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Abstract— In this paper, we analyze the performance of
multiple event-based systems that share access to the same
network. Transmissions are attempted only when a local state-
based scheduler generates an event, and access to the network
is determined using a Carrier Sensing Multiple Access (CSMA)
protocol. In general, the interactions in such a multiple access
network introduce correlations between the system variables
of the various loops, and the respective traffic contributions
as well. Hence, analyzing the performance of this network is
difficult. However, a class of state-based schedulers, introduced
in the paper, permits a joint analysis of the scheduler and
the Contention Resolution Mechanism (CRM). The analysis
is based on a Markov model, which is validated through
simulations. The resulting steady-state model makes it possible
to characterize the statistics of packet arrivals in this network.

I. INTRODUCTION

In networked control systems, the closed loop is operated
with a network between the sensor and the controller, or the
controller and the actuator, or both. We consider a network of
M such closed loop systems, as shown in Fig. 1, where the
sensors and controllers communicate over a shared network,
but the controllers and actuators use a dedicated link each.
This is typical of many industrial settings where actuators
require power lines to be drawn, and can be simultaneously
connected by wires [1]. The shared sensing link does not
permit simultaneous transmissions, and there is much benefit
in reducing the data generated by the sensors [2], [3].

To accomplish this, each sensor could operate along with
a local scheduler, where the scheduling criterion or event
triggering policy decides when to schedule a sample for
transmission over the network [4], [5], [6]. In this paper,
such a scheduler is called a state-based scheduler as it
results in scheduling decisions which are correlated to the
state of the plant. We define these state-based schedulers for
discrete time linear stochastic plants, and use a scheduling
policy which acts on an information pattern. The information
pattern is a sufficient statistic for the state, and permits a
general formulation for such a system.

The shared network still requires a Medium Access Con-
troller (MAC) to arbitrate access to the medium. We consider
MACs which use a contention-based access protocol, such as
CSMA, as against a contention-free protocol, such as Time
Division Multiple Access (TDMA) [7]. CSMA protocols do
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Fig. 1. M closed loops, consisting of a plant (P) and a controller (C)
each, use a shared network (N ) for communication between the respective
sensors and controllers. Note that the controllers and actuators communicate
over a dedicated point to point link, which suffers no losses.

not guarantee a transmission, but use a CRM which may
result in collisions [8]. Despite this, we consider CSMA
protocols for event-based systems as they do not require a
centralized scheduler, and are implemented in a distributed
manner among the nodes. Their ad hoc mode of operation is
well suited to events, which are aperiodically generated by
the nodes, and hence difficult to accommodate in a schedule.

Now, we are interested in choosing parameters of the state-
based scheduler. This requires us to understand how these
parameters affect the performance of the closed loop system.
However, analyzing the performance of such a network is not
an easy task as the CRM introduces correlations between data
packets from different control loops. Even characterizing the
traffic on such networks is not easy. The state-based sched-
uler adapts the event generation, or its traffic contribution,
to the transmission history, through the varying statistics of
the input arguments to the scheduling policy. However, the
transmission history in turn depends on the CRM’s response
to the traffic in the network. Thus, a joint analysis of the
state-based scheduler and the CRM is required.

The joint analysis is the main contribution of this work. We
use a Markov chain to describe a class of scheduling policies
and the CRM, as it permits us to recover an independence
property at the CRM level, which facilitates the steady state
analysis. This approach is based on Bianchi’s analysis of the
Distributed Coordination Function in 802.11 [9]. The key
assumption in this model is the same as in Bianchi’s; we
assume that the conditional probability of a busy channel for
a node that attempts to transmit, is given by an independent
probability p for each node. In other words, we assume
that nodes attempting to transmit always see the network in
steady state. Once we define our Markov chain, we can solve
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to find p. The key assumption of conditional independence
is verified through simulations and is indeed found to hold
quite well even under unsaturated traffic conditions.

Some of the earlier work in this area includes a partial
analysis of event triggered nodes with CSMA/CA [10]. This
work highlighted the difficulties in analyzing such a network.
A full analysis with Aloha was presented in [11], which
assumed independent packet losses. A simple steady state
model was presented in [12], but with an idealized CRM
which results in no collisions. More recently, event-based
systems which use Aloha and Slotted Aloha have been
analyzed in [13], but with an event-triggering law that has
been chosen to result in independent packets. The work
presented in this paper highlights the need for a joint analysis
between the CRM and the event-triggering policy.

