
 

  
Abstract— In this work we present an evaluation of the ability of 

interpreted and centralized implementation techniques of Petri 

nets. The main purpose of this work is the analysis of the 

performance of the Petri Net execution algorithms, comparing 

the performance of algorithms through a parameter that does not 

depend on the execution platform. This parameter is the ability of 

the implementation that is independent of the execution platform. 

Firstly there is a study of the size of data structures of the Petri 

Net execution algorithms. There is also a review of the term 

ability, defining the ability of the Representing Places technique, 

therefore allowing a comparative study of the ability of the 

different techniques.  
 

I. INTRODUCTION 

Petri Nets (PN) is a formalism well suited to model 
concurrent discrete event systems. It has been satisfactorily 
applied in fields such as communication networks, computer 
systems, discrete part manufacturing systems, etc. Net 
models are often regarded as self-documented specifications, 
because their graphical nature facilitates communication 
among designers and users. Moreover, these models are 
executable and can be used to animate and simulate the 
behavior of the system and also for monitoring purposes 
once the system is readily working. The final system can be 
derived from a Petri Net model by means of hardware and 
software (code generation) implementation techniques. In 
this paper we assume that the reader is familiar with the 
basic concepts of Petri Nets [1]. 

In the last 25 years, researchers have devoted 
considerable attention to the software implementation of PN; 
see for example [2] [3] [4] [5] [6]. A software 
implementation is a program that triggers the firing of the 
net transitions, observing the marking evolution rules, i.e., it 
plays the token game. Depending on the criteria, a Petri net 
implementation can be classified as compiled or interpreted, 
sequential or concurrent, and centralized or decentralized.  
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In a centralized implementation, the token player is 
executed by a single task, which is commonly called the 
coordinator. In this kind of implementation the algorithm to 
determine which transitions are enabled and can fire 
determines its performance. Several algorithms have been 
proposed in the literature as brute force, place driven or 
transition driven.  

An analysis of centralized implementation algorithms was 
carried out in [7]. Brute Force (BF), Enabled Transitions 
(ET), Static Representing Places (SRP) and Dynamic 
Representing Places (DRP) algorithms were analyzed. The 
main ideas obtained in [7] are: (1) the implementation of the 
Enabled Transitions, Static and Dynamic Representing 
Places algorithms can lead to enormous savings in execution 
time compared to the Brute Force algorithm; (2) the choice 
of the most suitable type of algorithm to execute a Petri Net 
depends on the Petri Net behavior (effective concurrency vs. 
effective conflicts). 

In conclusion, the best algorithm to implement a Petri net 
depends on its structure and on its dynamic behavior 
(making and events). Enabled Transitions is better in nets 
with few conflicts or with conflicts of small size. 
Representing Places is better in nets with a high number of 
conflicts or with conflicts of medium-great size. 

In a second work [8] we have developed a technique 
which allows the choice in real time of the most suitable 
algorithm to execute a Petri Net in accordance with the 
behavior observed at any time. With this aim in mind, we 
decided to design a supervisor controller, which we have 
called Execution Time Controller (ETC). The aim of the 
ETC is to determine in real time which algorithm executes 
the Petri Net fastest and to change the execution algorithm 
when necessary. 

In the case of system control, this minimizes the controller 
reaction time and also the power consumed by the controller. 
One application of the technique is the minimization of 
execution time of the Programmable Logic Controllers 
programs developed in SFC language. 

The main purpose of the present work is the analysis of 
the performance of the Petri Net execution algorithms, 
analyzing the behavior of the algorithms compared to a 
parameter which does not depend on the execution platform. 
This parameter is the ability of the implementation that is 
independent of the execution platform. 

In [9] defines the ability of a PN implementation as a 
mean number of enabled transitions per unit of time divided 
by the mean number of transitions analyzed in order to 
establish their enabling per time unit.  
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This ratio is a measurement of the number of unnecessary 

tests carried out in an implementation. 
In this paper we present an evaluation of the ability of 

interpreted and centralized implementation techniques of 
Petri nets. Firstly there is a study of the size of data 
structures of the Petri Net execution algorithms. There is 
also a review of the term ability, defining the ability of the 
Representing Places technique, therefore allowing a 
comparative study of the ability of the different techniques 
[10]. 

