
Decentralized Adaptive Controller for Synchronization of Dynamical
Networks With Delays And Bounded Disturbances

Alexander L. Fradkov, Grigoriy Grigoriev and Anton Selivanov

Abstract— An adaptive master-slave output feedback syn-
chronization problem is studied firstly for a network of in-
terconnected nonlinear dynamical systems with bounded dis-
turbance and then for a network of systems with delayed
couplings. The proposed structure of decentralized controller
and adaptation algorithms in both cases is based on speed-
gradient and passification methods. Synchronization conditions
for systems with disturbances and for systems with delayed
couplings are established. An example of synchronization of
the network of Chua systems with bounded disturbances is
given. The problem of convergence with prespecified accuracy
is examined for the networks of dynamical systems with
disturbances. 1

I. INTRODUCTION

An enormous interest is observed recently in adaptive
control of networks. There were several researches made
in this area during recent years, such as [3], [4], [9], [15].
It is motivated by a broad area of potential applications:
formation control, cooperative control, control of power
networks, communication networks, production networks,
etc. However, only a restricted class of the problems in
this area is currently solved. For example, existing papers
are dealing mostly with disturbance-free systems [4], [9] or
availability of the whole state vector for measurement as
well as appearance of control in all equations for all nodes is
assumed [3], [4], [15]. Nowadays a lot of new problems arise,
such as taking into account uncertainties and a switching
structure of the network topology, delayed couplings and
disturbances. For the networks with delayed couplings some
results have already been presented in [11]–[15]. However,
in existing papers only a narrow class of networks, such
as fully-controlled and fully-measured networks (e.g. [11],
[15]), is examined, in [15] the algorithm is not decentralized.
Some of these works and many others deal with systems with
non-switching topology or provide non-adaptive control.

In the present work we overcome these restrictions and
propose an adaptive decentralized algorithm for synchroniza-
tion of networks of dynamic systems with delayed couplings,
switching topology and bounded disturbances. These results
are based on the speed-gradient method [1], [5] and pas-
sification theorem [6]. Also in this paper the problem of
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convergence with preliminarily specified accuracy is studied
for systems with bounded disturbances. In contrast to the
disturbance-free case, convergence of trajectories of the
agents in this case is not possible. To avoid instability of
the overall system adaptation algorithms are regularized by
means of negative parametric feedback, similarly to [10].
The conditions, ensuring achievement of the control goal,
are given and proven. The results are illustrated by example
for a network of chaotic Chua circuits.

II. PROBLEM STATEMENT

Consider a set of dynamical systems S consisting of d
interconnected subsystems (agents) Si, i = 1, . . . , d. Let Si

be described as follows:

ẋi = Axi +Bui + ϕ0(xi) +
d∑

j=1

αij(t)ϕij(xi − xj)

+

N∑
j=1

βij(t)xj(t− τ) + fi(t),

yi = CTxi (1)

where τ > 0 is the time delay, xi ∈ R
n, ui ∈ R

1,
αij(t), βij(t) : [0,∞) → R

1 - piecewise continuous func-
tions, yi ∈ R

l. Functions ϕij(·), i = 1, . . . , d, j = 1, . . . , d
are used to describe interaction among the subsystems, fi(t)
is some bounded disturbance acting on subsystem Si:

||fi(t)|| � dfi , (2)

and nonlinear part is presented by continuously differentiable
function ϕ0(x, t) : R

n× [0,∞) → R
n. We will also consider

isolated subsystems (agents) without interconnections and
their local dynamics.

Suppose that ϕii(0) = 0, aii = 0, i = 1, . . . , d. Also, we
assume that A,B,C and ϕ0(·) are well-determined, and ϕij ,
i = 1, . . . , d, j = 1, . . . , d depend on a vector of unknown
parameters ξ ∈ Ξ, where Ξ is known.

