

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 403

This ratio is a measurement of the number of unnecessary

tests carried out in an implementation.
In this paper we present an evaluation of the ability of

interpreted and centralized implementation techniques of
Petri nets. Firstly there is a study of the size of data
structures of the Petri Net execution algorithms. There is
also a review of the term ability, defining the ability of the
Representing Places technique, therefore allowing a
comparative study of the ability of the different techniques
[10].

The organization of this paper is as follows. The
centralized implementation of PNs is exposed in the Section
II. Section III contains a study of the size of the treatment
lists and formation of the algorithms and their influence on
the behaviour of the algorithms. This first step will allow the
completion of the study of the ability of the different
techniques. Section IV qualitatively studies the ability of the
techniques Enabled Transitions and defines the ability of the
Representing Places techniques to make it comparable to the
ability of the other techniques; and also defines the static and
dynamic abilities. Section V is a quantitative analysis of the
ability of the techniques. This analysis is carried out on the
Petri Net library, indicating that ability depends on the
structure of the net, on the sequence of events and the
Representing Places techniques, and on their correct or
incorrect selection of representing places. Section VI
contains a comparison with the results of the execution time
tests, for the purpose of checking and endorsing them.
Finally, Section VII includes a summary of the results and
contributions of the work.

II. PETRI NETS CENTRALIZED IMPLEMENTATION: STRUCTURE

AND ALGORITHMS

A Petri net implementation has a strong dependency on
the interpretation of the net model, namely, how inputs,
actions and code are associated to the net elements.

For example, when PN are used in control applications,
the following interpretation is normally adopted [11] :

• Immediate actions are associated to the transition firing
(e.g., control signal changes, code execution)

• Level control signals are associated to marked places (if
a place has tokens, some signal is raised)

• Predicates are associated with transitions and are
additional preconditions for the firing of enabled
transitions. Predicates are functions of system inputs
or internal variables.

A Petri net with this interpretation is called a
synchronized (with its environment) Petri net, or interpreted
for control (its typical application).

In this interpretation [3] [9] [12] the full control part is
executed by just one task, commonly called token player or
Coordinator. Thus, the Coordinator makes the net evolve
over time. The Coordinator is commonly an interpreter that
works over a data structure that encodes the PN [12].

From a performance point of view, the main action
performed by the coordinator is the finding of enabled
transitions. Several techniques have been proposed for an
efficient search of enabled transitions and subsequently
reducing the overload introduced by the coordinator.

Depending on the solution chosen, centralized
implementation techniques can be classified into any of the
following classes [13]:

Place-driven approaches. In the algorithms Static
Representing Places and Dynamic Representing Places only
the output transitions of some representative marked places
are tested [14]. Each transition is represented by one of its
input places, the Representing Place. The remaining input
places are called synchronization places. Only transitions
whose Representing Place is marked are considered as
candidates for firing. The Representing Place of a transition
can be static or can be dynamically selected as in [15] (in
this case it is called triggering place). In the Dynamic
Representing Places technique, if a Representing Place is
marked but the transition is not enabled due to one or several
of the synchronization places being disabled, any one of the
unmarked synchronization places will be chosen as the new
Representing Place. In this manner we can reduce the
number of marked Representing Places and, hence, the
number of tested transitions.

Transition-driven approaches. The objective of these
techniques, also called “Enabled Transitions”, is that the
token player deals only with fully enabled transitions [16].
In order to achieve this objective, a characterization of the
enabling of transitions, different from the marking, must be
provided taking into account the local structural information
of the transitions. [17].

In the present work we have implemented four algorithms
in which different enabled transition search techniques are
developed:

• Brute Force
• Enabled Transitions.
• Static Representing Places.
• Dynamic Representing Places

However, in this paper we present the results using the
better ones: ET and SRP [7].

2.1 Data structures

In the Enabled Transitions technique the following data
structures will be available:
• Enabled Transitions List (ETL). Treatment list made up

of the transitions with all marked input places.
• Almost Enabled Transitions List (AETL). Formation

list which is built with the output transitions of the
places marked in the firing of the transitions.