The organization of this paper is as follows. The 
centralized implementation of PNs is exposed in the Section 
II. Section III contains a study of the size of the treatment 
lists and formation of the algorithms and their influence on 
the behaviour of the algorithms. This first step will allow the 
completion of the study of the ability of the different 
techniques. Section IV qualitatively studies the ability of the 
techniques Enabled Transitions and defines the ability of the 
Representing Places techniques to make it comparable to the 
ability of the other techniques; and also defines the static and 
dynamic abilities. Section V is a quantitative analysis of the 
ability of the techniques. This analysis is carried out on the 
Petri Net library, indicating that ability depends on the 
structure of the net, on the sequence of events and the 
Representing Places techniques, and on their correct or 
incorrect selection of representing places. Section VI 
contains a comparison with the results of the execution time 
tests, for the purpose of checking and endorsing them. 
Finally, Section VII includes a summary of the results and 
contributions of the work. 

II. PETRI NETS CENTRALIZED IMPLEMENTATION: STRUCTURE 

AND ALGORITHMS 

A Petri net implementation has a strong dependency on 
the interpretation of the net model, namely, how inputs, 
actions and code are associated to the net elements.  

For example, when PN are used in control applications, 
the following interpretation is normally adopted [11] : 

• Immediate actions are associated to the transition firing 
(e.g., control signal changes, code execution) 

• Level control signals are associated to marked places (if 
a place has tokens, some signal is raised) 

• Predicates are associated with transitions and are 
additional preconditions for the firing of enabled 
transitions. Predicates are functions of system inputs 
or internal variables. 

A Petri net with this interpretation is called a 
synchronized (with its environment) Petri net, or interpreted 
for control (its typical application). 

In this interpretation [3] [9] [12] the full control part is 
executed by just one task, commonly called token player or 
Coordinator. Thus, the Coordinator makes the net evolve 
over time. The Coordinator is commonly an interpreter that 
works over a data structure that encodes the PN [12].  

From a performance point of view, the main action 
performed by the coordinator is the finding of enabled 
transitions. Several techniques have been proposed for an 
efficient search of enabled transitions and subsequently 
reducing the overload introduced by the coordinator. 

Depending on the solution chosen, centralized 
implementation techniques can be classified into any of the 
following classes [13]: 

Place-driven approaches. In the algorithms Static 
Representing Places and Dynamic Representing Places only 
the output transitions of some representative marked places 
are tested [14]. Each transition is represented by one of its 
input places, the Representing Place. The remaining input 
places are called synchronization places. Only transitions 
whose Representing Place is marked are considered as 
candidates for firing. The Representing Place of a transition 
can be static or can be dynamically selected as in [15] (in 
this case it is called triggering place). In the Dynamic 
Representing Places technique, if a Representing Place is 
marked but the transition is not enabled due to one or several 
of the synchronization places being disabled, any one of the 
unmarked synchronization places will be chosen as the new 
Representing Place. In this manner we can reduce the 
number of marked Representing Places and, hence, the 
number of tested transitions. 

Transition-driven approaches. The objective of these 
techniques, also called “Enabled Transitions”, is that the 
token player deals only with fully enabled transitions [16]. 
In order to achieve this objective, a characterization of the 
enabling of transitions, different from the marking, must be 
provided taking into account the local structural information 
of the transitions. [17]. 

In the present work we have implemented four algorithms 
in which different enabled transition search techniques are 
developed: 

• Brute Force  
• Enabled Transitions.  
• Static Representing Places. 
• Dynamic Representing Places 

However, in this paper we present the results using the 
better ones: ET and SRP [7]. 