To formulate the control goal the leading subsystem
(leader) is introduced as follows

ẋ = Ax+Bu(t) + ϕ0(x), y = CTx, (3)

where input function u(t) is given.
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III. NETWORKS WITH DISTURBANCES

Firstly consider the special case of the networks without
delays in couplings, but in presence of bounded disturbances:

ẋi = Axi +Bui + ϕ0(xi) +
d∑

j=1

αij(t)ϕij(xi − xj)

+ fi(t), yi = CTxi, i = 1, . . . , d. (4)

In this case the control goal is to achieve convergence
of trajectories of all agents to some neighborhood of the
trajectory of the leader:

lim
t→∞|xi(t)− x(t)| � Δi (5)

The problem is to find decentralized control ui(t) =
Ui(yi, t), i = 1, . . . , d ensuring (5) for all possible values
of the vector of unknown parameters.

A. Control synthesis

Denote zi = xi − x, ũi = ui − u. Dynamics of zi can be
described as follows:

żi = Azi +Bũi + ϕ0(xi)− ϕ0(x) + fi(t)+

+
d∑

j=1

αijϕij(xi − xj), ỹi = CTzi, i = 1, . . . , d. (6)

We take linear control of the slave subsystem in the
following form:

ũi = θT

i (t)ỹi, θi(t) ∈ R
l, i = 1, . . . , d, (7)

where θi(t) are vectors of adjustable parameters. For de-
termining θi(t), the speed gradient method [1], [5] is used
consisting basically in reformulating the goal by means of
a goal function Q, evaluating the speed Q̇ of its changing
along trajectories of (6) and adjusting adaptation parameters
proportionally to the gradient of Q̇ in u. Specify the follow-
ing goal function:

Q(zi) =
1

2
zT

i Hzi, H = HT > 0. (8)

Applying the speed gradient procedure and passification
theorem (see Lemma 1 below) we arrive at the adaptation
law

θ̇i(t) = −gTỹi(t)Γiỹi(t),

However this algorithm does not take into account the
disturbance. Using ideas of [1], [2] introduce adaptation law
with the deadzone:

θ̇i(t) =

{ −gTỹi(t)Γiỹi(t), Qi(xi(t), t) > Δi

0 , Qi(xi(t), t) � Δi.
, (9)

where Γi = ΓT
i > 0 - are matrices of size l × l

B. Lipschitz-type nonlinearities

We need the definition of hyper-minimum-phase systems
[1], [5], [6]

Definition 1: Let W (S) = β(s)/α(s) be a rational func-
tion, β(s), α(s) are polynomials with real coefficients. W (s)
is minimum-phase, if its numerator β(s) is a Hurwitz polyno-
mial. W (s) is called hyper-minimum-phase if it is minimum-
phase and the number lim

s→+∞ sW (s) is positive.
To prove our further result we will need the following lemma,
that is a modification of Lemma 2 from [9].

Lemma 1: For existence of H = H∗ > 0 and θ∗, such
that HA∗ + AT

∗H < 0, HB = Cg, where A∗ = (A +
LIn) + BθT

∗C
T, it is necessary and sufficient that function

gTCT(sIn −A− LIn)
−1B is hyper-minimum-phase.

Further narration requires several assumptions.
Assumption 1: Consider real matrices H = HT > 0, g,

θ∗ of orders n × n; l × 1; l × 1 respectively, and number
ρ > 0 such that the following relations hold:

HA∗+AT

∗H < −ρH,HB = Cg,A∗ = (A+LIn)+BθT

∗C
T.

For some g ∈ R
l function gTχ(s − L) is hyper-minimum-

phase, where χ(s) is the transfer function of (4), χ(s) =
CT(sIn − A)−1B. Then there exist matrices H = HT > 0,
θ∗ of sizes n × n, l × 1 respectively and a number ρ > 0,
such that

HA∗+AT

∗H < −ρH,HB = Cg,A∗ = (A+LIn)+BθT

∗C
T

(10)
Assumption 2: ϕ0(·) and ϕij(·), i = 1, . . . , d, j =

1, . . . , d are globally Lipschitz functions with respect to x:

||ϕ0(x, t)− ϕ0(x
′, t)|| � L||x− x′||, L > 0,

||ϕij(x)− ϕij(x
′)|| � Lij ||x− x′||, Lij > 0.