In the Static Representing Places technique, the following
data structures will be available:
• Marked Representing Places list (MRPL) and Marked

Synchronization Places list (MSPL). Treatment Lists
with the marked Representing Places and
Synchronization Places.

• Marked Representing Places list next cycle
(MRPLnext) and Marked Synchronization Places list
next cycle (MSPLnext). Formation Lists with the
Representing Places and Synchronization Places that
will be marked in the next cycle by the firing of the
transitions.

404

2.2 Algorithm Execution Cycle

Program 1 presents the basic treatment cycle of the
Coordinator for the ET technique and Program 2 for the SRP
technique. In the programs we can distinguish three phases:
(1) enabling analysis and start of firing, and (2) end of
transition firing and (3) list update.

In the ET technique, ETL contains all enabled transitions
at the beginning of the cycle. From this list the fired
transitions and the disabled transitions (effective conflicts)
must be extracted in the execution cycle. AETL is built with
the output transitions of the places that will receive tokens
after the firing of the transitions. When ETL is updated for
the next cycle, the enabling of the transitions in AETL is
verified.
loop forever

 while elements in ETL do

 T = next_element (ETL) ;

 // enabled transition analysis

 if enabled (T) and predicate(T) then

 // transition firing update ETL

 Demark_input_places (T, ETL) ;

 Transitionsfired.add(T);

 end if ;

 end while ;

 while elements in Transitionsfired do

 T = next_element(Transitionsfired) ;

 // update AETL

 Mark_output_places (T, AETL);

 end while ;

 Clear(Transitionsfired);

 // update ETL with AETL

 ETL.update(AETL);

 Clear(AETL);

end loop

Program 1. ET Coordinator Treatment Loop

In the case of the SRP technique, MRPL contains the
marked representing places and the MSPL the marked
synchronization places. The output transitions of a marked
representing place are verified for enabling If a represented
transition fires the verification process ends because the rest
of represented transitions become disabled (effective
conflict). MRPLnext and MSPLnext are built with the
places that become marked in a treatment cycle. Finally,
MRPL and MSPL are incremented with MRPLnext and
MSPLnext respectively.

loop forever

 while elements in MRPL do

 Rplace = next_element (MRPL);

 Transitionsrepr=

 RPlace.transitionsrep ;

 while elements in Transitionsrepr do

 T = next_element(Transitionsrepr) ;

 // enabled transition analysis

 if enabled(T) and predicate(T) then

 // transition firing

 // update MRPL and MSPL

 Demark_input_places(T,MRPL,MSPL);

 Break () ;

 else

 // only in DRP

 Change_representing_place (T) ;

 end if ;

 end while ;

 end while ;

 while elements in Transitionsfired do

 T = next_element(Transitionsfired) ;

 // update MRPLnext and MSPLnext

 Mark_output_places(T,MRPLnext,

 MSPLnext);

 end while ;

 // update MRPL with MRPLnext

 // update MSPL with MSPLnext

 MRPL.update(MRPLnext);

 MSPL.update(MSPLnext);

 Clear(MRPLnext); Clear(MSPLnext);

end loop ;

Program 2. RP Coordinator Treatment Loop

b)

..
..

T1_1

T1_2

T1_ne-1

T1_ne

P1_1

P1_ne

a)

SEQ PAR

..
..

T1_1

T1_2

T1_r

T1_r+1

P1_1

P1_r+1

c)
P1R

..
..

T1_1

T1_2

T1_r

T1_r+1

P1_1

P1_r+1

..
..

T2_1

T2_2

T2_r

T2_r+1

P2_1

P2_r+1

R_1

R_2

R_r-1

R_r

..
..

Tr_1

Tr_2

Tr_r

Tr_r+1

Pr_1

Pr_r+1

....

..
..

T3_1

T3_2

T3_r

T3_r+1

P3_1

P3_r+1

d)
SQUARE

..
..