2.1  Data structures 

In the Enabled Transitions technique the following data 
structures will be available: 
• Enabled Transitions List (ETL). Treatment list made up 

of the transitions with all marked input places. 
• Almost Enabled Transitions List (AETL). Formation 

list which is built with the output transitions of the 
places marked in the firing of the transitions. 

In the Static Representing Places technique, the following 
data structures will be available: 
• Marked Representing Places list (MRPL) and Marked 

Synchronization Places list (MSPL). Treatment Lists 
with the marked Representing Places and 
Synchronization Places. 

• Marked Representing Places list next cycle 
(MRPLnext) and Marked Synchronization Places list 
next cycle (MSPLnext). Formation Lists with the 
Representing Places and Synchronization Places that 
will be marked in the next cycle by the firing of the 
transitions. 
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2.2  Algorithm Execution Cycle 

Program 1 presents the basic treatment cycle of the 
Coordinator for the ET technique and Program 2 for the SRP 
technique. In the programs we can distinguish three phases: 
(1) enabling analysis and start of firing, and (2) end of 
transition firing and (3) list update. 

In the ET technique, ETL contains all enabled transitions 
at the beginning of the cycle. From this list the fired 
transitions and the disabled transitions (effective conflicts) 
must be extracted in the execution cycle. AETL is built with 
the output transitions of the places that will receive tokens 
after the firing of the transitions. When ETL is updated for 
the next cycle, the enabling of the transitions in AETL is 
verified. 
loop forever 

  while elements in ETL do 

    T = next_element (ETL) ; 

    // enabled transition analysis 

    if enabled (T) and predicate(T) then 

      // transition firing update ETL 

      Demark_input_places (T, ETL) ; 

      Transitionsfired.add(T); 

    end if ; 

  end while ; 

  while elements in Transitionsfired do 

    T = next_element(Transitionsfired) ; 

      // update AETL 

    Mark_output_places (T, AETL); 

  end while ; 

  Clear(Transitionsfired); 

 

  // update ETL with AETL 

  ETL.update(AETL); 

  Clear(AETL); 

end loop 

Program 1. ET Coordinator Treatment Loop 

In the case of the SRP technique, MRPL contains the 
marked representing places and the MSPL the marked 
synchronization places. The output transitions of a marked 
representing place are verified for enabling If a represented 
transition fires the verification process ends because the rest 
of represented transitions become disabled (effective 
conflict). MRPLnext and MSPLnext are built with the 
places that become marked in a treatment cycle. Finally, 
MRPL and MSPL are incremented with MRPLnext and 
MSPLnext respectively.  

loop forever 

  while elements in MRPL do 

    Rplace = next_element (MRPL); 

    Transitionsrepr= 

          RPlace.transitionsrep ; 

    while elements in Transitionsrepr do 

     T = next_element(Transitionsrepr) ; 

     // enabled transition analysis 

     if enabled(T) and predicate(T) then 

       // transition firing 

       // update MRPL and MSPL 

       Demark_input_places(T,MRPL,MSPL);  

       Break () ; 

     else 

 // only in DRP  

 Change_representing_place (T) ; 

    end if ; 

    end while ; 

  end while ; 

  while elements in Transitionsfired do 

    T = next_element(Transitionsfired) ; 

   // update MRPLnext and MSPLnext 

    Mark_output_places(T,MRPLnext, 

                       MSPLnext); 

  end while ; 

  // update MRPL with MRPLnext 

  // update MSPL with MSPLnext 

  MRPL.update(MRPLnext); 

  MSPL.update(MSPLnext); 

  Clear(MRPLnext); Clear(MSPLnext); 

end loop ; 

Program 2. RP Coordinator Treatment Loop 
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Figure 1. Petri Nets Library 

III. THE SIZE OF THE LISTS 

A library of Petri Nets has been developed for carrying 
out the ability evaluation. Some of these models are well-
known and frequently used in literature. The library 
comprises the following nets: 
• SEQ. Petri Nets with one sequential process with ne (1..100) 

states (Figure 1.a).  
• PAR. Petri Nets with p (1..100) sequential processes with 2 

places (Figure 1.b). 
• PR1. Petri Nets with p (1..40) sequential processes with 2 states 

and a common resource. These belong to s3pr net class [18]. 
• P1R. Petri Nets with 1 sequential process and r (1..40) 

resources (Figure 1.c). These belong to s3pr net class [18]. 
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• SQUARE. Petri Nets with r (5..15) sequential processes of r+1 
states and r common resources (Figure 1.b) [7]. 