Let λ∗ = λmax(H)/λmin(H) be condition number of matrix
H, where λmax(H), λmin(H) are maximum and minimum
eigenvalues of matrix H respectively.

Theorem 1: Let assumptions 1 and 2 hold. Denote δi =
ρ
2
λmin(H)
λmax(H) − ∑d

j=1 |αijLij |. If for any i = 1, . . . , d the
following condition is fulfilled:

δi > 0, (11)

then for any i = 1, . . . , d adaptive control (7), (9) provides
achievement of the control goal (5) for all Δi, that satisfy:

Δi >
dfiλmax(H)

2ρδi
, i = 1, . . . , d (12)

meanwhile the vector of adjustable parameters θ is bounded
for all solutions of the closed-loop system (4), (3), (7), (9).
Proof. To prove this theorem we need an auxiliary lemma.
This lemma is a modification of the theorem 2.19 from [2].

Lemma 2: Consider system that consists of N intercon-
nected subsystems, where each one is described as:

ẋi = Fi(xi, θi, t) + hi(x, θ, t), i = 1, . . . ,K, (13)

θ̇i(t) =

{ −Γi∇θiωi(xi, θi, t), Qi(xi(t), t) > Δi

0 , Qi(xi(t), t) � Δi.
(14)
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where xi ∈ R
ni , θi ∈ R

mi ,

ωi(xi, θi, t) =
∂Qi

∂t
+∇Qi(xi, t)

TFi(xi, θi, t),

here Qi(·) - is some objective function, N =
∑

ni, m =∑
mi, x = col(x1, . . . , xl) ∈ R

N . Assume that for (13) the
following groups of conditions hold:

1) Functions Fi(·) are continuous with respect to xi

and ti, are continuously differentiable with respect
to θi and locally bounded in time t > 0; functions
ωi(xi, θi, t) are convex by θi; there exist vectors θ∗i ∈
R

mi and scalar continuous growing functions ki(Q),
ρi(Q) such that ki(0) = ρi(0) = 0, ki(Q) → +∞ and
ρi(Q) → ∞ when Q → +∞.

ωi(xi, θ
∗
i , t) � −ρi(Qi(xi, t)) (15)

and
Qi(xi, t) � ki(||xi − x∗

i (t)||),
where x∗

i = argminxi(Qi(xi, t)) and Qi(x
∗
i (t), t) ≡

0
2) Functions hi(x, θ, t) are continuous and the following

inequalities hold

|∇xiQi(xi, t)
Thi(x, θ, t)| �

l∑
j=1

μijρj(Qj(xj , t)) + di

(16)
where M − I is Hurwitz matrix, M = {μij}, μij � 0,
I is identity matrix, di > 0, and Δi in (14) satisfy the
inequalities:

ρi(Δi) > ri, (17)

where r = (I − M)−1d, r = col(r1, . . . , rl), d =
col(d1, . . . , dl).

Then all trajectories of the system (13), (14) are bounded
and the control goal

lim
t→∞Qi(xi(t), t) � Δi, i = 1, . . . , l

is achieved.
Consider the first group of conditions of Lemma 2. Local
boundedness for t > 0 is met, because for any i = 1, . . . , d
right-hand side of the system (6) and Q(zi) are continuous
functions, not depending from t, and f(t) is bounded.
Convexity condition is satisfied because right-hand side of
Q̇i is linear by Qi. Let’s take function Q → ρ ·Q as ρi(·),
i = 1, . . . , d, from Lemma 2. It can be shown that existence
of θ∗ ∈ R

l and ρ, such that ωi(zi, θ∗) � −ρQ(zi), is
provided by hyper-minimum-phase restriction for function
gTχ(s). Indeed, according to the Lemma 1 if gTχ(s) is
hyper-minimum-phase then exist H = HT > 0 and θ∗ such
that.

HA∗ +AT

∗H < 0 HB = Cg,

where A∗ = (A+ LIn) +BθT
∗C

T.