T1_1

T1_2

T1_r

T1_r+1

P1_1

P1_r+1

..
..

T2_1

T2_2

T2_r

T2_r+1

P2_1

P2_r+1

R_1

R_2

R_r-1

R_r

..
..

Tr_1

Tr_2

Tr_r

Tr_r+1

Pr_1

Pr_r+1

....

..
..

T3_1

T3_2

T3_r

T3_r+1

P3_1

P3_r+1

Figure 1. Petri Nets Library

III. THE SIZE OF THE LISTS

A library of Petri Nets has been developed for carrying
out the ability evaluation. Some of these models are well-
known and frequently used in literature. The library
comprises the following nets:
• SEQ. Petri Nets with one sequential process with ne (1..100)

states (Figure 1.a).
• PAR. Petri Nets with p (1..100) sequential processes with 2

places (Figure 1.b).
• PR1. Petri Nets with p (1..40) sequential processes with 2 states

and a common resource. These belong to s3pr net class [18].
• P1R. Petri Nets with 1 sequential process and r (1..40)

resources (Figure 1.c). These belong to s3pr net class [18].

405

• SQUARE. Petri Nets with r (5..15) sequential processes of r+1
states and r common resources (Figure 1.b) [7].

• PR5. Petri Nets of p (5..62) sequential processes of 6 states and
5 common resources [7].

Table 1 shows some aspects that have a great influence in
the average cycle time of an implementation technique: the
average size of the treatment and formation lists, and also
the average number of tested transitions. Two techniques are
considered, the ET and the SRP. In the case of SRP
technique, two different sets of representing places are
considered the “Bad Election” and the “Good Election”.

The size of the treatment lists depends on the actual
marking of the PN. For example, the size of ETL (list of
enabled transitions) is 1 in a sequential PN, equal to the
number of process in a PAR PN, whilst in a PR1 PN takes
the values p and 1, so the average is (p+1)/2.

The size of the formation list depends on the number of
fired transitions, and it depends on the conditions associated
to transitions. The formation list management affects also
the implementation performance. For example, in PAR PN a
number from 0 to p transitions can be fired, so the AETL list
can have a size that varies from 0 to p.

For ET the average size of the formation and treatment
lists in each cycle are presented. In ET the sum of the
average size of ETL and AETL lists is the average number
of tested transitions in each cycle.

In the case of SRP technique, the average number of
marked representing places, the average number of
represented transitions and the average number of tested
transitions are presented. In this technique, the number of
tested transitions can vary from the number of representing
places to the number of represented transitions. It depends
on which transition is fired in an effective conflict.

The table shows, for example, that the size of ETL list in
the ET technique is proportional to the number of processes
in PR5, PR1 or SQUARE nets. This means that the
execution time corresponding to the enabling test analysis
increases proportionally to the number of processes. As can
be seen in the presented tests, this kind of implementation
presents poor performance for the cited nets.

In SQUARE nets the ETL list is proportional to the
number of resources and processes and the size of AETL list
can be quadratic. However, in the Representing Places
technique the transitions are verified and the size of list in
formation increases linearly. This fact means that the
performance of ET implementation will make worse when
the size of net increase, as the tests show.

IV. PN IMPLEMENTATION ABILITY

A. Implementation ability

In [9] defines the ability of a PN implementation as a mean
number of enabled transitions per unit of time divided by the
mean number of transitions analyzed in order to establish
their enabling per time unit. This ratio is a measurement of
the number of unnecessary tests carried out in an
implementation.

Ability is a metric of the performance of the
implementation, but does not take into account all the
parameters which influence performance, such as the way to
evaluate the enabling of a transition, the influence of the size
of the lists on the execution time, or the time necessary to
resolve the conflicts. However, this simple measurement can
provide guidance on the behavior of a specific technique in
the execution of a Petri Net.

As ability is a metric formulated in terms of number of
transitions, the ability of the Representing Places techniques
will need to be defined to make it comparable to the ability
of the other techniques.