The rest of the paper is organized as follows. We present
the network setup in Section II and derive properties needed
for the Markov description in Section III. We delve into the
Markov chain based description in Section IV and solve to
obtain a simple model. Finally, we present some simulation
results which confirm our assumptions in Section V.

II. PRELIMINARIES

We consider a network of M plants and controllers
(indexed by j ∈ {1, . . . ,M}), which communicate over a
shared channel with a state-based scheduler in the loop,
as shown in Fig. 2. The different blocks in the figure are
explained below.
Plant: The plant P (j) has state dynamics given by

x(j)

k+1 = Ajx
(j)

k +Bju
(j)

k + w(j)

k , (1)

where Aj ∈ Rn×n, Bj ∈ Rn×m and the initial state x(j)

0 and
the process noise w(j)

k are i.i.d. zero-mean Gaussians with
covariance matrices R(j)

0 and R(j)
w , respectively. They are

independent and uncorrelated to x(i)

0 and w(i)

k respectively,
for any other plant i in the network. This discrete time model
is defined with respect to a sampling period T for each plant,
and the sampling instants are generated by a synchronized
network clock.
State Based Scheduler: There is a local scheduler S(j) ,
situated in the sensor node, between the plant and the
controller, which decides if the state is to be sent across
the network or not. The scheduler output γ(j)

k ∈ {0, 1}, and
is equal to 1 when the state x(j)

k is scheduled to be sent. The
scheduling criterion is denoted by the policy f (j) , which is
defined on the information pattern of the scheduler I

S(j)

k and
is given by

γ(j)

k = f (j)

k (I
S(j)

k ) , (2)

where, I
S(j)
k =[{x(j)}k0 ,{y(j)}k−1

0 ,{γ(j)}k−1
0 ,{δ(j)}k−1

0 ,{u(j)}k−1
0 ],

and δk is the MAC output given in (4). The bold font {a(j)}Tt
denotes the set {a(j)

t , a(j)

t+1, . . . , a
(j)

T }.
CRM: The CRM resolves contention between simultaneous
channel access requests. The output of the CRM is denoted
α(j)

k ∈ {0, 1}, and is given by

α(j)

k = R(γ(j)

k , %) , (3)

Fig. 2. A network (N ) of plants (P(j) ), state-based schedulers (S(j) ) and
controllers (C(j) ), for j ∈ {1, . . . ,M}, with an explicit CRM in the MAC.
The variables γ, α and δ denote scheduler requests, CRM transmission
attempts and the MAC output, respectively. The control loops {2,. . . ,M}
are represented with their schedulers alone.

where, % denotes the set of parameters that characterize
the CRM. The variable α(j)

k = 1 when the CRM permits
the packet to access the network. The CRM used in some
of the following sections is p-persistent CSMA with no
retransmissions. In this CRM, a node which finds the channel
busy persists to wait and transmits as soon as the channel
becomes idle with the persistence probability pα [8]. Thus,
% = {pα} for this CRM.
Now, the MAC output δ(j)

k , is given by

δ(j)

k = N ({α(j)

k }Mj=1) (4)

=


1 α(j)

k = 1, α(i)

k = 0, i 6= j

0

{
α(j)

k = 1,
∑M
i6=j,i=1 α

(i)

k > 0

α(j)

k = 0

,

where, (δ(j)

k = 1) indicates that a successful transmission
occurs only when the CRM permits a transmission and none
of the other nodes attempt to access the network.
Controller: The controller C(j) receives y(j)

k = δ(j)

k x(j)

k from
the network, and the control law g is given by

u(j)

k = g(j)

k (I
C(j)

k ); I
C(j)

k =
[
{y(j)}k0 ,{δ(j)}k0 ,{u(j)}k−1

0

]
, (5)

where I
C(j)

k is the information available to the controller.
We are interested in analyzing the performance of a closed

loop system in this network, or in particular, evaluating
the probability of a successful transmission, i.e., Pr(δ(j)

k =
1). This is required to evaluate the closed loop system
performance [14].

III. MARKOVIAN REPRESENTATION OF EVENTS
We reaffirm that the multiple access network introduces

correlations between different control loops with state-based
schedulers, as has been noted earlier in [10], [11]. We also
show that in general, the events from a state-based scheduler
need not possess a Markov property. Then, we identify a
class of state-based schedulers with the Markov property.