• PR5. Petri Nets of p (5..62) sequential processes of 6 states and 
5 common resources [7]. 

Table 1 shows some aspects that have a great influence in 
the average cycle time of an implementation technique: the 
average size of the treatment and formation lists, and also 
the average number of tested transitions. Two techniques are 
considered, the ET and the SRP. In the case of SRP 
technique, two different sets of representing places are 
considered the “Bad Election” and the “Good Election”. 

The size of the treatment lists depends on the actual 
marking of the PN. For example, the size of ETL (list of 
enabled transitions) is 1 in a sequential PN, equal to the 
number of process in a PAR PN, whilst in a PR1 PN takes 
the values p and 1, so the average is (p+1)/2. 

The size of the formation list depends on the number of 
fired transitions, and it depends on the conditions associated 
to transitions. The formation list management affects also 
the implementation performance. For example, in PAR PN a 
number from 0 to p transitions can be fired, so the AETL list 
can have a size that varies from 0 to p.  

For ET the average size of the formation and treatment 
lists in each cycle are presented. In ET the sum of the 
average size of ETL and AETL lists is the average number 
of tested transitions in each cycle.  

In the case of SRP technique, the average number of 
marked representing places, the average number of 
represented transitions and the average number of tested 
transitions are presented. In this technique, the number of 
tested transitions can vary from the number of representing 
places to the number of represented transitions. It depends 
on which transition is fired in an effective conflict.  

The table shows, for example, that the size of ETL list in 
the ET technique is proportional to the number of processes 
in PR5, PR1 or SQUARE nets. This means that the 
execution time corresponding to the enabling test analysis 
increases proportionally to the number of processes. As can 
be seen in the presented tests, this kind of implementation 
presents poor performance for the cited nets. 

In SQUARE nets the ETL list is proportional to the 
number of resources and processes and the size of AETL list 
can be quadratic. However, in the Representing Places 
technique the transitions are verified and the size of list in 
formation increases linearly. This fact means that the 
performance of ET implementation will make worse when 
the size of net increase, as the tests show. 

IV. PN IMPLEMENTATION ABILITY 

A. Implementation ability 

In [9] defines the ability of a PN implementation as a mean 
number of enabled transitions per unit of time divided by the 
mean number of transitions analyzed in order to establish 
their enabling per time unit. This ratio is a measurement of 
the number of unnecessary tests carried out in an 
implementation. 

Ability is a metric of the performance of the 
implementation, but does not take into account all the 
parameters which influence performance, such as the way to 
evaluate the enabling of a transition, the influence of the size 
of the lists on the execution time, or the time necessary to 
resolve the conflicts. However, this simple measurement can 
provide guidance on the behavior of a specific technique in 
the execution of a Petri Net.  

As ability is a metric formulated in terms of number of 
transitions, the ability of the Representing Places techniques 
will need to be defined to make it comparable to the ability 
of the other techniques. 

4.2 Ability of the Enabled Transitions techniques 

If ETL is the set of Enabled Transitions and AETL the set 
of Almost Enabled Transitions in a cycle, the ability of 
technique h is: 

AETLETL

ETL
hET

+
=  

(1) 

 

Unlike the Brute Force technique, in the enabling test only 
fully enabled transitions are evaluated. Obviously 
implementation ability is greater than in Brute Force.  