4.2 Ability of the Enabled Transitions techniques

If ETL is the set of Enabled Transitions and AETL the set
of Almost Enabled Transitions in a cycle, the ability of
technique h is:

AETLETL

ETL
hET

+
=

(1)

Unlike the Brute Force technique, in the enabling test only
fully enabled transitions are evaluated. Obviously
implementation ability is greater than in Brute Force.

4.3 Ability of the Representing Places techniques

In Representing Places techniques (static and dynamic),
only the output transitions of the marked representing places
are evaluated in the enabling test. However, for example, if a
transition fires in binary nets, the rest of the represented
transitions are not evaluated. Hence in the enabling test the
number of evaluated represented transitions may range from
a minimum which would be equal to the number of
representing places marked, through to a maximum which
would be the totality of transitions with a marked
representing place. Implementation ability is therefore
improved.The formation and treatment lists must be updated
in the transition firing stage in Representing Places
techniques. The ability of the technique is a metric in terms
of transitions. If ETL is the set of Enabled Transitions,
MRPL the set of Marked Representing Places, trs the mean
number of Representing Transitions whose enabling has
been tested in the cycle, contemplating only the enabling test
stage, the ability of the technique is:

rs

RP
tMRPL

ETL
h

*
=

(2)

406

Petri
nets

Enabled Transitions Representing Places

Bad election Good election

ETL AETL MRPL

trepres Tr
tested

MRPL

next

MR
PL

trepr
es

Tr
tested

MRPLnext

P1R 1 0..1

)1(

12

+

+

r

r
)1(

12

+

+

r

r
)1(

12

+

+

r

r 0..
)2(

)1(

+

+

r

r 1 1 1 0..1

PR1
2

1+p 0..
2

1+p p

p p 0..1 1
 2

1+p

1..

2

1+p

0..1

PR5
2

3+p 0..
2

65 +p 3

2.5*p+0.5

3..
2.5*p+0.
5

0..2.5 p

p p 0..3

SQ.

p=r
2

2 »»

º
«
«

ª
+

r
p

0..

2
)1(

2

p
p

r
−+»

»

º
«
«

ª

5.0
2

+»
»

º
«
«

ªr

5.0*
2

+p
r

5.0
2

+»
»

º
«
«

ªr .

.

5.0*
2

+p
r

0.. 5.0
2

+»
»

º
«
«

ªr p p p

0..
»»

º
««

ª

2

r

SEQ 1 0..1 1

1 1 0..1

PAR p 0..p p

p p 0..p

Table 1 Average Size of Treatment Lists and Formation Lists. r resources number, p processes number.

 However, in techniques such as Static Representing Places
and Dynamic Representing Places, places rather than
transitions are tested in the list update stage, meaning that
ability, as defined, cannot be directly measured in these
Representing Places techniques.

The ability of these Representing Places techniques taking
into account the lists update stage will be defined.

Definition 1 Ability of the Representing Places techniques.
MRPLnext is the set of marked Representing Places of the
following cycle, and MSPLnext the set of marked
Synchronization Places of the next cycle. The ability of the
Static Representing Places and Dynamic Representing
Places techniques will be:

s

rs

RP

f

MSPLnextMRPLnext
tMRPL

ETL
h

+
+

=

*

 (3)

fs, the synchronization factor, is the mean number of input
places of a transition.

5.4 Static and dynamic abilities

The ability of the technique is not a fixed value, but depends
on the time specific behavior of the net and its evolution.
For example, in nets interpreted for control, it depends on

the sequence of events which reaches the net. In industrial
control systems there are many control cycles in which there
are no events which reach the control system.

The ability of the techniques is different if events reach or
do not reach the net. The following are defined:

Definition 2. Static ability. Mean ability of the technique
when transitions are not fired.

Definition 3. Dynamic ability. Mean ability of the technique
when transitions are fired. As example, in the representing
places techniques:

rs

RP
tMRPL

ETL
he

*
=

 (4)

s

rs

RP

f

MSPLnextMRPLnext
tMRPL

ETL
hd

+
+

=

*

(5)

Static ability he depends on the current marking of the net.
Dynamic ability he depends on the current marking and
evolution of the net. Current marking defines the content of
the treatment list. The evolution of the net (firing transitions)
defines the content of the formation list.