Lemma 1: For the closed loop system with the plant (1),
state-based scheduler (2), MAC output (4) and controller (5),
the state x(j)

k becomes correlated to the states x(i)

k for i 6=
j, i ∈ {1, . . . ,M}.

4730



Proof: The state of any plant in the network x(j)

k+1 is
a function of the control signal u(j)

k , from (1). The control
signal is a function of the MAC output δ(j)

k from (5). The
MAC output is a function of the previous states x(i)

k of all
the plants in the network, i.e., for i = {1, . . . ,M}, through
the scheduler outcomes γ(i)

k , as given by (2–4). This is true
for every plant in the network, and thus, all the states are
correlated.

In the following lemma, we establish that in general,
events described by the state-based scheduler in (2) depend
on the entire transmission history, and thus, do not possess
a Markov property.

Lemma 2: For the closed loop system with the plant (1),
state-based scheduler (2), MAC output (4) and controller (5),
the probability of a packet being scheduled for transmission,
i.e., Pr(γ(j)

k = 1), is a function of the transmission history
{δ(j)}k−1

0 , for j ∈ {1, . . . ,M}.
Proof: Since this proof holds for every plant in the

network, we drop the superscript j. The state can be written
as the sum of two components: a forced response and a
natural response, as shown in

xn =

n∑
`=1

A`−1Bun−` +Anx0 +

n∑
r=1

Ar−1wn−r

where un−` = gn−`(I
C
n−`), γn = fn(ISn), and the informa-

tion sets can be rewritten as ICn−` = {yn−`0 , δn−`0 , gn−`−10 }
and ISn = {xn0 , fn−1

0 , δn−1
0 , gn−1

0 }. The set of primi-
tive random variables in the above expressions are ω =
{x0,wk−1

0 , δk−1
0 }, where δ captures the effect of all the

unknown variables from the rest of the network. Of these,
the distributions of x0 and wk−1

0 are known, along with
the scheduler and controller policies {f, g}. Then, the trans-
mission history δk−1

0 must be characterized to evaluate the
probability of satisfying the scheduling criterion in (2).

Now, consider the class of schedulers given by

γ(j)

k = f̃ jk(I
S(j)

k ); I
S(j)

k =
[
x
(j)
0 ,{w(j)}k0 ,d

(j)
k−1

]
(6)

where dk is the delay since the last transmitted packet at
time k, as illustrated in Fig. 3. Specifically, dk = k − τk,
where τk is the time index of the last transmitted packet, i.e.
τk = {max{n,−1} : δn = 1, n ≤ k}.

Theorem 3: For the closed loop system with the plant (1),
state-based scheduler (6), MAC output (4) and controller (5),
the probability of a packet being scheduled for transmission,

Fig. 3. An illustration of the delay since the last received packet, dk , and
the index of the last received packet, τk . The sensor samples the plant every
T seconds, the scheduler chooses a few samples to be events (γk = 1), and
some are successfully transmitted (δk = 1).

i.e., Pr(γ(j)

k = 1), is a function of the delay since the last
successfully transmitted packet d(j)

k−1, for j ∈ {1, . . . ,M}.
Proof: Again, we drop the superscript j in this proof.

The input arguments to the scheduler in (6) contain the initial
state and process noise, which can be characterized without
the transmission history. In other words, their distributions
are known a priori. Then, only the delay since the last
successfully transmitted packet d(j)

k−1 is required to be known
or characterized to evaluate the probability of satisfying a
scheduling criterion such as (6).

Thus, by removing the transmission history, δk−1
0 , and the

past applied controls, uk−1
0 , it is possible to characterize the

probability of satisfying a scheduling criterion such as (6),
given just the delay since the last transmitted packet. Note
that the probabilities in Lemma 2 are often hard to compute.
However, these probabilities are easier to characterize for the
class of schedulers given by (6), as noted in the next section.
Also, with Theorem 3, d(j)

k−1) is a sufficient statistic for the
transmission history {δ(j)}k−1

0 . For this class of schedulers,
we describe the scheduling policy and the CRM with a
Markov model, in the next section.

IV. JOINT PERFORMANCE ANALYSIS

This section contains the main result of the paper, which
is a joint model of the state-based scheduler and the CRM.
We use the result from Theorem 3 to derive a Markov model
and analyze the performance of the entire system. We also
outline a few extensions to other network configurations.