4.3 Ability of the Representing Places techniques  

In Representing Places techniques (static and dynamic), 
only the output transitions of the marked representing places 
are evaluated in the enabling test. However, for example, if a 
transition fires in binary nets, the rest of the represented 
transitions are not evaluated. Hence in the enabling test the 
number of evaluated represented transitions may range from 
a minimum which would be equal to the number of 
representing places marked, through to a maximum which 
would be the totality of transitions with a marked 
representing place. Implementation ability is therefore 
improved.The formation and treatment lists must be updated 
in the transition firing stage in Representing Places 
techniques. The ability of the technique is a metric in terms 
of transitions. If ETL is the set of Enabled Transitions, 
MRPL the set of Marked Representing Places, trs the mean 
number of Representing Transitions whose enabling has 
been tested in the cycle, contemplating only the enabling test 
stage, the ability of the technique is: 

rs

RP
tMRPL

ETL
h

*
=  

(2) 
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Table 1 Average Size of Treatment Lists and Formation Lists. r resources number, p processes number. 

   However, in techniques such as Static Representing Places 
and Dynamic Representing Places, places rather than 
transitions are tested in the list update stage, meaning that 
ability, as defined, cannot be directly measured in these 
Representing Places techniques. 

The ability of these Representing Places techniques taking 
into account the lists update stage will be defined. 

Definition 1 Ability of the Representing Places techniques. 
MRPLnext is the set of marked Representing Places of the 
following cycle, and MSPLnext the set of marked 
Synchronization Places of the next cycle. The ability of the 
Static Representing Places and Dynamic Representing 
Places techniques will be: 

s

rs

RP

f

MSPLnextMRPLnext
tMRPL

ETL
h

+
+

=

*

 (3) 

fs, the synchronization factor, is the mean number of input 
places of a transition. 

5.4 Static and dynamic abilities 

The ability of the technique is not a fixed value, but depends 
on the time specific behavior of the net and its evolution. 
For example, in nets interpreted for control, it depends on 

the sequence of events which reaches the net. In industrial 
control systems there are many control cycles in which there 
are no events which reach the control system. 

The ability of the techniques is different if events reach or 
do not reach the net. The following are defined: 

Definition 2. Static ability. Mean ability of the technique 
when transitions are not fired. 

Definition 3. Dynamic ability. Mean ability of the technique 
when transitions are fired. As example, in the representing 
places techniques: 

rs

RP
tMRPL

ETL
he

*
=

 (4) 

s

rs

RP

f

MSPLnextMRPLnext
tMRPL

ETL
hd

+
+

=

*

 

(5) 

Static ability he depends on the current marking of the net. 
Dynamic ability he depends on the current marking and 
evolution of the net. Current marking defines the content of 
the treatment list. The evolution of the net (firing transitions) 
defines the content of the formation list. 
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5. STUDY OF THE ABILITY OF THE 
IMPLEMENTATION TECHNIQUES.  

In SEQ nets there is only one marked representing place and 
one enabled transition. If the only transition possible fires in 
a cycle, there will be a marked representing place of the next 
cycle and an Almost Enabled transition. Moreover, as 
fdes=1, then trs=1. The ability of the Representing Places 
technique is as follows: 

1,;
1

1
≤∈=

+
= rfrfET

rf

RP tNth
t

h

 

(6) 

In which trf is the number of transitions fired in the cycle. 

In PAR nets the number of marked representing places is 
equal to the number of enabled transitions and the number of 
marked representing places of the next cycle is equal to the 
number of Almost Enabled transitions. In PAR nets there are 
no synchronization places. Moreover, as fdes=1, then trs=1. 

In PAR nets The number of Almost Enabled transitions is 
equal to the number of fired transitions, and hence shall have 
a minimum of zero transitions fired and a maximum of p 
transitions fired, in which p is the number of Petri Net 
processes. 

ptNth
tp

p
h rfrfET

rf

RP ≤∈=
+

= ,;  (7) 

In SQUARE nets. The mean number of enabled transitions 
is: 
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Figure 2. Ability of the Enabled Transitions and Representing 

Places techniques in PAR nets. 
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And the ability of Enabled Transitions in Square nets is: 
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Figure 3. Ability of the Enabled Transitions techniques in 
SQUARE nets. 