407

5. STUDY OF THE ABILITY OF THE
IMPLEMENTATION TECHNIQUES.

In SEQ nets there is only one marked representing place and
one enabled transition. If the only transition possible fires in
a cycle, there will be a marked representing place of the next
cycle and an Almost Enabled transition. Moreover, as
fdes=1, then trs=1. The ability of the Representing Places
technique is as follows:

1,;
1

1
≤∈=

+
= rfrfET

rf

RP tNth
t

h

(6)

In which trf is the number of transitions fired in the cycle.

In PAR nets the number of marked representing places is
equal to the number of enabled transitions and the number of
marked representing places of the next cycle is equal to the
number of Almost Enabled transitions. In PAR nets there are
no synchronization places. Moreover, as fdes=1, then trs=1.

In PAR nets The number of Almost Enabled transitions is
equal to the number of fired transitions, and hence shall have
a minimum of zero transitions fired and a maximum of p
transitions fired, in which p is the number of Petri Net
processes.

ptNth
tp

p
h rfrfET

rf

RP ≤∈=
+

= ,; (7)

In SQUARE nets. The mean number of enabled transitions
is:

2
2»»

º
««

ª
+

=

r
p

ETL
(8)

The mean number of almost enabled transitions is:

0

20

40

60

80

100

0

20

40

60

80

100

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

size of Petri net

Petri nets PAR

transitions fired

A
b
ili

ty

Figure 2. Ability of the Enabled Transitions and Representing

Places techniques in PAR nets.

»»

º
««

ª¸̧
¹

·
¨̈
©

§
−+»»

º
««

ª
=

2

*
2

)1(
2 r

tp
p

r
AETL

rf

(9)

And the ability of Enabled Transitions in Square nets is:

»»

º
««

ª
≤∈

»»

º
««

ª¸̧
¹

·
¨̈
©

§
−+»»

º
««

ª
+

»»

º
««

ª
+

»»

º
««

ª
+

=
2

,;

2

*
2

)1(
22

2

2
2

r
tNt

r

tp
p

r

r
p

r
p

h rfrf

rf

ET

(10)

0

10

20

30

40

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1

processes

Petri nets SQUARE

transitions firings

A
b

ili
ty

 E
T

Figure 3. Ability of the Enabled Transitions techniques in
SQUARE nets.

If those belonging to the sequential process are chosen as
Representing Places p marked representing place shall exist.
If the transition fires, fp places are marked, and so

rfp tfMSPLnextMRPLnext *=+ (11)

»»

º
««

ª
≤∈

+

»»

º
««

ª
+

=
2

,;2
2

r
tNt

tp

r
p

h rfrf

rf

RP

(12)

As observed in Figure 3, the ability of the Enabled
Transitions technique in SQUARE nets starts from 1.0
(without transitions firing) but quickly decreases in line with
the increase of the number of transitions fired towards
values of less than 0.2. As observed in Figure 3 and Figure
4, when transitions do not fire, Representing Places ability is
less than Enabled Transitions ability. On the other hand, the
ability of the Representing Places technique does not drop as
quickly as Enabled Transitions ability when the number of
transitions fired increases.

If the resources are chosen as Representing Places and also
the last place of each process (necessary to represent the last

408

transition of the process), there shall be a mean of

5.0
2

+»»

º
««

ª r

marked Representing Places.