A. A Simplified Model

Our modelling simplifications are described below. We
assume that all plants in the network are sampled with the
same period T , with a synchronized network clock, and that
the CRM used is p-persistent CSMA with no retransmis-
sions. We only consider scheduling policies such as in (6),
and restrict the memory of the scheduler to simplify the
modelling. We assume that the control data requires packet
lengths which are small compared to the sampling period.
However, note that the Markov model presented below exists,
as shown in Theorem 3. For brevity, we skip the superscript
(j), though the following description is for the jth plant and
scheduler over the network, where j ∈ {1, ..,M}.

In the Markov chain in Fig. 4, we assign two indices,
(s, d), to each state and denote the probability of being in
the state with p

(s,d)
. The index d represents the memory

of the scheduler and is equal to the delay since the last
successful transmission when d < F , where F is the finite
memory of the scheduler. Note that restricting the memory of
the scheduler does not constrain the burst length due to the
infinite looping allowed in the last stage of the scheduling
policy. The states (s, d) and (s, d+1) are one sampling period
away from each other. The index s represents the four states
a packet can be in during a sampling period. These are

1) s = −1 [Idle State]: All the other states return to this
state before the next sampling instant, when the next
transition occurs. The initial state (−1, 0) indicates the

4731



Fig. 4. A Markov chain representation for a state-based scheduler and
a simple CRM such as p-persistent CSMA with no retransmissions. The
variable F denotes the limit on the memory of transmission history used
by the scheduler.

idle state before the next sampling instant following a
successful transmission.

2) s = 0 [Non-scheduled State]: This state is reached
when the scheduler output γk = 0. A transition out
of this state occurs instantaneously, and always to the
idle state (−1, d) to wait for the next sampling instant.

3) s = 1 [Scheduled State]: This state is reached when
γk = 1. A transition out of this state occurs within
one sampling period to eventually reach an idle state,
possibly through a transmission state.

4) s = 2 [Transmission State]: This state is reached
when the contention resolution mechanism permits a
channel access, or when αk = 1 in Fig. 2. Only a
node in this state actually attempts a transmission. A
transition out of this state occurs instantaneously, with
two possibilities: transmission success or failure.

The transition probabilities in Fig. 4 are explained below:

• pγ,d denotes the probability of being scheduled at a
sampling instant, thus marking a transition from state
(−1, d−1) to (1, d). Conversely, p̄γ,d = 1−pγ,d denotes
the probability of not being scheduled or transitioning
from state (−1, d− 1) to (0, d).

• pγ,f denotes the probability of being scheduled in the
terminal stage of the scheduler.

• pα denotes the probability of accessing the channel
through the CRM, and marks a transition from state
(1, d) to (2, d). Conversely, p̄α = 1 − pα represents
the probability of returning to the idle state without
attempting a transmission.

• p denotes the conditional probability of a busy channel,
conditioned on nodes that attempt to transmit in state
(2, d). The node then reverts to the idle state (−1, d).
Otherwise, the transmission is successful and the node
reverts to the initial state (−1, 0).

The scheduler probabilities pγ,d and pγ,f can be computed
along with the steady state probability p, as explained at the
end of Section IV-B. The channel access probability pα is

provided for a given MAC.

B. Steady State Performance Analysis

For the Markov model described above, we can state the
following result.

Theorem 4: For the closed loop system with the plant (1),
state-based scheduler (6), MAC output (4) and controller (5),
the probability of a successful transmission in steady state is
given by

Pr(δ(j)

k = 1) = (1− p(j)) · p(j)

TX , (7)

where, p(j) is the conditional probability of a busy channel
for nodes attempting to transmit (11), and p(j)

TX is the
probability that a node attempts to transmit, or is in the (2, d)
states (9).

Proof: We begin by evaluating the probabilities p
(s,d)

,
in steady state, using the transition probabilities defined
above, and relate the Markov models of all the nodes in
the network to find an expression for the probability of a
successful transmission.

The state (−1, d) is always reached unless there is a
successful transmission. The probability of a successful
transmission in the dth stage is given by pγ,dpαp̄, which
gives us the recursive expression in

p
(−1,d)

= (1− pγ,dpαp̄)p(−1,d−1)
, d = {1, . . . , F − 1} ,

p
(−1,F )

=
1− pγ,dpαp̄
pγ,fpαp̄

p
(−1,F−1)

. (8)

In the final stage, (−1, F ) can be reached in an infinite
number of ways, and the sum of the geometric series is given
above.