If those belonging to the sequential process are chosen as 
Representing Places p marked representing place shall exist. 
If the transition fires, fp places are marked, and so 

rfp tfMSPLnextMRPLnext *=+  (11) 
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(12) 

As observed in Figure 3, the ability of the Enabled 
Transitions technique in SQUARE nets starts from 1.0 
(without transitions firing) but quickly decreases in line with 
the increase of the number of transitions fired towards 
values of less than 0.2. As observed in  Figure 3 and Figure 
4, when transitions do not fire, Representing Places ability is 
less than Enabled Transitions ability. On the other hand, the 
ability of the Representing Places technique does not drop as 
quickly as Enabled Transitions ability when the number of 
transitions fired increases. 

If the resources are chosen as Representing Places and also 
the last place of each process (necessary to represent the last 
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transition of the process), there shall be a mean of 
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(transition T1_1) (see Figure 1.d), when the Static 
Representing Places algorithm tests the enabling of the 
transitions represented by R_3, transition T1_3 cannot fire, 
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If the last transition possible fires, ability will be: 
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In Figure 4 the graphs of the ability of the Representing 
Places technique in SQUARE nets is observed. It is 
observed that if the process places are chosen as 
representing places, ability is much greater than when 
resources are chosen. Moreover, in the latter case ability also 
depends on which transition of those represented fires.  
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Figure 4. Ability of the Representing Places techniques in 

SQUARE nets. 
The ability of the Representing Places technique with 

places representing those belonging to processes does not 
depend on the size of the net, and drops if the number of 
transitions fired increases. However, in any situation, the 
ability of the technique is better than when resources are 
chosen as representing places.  

V. ABILITY AND EXECUTION TIME 

The ability charts shown correspond to the results of the 
experiments carried out in which execution time has been 
measured. For example: 

• In SQUARE nets, if processes are chosen as 
representing places, the Representing Places algorithm 
has a lower execution time than Enabled Transitions 
(see Figure 5), which is in keeping with the ability 
charts (see Figure 3 and Figure 4) in which it is 
observed that the ability of the Enabled Transitions 
technique drops quickly when the number of 
transitions fired increases. 

 
Figure 5 Execution Time in Square nets 
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Figure 6 Execution Time in PAR nets 

• Similarly, in PAR nets ability is identical in both 
Enabled Transitions and Representing Places 
techniques (see Figure 2). In this case execution time 
can be observed in Figure 6, showing that if few 
transitions fire, the best algorithm is Representing 
Places, whilst in other cases it is Enabled Transitions. 
This is due to the Representing Places technique 
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handling four lists and the handling time of these four 
lists is greater. 

The ability of the technique is a measurement which is 
independent of the implementation platform, providing 
guidance with regards to execution time results, which are, 
obviously, dependent on this platform. This independence of 
the implementation platform has been supplemented with the 
comparison to the execution time tests, which ratify the 
ability analysis. 

VI. CONCLUSIONS 

In order to supplement the execution time tests and further 
analyze the behavior of the techniques, a study of the size of 
the formation and treatment lists of the algorithms has been 
carried out. This study clearly indicates the number of 
transitions which are examined per cycle in each algorithm, 
therefore allowing an initial estimate of which technique 
presents best performance in accordance with the type of  
Petri net run. This list size study will allow the completion 
of the study of the ability of the different techniques. Ability 
is a metric of implementation performance, but does not take 
into account all the parameters which influence this 
performance. However, this simple measurement can 
provide guidance on the behavior of a specific technique in 
the execution of a Petri Net. A quantitative study of the 
ability of the different techniques has been completed. As 
ability is a metric formulated in terms of number of 
transitions, the ability of the Representing Places techniques 
has been defined to make it comparable to the ability of the 
other techniques. The terms static ability and dynamic ability 
have also been defined and studied. It has been shown that a 
bad choice of Representing Places implies worse ability of 
the technique. The ability of the technique is independent of 
the implementation platform. This independence of the 
implementation platform has been supplemented with the 
comparison to the execution time tests, which ratify the 
ability analysis. 
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