If the first transition possible within those represented fires,
for example the first transition represented by resource R_1
(transition T1_1) (see Figure 1.d), when the Static
Representing Places algorithm tests the enabling of the
transitions represented by R_3, transition T1_3 cannot fire,
the first transition of those represented which could fire
would be T2_3. In each algorithm cycle, in each sequential
process of the SQUARE net, only one transition can fire.
The Ability if the first transition possible fires is:

»»

º
««

ª
≤∈

++

»¼

»
«¬

«
+

»¼

»
«¬

«
+

»»

º
««

ª
+

»»

º
««

ª

»»

º
««

ª
+

=
2

,;

5.0
4

2
1

24
2

1

2

2
2

r
tNt

t

r

r

r

r

r
p

h rfrf

rf

RP

(13)

If the last transition possible fires, ability will be:

»»

º
««

ª
≤∈

+

»¼

»
«¬

«
¸̧
¹

·
¨̈
©

§
−»¼

»
«¬

«

−

»»

º
««

ª
¸̧
¹

·
¨̈
©

§
−»»

º
««

ª

−+

»»

º
««

ª
+

=
2

,;

4

2
1

2

4

2
1

2
5.0

2

2

2
r

tNt

t

rrrr

p
r

r
p

h rfrf

rf

RP

 (14)

In Figure 4 the graphs of the ability of the Representing
Places technique in SQUARE nets is observed. It is
observed that if the process places are chosen as
representing places, ability is much greater than when
resources are chosen. Moreover, in the latter case ability also
depends on which transition of those represented fires.

0

10

20

30

40

0

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

size of petri net

Petri nets SQUARE

transitions fired

A
b

ili
ty

 R
P

Representing
Places
processes

Representing
Places
resources (firing last)

Representing
Places
resources (firing first)

Figure 4. Ability of the Representing Places techniques in

SQUARE nets.
The ability of the Representing Places technique with

places representing those belonging to processes does not
depend on the size of the net, and drops if the number of
transitions fired increases. However, in any situation, the
ability of the technique is better than when resources are
chosen as representing places.

V. ABILITY AND EXECUTION TIME

The ability charts shown correspond to the results of the
experiments carried out in which execution time has been
measured. For example:

• In SQUARE nets, if processes are chosen as
representing places, the Representing Places algorithm
has a lower execution time than Enabled Transitions
(see Figure 5), which is in keeping with the ability
charts (see Figure 3 and Figure 4) in which it is
observed that the ability of the Enabled Transitions
technique drops quickly when the number of
transitions fired increases.

Figure 5 Execution Time in Square nets

0
20

40
60

80
100 0

20

40

60

80

100

0

1

2

3

4

5

x 10
7

transitions fired

 PAR nets. best algorithm

best algorithm ET

size of petri net

best algorithm RP

c
y
c
le

 t
im

e
 n

a
n
o
s
e
c
o
n
d
s

Figure 6 Execution Time in PAR nets

• Similarly, in PAR nets ability is identical in both
Enabled Transitions and Representing Places
techniques (see Figure 2). In this case execution time
can be observed in Figure 6, showing that if few
transitions fire, the best algorithm is Representing
Places, whilst in other cases it is Enabled Transitions.
This is due to the Representing Places technique

409

handling four lists and the handling time of these four
lists is greater.

The ability of the technique is a measurement which is
independent of the implementation platform, providing
guidance with regards to execution time results, which are,
obviously, dependent on this platform. This independence of
the implementation platform has been supplemented with the
comparison to the execution time tests, which ratify the
ability analysis.

VI. CONCLUSIONS

In order to supplement the execution time tests and further
analyze the behavior of the techniques, a study of the size of
the formation and treatment lists of the algorithms has been
carried out. This study clearly indicates the number of
transitions which are examined per cycle in each algorithm,
therefore allowing an initial estimate of which technique
presents best performance in accordance with the type of
Petri net run. This list size study will allow the completion
of the study of the ability of the different techniques. Ability
is a metric of implementation performance, but does not take
into account all the parameters which influence this
performance. However, this simple measurement can
provide guidance on the behavior of a specific technique in
the execution of a Petri Net. A quantitative study of the
ability of the different techniques has been completed. As
ability is a metric formulated in terms of number of
transitions, the ability of the Representing Places techniques
has been defined to make it comparable to the ability of the
other techniques. The terms static ability and dynamic ability
have also been defined and studied. It has been shown that a
bad choice of Representing Places implies worse ability of
the technique. The ability of the technique is independent of
the implementation platform. This independence of the
implementation platform has been supplemented with the
comparison to the execution time tests, which ratify the
ability analysis.