The states (0, d) and (1, d) are reached by transitioning
from state (−1, d − 1) with probabilities p̄γ,d and pγ,d,
respectively. Thus, we have

p
(0,d)

= p̄γ,dp(−1,d−1)
, d = {1, . . . , F − 1} ,

p
(0,F )

= p̄γ,F p(−1,F−1)
+ p̄γ,fp(−1,F )

,

p
(1,d)

= pγ,dp(−1,d−1)
, d = {1, . . . , F − 1} ,

p
(1,F )

= pγ,F p(−1,F−1)
+ pγ,fp(−1,F )

.

The above equations reflect that the final states (0, F ) and
(1, F ) can be reached both from (0, F −1) and from (0, F ).

The states (2, d), are reached only from states (1, d), and
we have p

(2,d)
= pαp(1,d)

. Then, the transmission probability
of a node is denoted pTX and is given by

pTX =

F∑
d=1

p
(2,d)

. (9)

At any sampling instant, the packet must be in any of the
(−1, d) states. Thus, we have

F∑
d=0

p
(−1,d)

= 1 . (10)

A packet in any of the (2, d) states will access the channel.
A busy channel results when more than one such packet
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accesses the channel. For a channel with M scheduled nodes,
the jth node can find its probability of a busy channel using

pj = 1−
M∏

i 6=j,i=1

(1− piTX) , (11)

where piTX is the transmission probability of any of the other
M − 1 nodes.

For a network with M nodes, we can write 2M equations
(10,11) in 2M variables (p

(−1,0)
and p for each node). These

can be solved to find the corresponding steady state solution
for each node in the network. Then, we note that a node,
which is successful in transmission, transitions to the state
(−1, 0). Thus, the probability of a successful transmission is
given by p

(−1,0)
in (7).

This model helps us characterize the net performance we
obtain from the state-based scheduler and the CRM. Note
that we use the conditional independence assumption stated
earlier in (11), which simplifies the analysis.

Length of the Markov chain: The restriction on the mem-
ory of the Markov chain can be motivated by the maximum
burst length of the network. Notice that the sequence p

(−1,d)
,

i.e. probabilities of the states (−1, d) in (8), is decreasing for
pγ,d > 0. For an uncongested network (with a sufficiently
low p), the sequence decreases rapidly, and the infinite
Markov chain can be approximated by a finite Markov chain.

Computing scheduler probabilities: The scheduler proba-
bilities pγ,d are not easy to compute, as they depend on the
previous scheduler outcomes {γ}k−1

k−d+1 . This is because γ
cannot be inferred from the transmission history {δ}k−1

k−d+1 ,
or the delay dk, when there is other traffic in the network.
Hence, the scheduler probabilities must be computed as
pγ,d =

∑
{γ}k−1

k−d+1
Pr(γk = 1, {γ}k−1

k−d+1 |dk−1). This com-
putation requires probabilities from the above Markov chain,
and it can be solved along with the expressions in (8)–(11).

C. Extensions to General Models

1) CSMA with retransmissions: A more realistic MAC
is likely to use retransmissions, or any other method of
spreading congested network traffic over longer periods. A
description of such a MAC requires a Markov chain of its
own. Thus, the states (2, d) in Fig. 4 can be generalized to
the states (2, d, r) and (3, d, r) in Fig. 5, for r ∈ {1, . . . , R}.
Now, there are two time scales in use; the scheduler operates
at the sampling period, and the CRM operates at the slot
period of the MAC. The respective Markov chains can be
embedded, so long as the time scales do not overlap. Thus,
the CRM must complete all its R retransmissions before the
next sampling instant.

However, note that for synchronized traffic with retrans-
missions in the CRM, the uniform independence property is
not likely to hold anymore. A node in the ATT state sees the
network in a steady state that is unique to each retransmission
attempt. An independent CRM analysis can be performed,
with an equation such as (11) for every retransmission, which

Fig. 5. Embedding a CRM with R distinct re-transmission stages in the
Markov chain model

gives us

pjr = 1−
M∏

i6=j,i=1

(1− piTX,r) , for r ∈ {1, . . . , R}

where, piTX,r =
∑F
d=1 p(3,d,r)

, denotes the probability that
a node is in the rth retransmission attempt irrespective of
the scheduler stage. However, analyzing a more complicated
CRM such as CSMA/CA remains difficult, as the analysis
of the protocol requires a uniform traffic distribution.

2) Asynchronous Networks: Consider an asynchronous
network, with the CRM operated in a beacon-enabled mode.
Now, the MAC slots are synchronized over the network, but
each node can choose to sample in any MAC slot. An il-
lustration of the behaviour, with and without retransmissions
in the CRM, for synchronous and asynchronous networks,
is provided in Fig. 6. For an asynchronous network with
no retransmissions in the CRM, the number of interfering
transmissions in the ATT state in (11) is given by M (j) <
M , where M (j) is the number of nodes whose sampling
instants lie in the same MAC slot of the jth node. Thus, the
performance of the network depends on the sampling points
chosen by the nodes. The more spread apart they are, the
better the performance.

For an asynchronous network with retransmissions in the
CRM, there is no uniform probability p. The steady state
seen by a retransmission stage can only be determined by
an exhaustive combinatorial analysis of the different steady

Fig. 6. A comparison of synchronous and asynchronous traffic, with and
without retransmissions in the CRM. The steady state analysis differs for
each traffic pattern, as nodes in the ATT states see non-uniform steady states
for the last three patterns.
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TABLE I
A COMPARISON OF ANALYTICAL AND SIMULATED VALUES OF p

Parameter Simulation Analysis
Pr(δk = 1) 0.1840 0.1872

p1 0.5937 0.5944
p2 0.5655 0.5620
p3 0.5367 0.5277
p4 0.5076 0.4917
p5 0.4778 0.4542

states corresponding to the relevant retransmission stages of
interfering nodes in the network.

V. SIMULATION EXAMPLE

We have run Monte-Carlo simulations for the different
network configurations described above, such as CSMA with
and without retransmissions, and asynchronous networks
with no retransmissions, and find that the analytical value of
the steady state solution matches the simulated value even in
unsaturated traffic conditions, with very few retransmission
stages. We present the results of one experiment here. We
consider a homogenous network of M = 10 nodes, with R =
5 retransmissions in the MAC. The dynamics of the plants are
given by xk+1 = xk+uk+wk, where wk ∼ N (0, 1). We use
a scheduling criterion given by |xk−xc,k|2 > ε, where ε = 1,
and xc,k denotes the comparison value at time k. It is given
by xc,k = x̂k|τk−1 when the perceived delay in transmission,
dk = k − τk−1 < F , where x̂k|τk−1 = E[xk|I

C

τk−1
] is the

MMSE estimate at the controller. When the perceived delay
exceeds the memory of the scheduling policy, xc,k is given
by xk−F . To realize a scheduler such as this, we require the
dual predictor architecture presented in [14]. The scheduler
probabilities are found to be pγ,d =

[
0.3171 0.5138

]
, and

pα = 0.2 for all 5 retransmission stages. The simulated
results are provided in Table I, and they agree closely with
the analytical values computed using Theorem 4. Thus, the
independence assumption holds well, and can be used to
motivate the Markov modelling.

A comparison of analytical and simulated values of the
probability of a successful transmission, Pr(δk = 1), versus
the scheduler threshold, ε, for this synchronized network is
shown in Fig. 7. The performance obtained from the network
is, in accordance with expectations, poor due to synchro-
nization and congestion. Low thresholds cause many packets
to flood the network, and result in a low probability of a
successful transmission due to congestion. High thresholds
reduce the utilization of the network, and the probability
of a successful transmission decreases again. Thus, there
is a threshold that optimizes use of the network resources,
and a performance analysis is required to characterize this
threshold.

VI. CONCLUSIONS AND FUTURE WORKS

We have presented a method to analyze the performance of
a network of event-based systems that use a CRM to access
the shared network, for event-triggering policies that permit a
Markovian description. We show that this Markov modelling
is possible for certain event-based systems, and derive an
exact joint analysis for the event-triggering policy and CRM.

Fig. 7. A comparison of the analytical and simulated values of the
probability of a successful transmission versus the scheduler threshold. Low
thresholds result in a low Pr(δk = 1) due to congestion. High thresholds
also result in a low Pr(δk = 1), but due to under-utilization of the network.

This analysis assumes conditional independence from other
traffic only when the node attempts to transmit. We are able
to verify this assumption through simulations, and provide
extensions to more complicated network configurations. For
future work, we wish to use the insights obtained through
this work to simplify the performance analysis, and extend
it to the general class of event-triggering policies.
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