ACKNOWLEDGMENTS

We wish to thank Manuel Silva and Cristian Mahulea, for
their help.

REFERENCES

[1] T. Murata, "Petri Nets- Properties, Analysys and
applications," Proceedings of the Ieee, vol. 77, pp.
541-580, Apr 1989.

[2] G. V. Brams, "Reseaux de Petri: Theorie et
Practique, Vols. I and II," Masson, 1982.

[3] J. M. Colom, M. Silva, and J. L. Villarroel, "On
software implementation of Petri nets and colored
Petri nets using high-level concurrent languages,"
Seventh European Workshop on applications and

theory of Petri nets, Oxford, July, vol. 86, pp. 207-
241, 1986 a.

[4] J. L. Briz and J. M. Colom, "Implementation of
Weighted Place/Transition Nets based on Linear

Enabling Functions," Application and Theory of

Petri Nets, vol. 815, pp. 99–118, 1994.
[5] D. Taubner, "On the implementation of Petri nets,"

Lecture Notes in Computer Science, vol. 340, pp.
418-439, 1988.

[6] G. Bruno, A. Castella, G. Macario, and M.
Pescarmona, "Scheduling hard real time systems
using high-level petri nets," Application and Theory

of Petri Nets, vol. 616, pp. 93–112, 1992.
[7] R. Piedrafita and J. L. Villarroel, "Performance

evaluation of petri nets execution algorithms," in
Systems, Man and Cybernetics, 2007. ISIC. IEEE

International Conference on, 2007, pp. 1400-1407.
[8] R. Piedrafita and J. L. Villarroel, "Adaptive Petri

Nets Implementation. The Execution Time
Controller.," in 9th International Workshop on

Discrete Event Systems 2008, Gothenburg, Sweden,
2008, pp. 1400-1407.

[9] J. L. Villarroel, "Integración Informática del
Control de Sistemas Flexibles de Fabricación," in
Ingeniería Eléctrica e Informática Zaragoza:
Universidad de Zaragoza, 1990.

[10] R. Piedrafita, "Técnicas de Implementación de
Sistemas de Control de Eventos Discretos," in
Informática e Ingeniería de Sistemas Zaragoza:
Universidad de Zaragoza, 2009.

[11] M. Silva, Las Redes de Petri en la Automatica y la

Informatica., AC ed. Madrid: AC, 1985.
[12] F. J. García and J. L. Villarroel, "Modelling and

Ada Implementation of Real-Time Systems using
Time Petri Nets," Proc. of the 21st IFAC/IFIP

Workshop on Real-Time Programming. Gramado-

RS, Brazil. November, 1996.
[13] J. L. Briz, "Técnicas de implementación de redes de

Petri. ," PhD thesis, Univ. Zaragoza, 1995.
[14] R. Valette, M. Courvoisier, J. M. Bigou, and J.

Albukerque, "A Petri Net Based Programmable
Logic Controller," Computer Applications in

Production and Engineering, vol. 11, pp. 103-115,
1983.

[15] R. Valette and B. Bako, "Software implementation
of Petri nets and compilation of rule-based
systems," Lecture Notes in Computer Science, vol.
524, pp. 296-316, 1991.

[16] D. Chocron, "Un Systéme de Programmation par
RdP de Controleurs Industriels," Montreal: École
Politecnique de Montreal, 1980.

[17] M. Silva and S. Velilla, "Programmable logic
controllers and Petri nets: A comparative study," in
IFAC/IFIP Symposium on Software for Computer

Control Madrid, Spain, 1982, pp. 83–88.
[18] J. Ezpeleta, J. M. Colom, and J. Martinez, "A Petri-

net based deadlock prevention policy for flexible
manufacturing systems," Ieee Transactions on

Robotics and Automation, vol. 11, pp. 173-184,
Apr 1995.

410