Fi = Azi +Bũi + ϕ0(xi)− ϕ0(x)

Taking derivative of Qi due to error equation for the ith
node (6), it can be shown that:

Q̇i = ωi(zi, θ∗) � zT

i H(A+BθT

i C
T)zi+

+ ||zT

i || · ||H|| · L · ||zi|| � zT

i H(A+BθT

i C
T)zi+

+ L
λmax(H)

λmin(H)
zT

i Hzi =
1

2
zT

i [HA∗ +AT

∗H]zi, (18)

where A∗ = (A+LIn)+BθT
∗C

T. Negativity of HA∗+AT
∗H

implies existence of ρ > 0, such that HA∗ +AT
∗H � −ρH ,

and therefore the condition:

ωi(zi, θ∗) � −ρQ(zi), i = 1, . . . , d

is met. Consider the conditions on connections between the
systems (second group of conditions in Lemma 2). In our
particular case they can be written down as:

|zT

i H[
d∑

j=1

αijϕij(zi − zj) + fi(t)]| �

� ρ

2

d∑
j=1

μijz
T

j Hzj + di, i = 1, . . . , d (19)

where M − I is Hurwitz matrix, M = {μij}, μij � 0, I is
identity matrix. The left-hand side of (19) can be estimated
as follows:∣∣∣∣∣∣zT

i H[
d∑

j=1

αijϕij(zi − zj) + fi(t)]

∣∣∣∣∣∣ �
�

d∑
j=1

|αijLij | · λmax(H) · (||zi||2 + ||zi|| · ||zj ||)+

+
1

2
σi||zi||2λmax(H) +

dfi
2σi

λmax(H), i = 1, . . . , d,

where σi > 0, i = 1, . . . , d, are some numbers. It can be
shown that the lower bound of the right-hand side of (19) is:

ρ

2

d∑
j=1

μijz
T

j Hzj + di �

� ρ

2

d∑
j=1

μijλmin(H)||zj ||2 + di, i = 1, . . . , d

Thereby, it is sufficient to demand fulfilment of the following
inequalities:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dfi

2σi
λmax(H) � di

∑d
j=1 |αijLij | · (||zi||2 + ||zi|| · ||zj ||)+

+ 1
2σi||zi||2 � ρ

2
λmin(H)
λmax(H)

∑d
j=1 μij ||zj ||2,

(20)

where i = 1, . . . , d. Consider the following notations: z =

col(||z1||, ||z2||, . . . , ||z3||), ν
(1)
i , ν

(2)
i , ηi are described as
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follows:

ν
(1)
i =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 . . . 0
...

. . .
...

...
0 . . .

∑d
j=1 |αijLij |+ 1

2σi . . . 0
...

...
. . .

...
0 . . . 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(21)
here the non-zero element is on the main diagonal in the i-th
row. Assuming that αii = 0 for all i = 1, . . . , d, we denote
ν
(2)
i as:

ν
(2)
i =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 . . . 0
...

. . .
...

...
|αi1Li1| . . . 0 . . . |αidLid|

...
...

. . .
...

0 . . . 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Where non-zero elements are in the i-th row, and the zero is
on the main diagonal. Choose ηi as follows:

ηi =
ρ

2

λmin(H)

λmax(H)

⎛
⎜⎜⎜⎝

μi1 0 . . . 0
0 μi2 . . . 0
...

...
. . .

...
0 0 . . . μid

⎞
⎟⎟⎟⎠ .

Using this notations we can state that for fulfilment of (19) it
is sufficient that for any i = 1, . . . , d the following inequality
is true:

zT(ν
(1)
i + ν

(2)
i ) � zTηiz, (22)

i.e. matrix ηi − ν
(1)
i − ν

(2)
i for any i = 1, . . . , d should be

positively defined. Choose the following diagonal matrix as
M = {μij}:

0 < μii < 1, μij = 0, i �= j, i = 1, . . . , d, j = 1, . . . , d.

Apparently M − I is Hurwitz matrix. Non-negative determi-
nacy of ηi − ν

(1)
i − ν

(2)
i implies that for i = 1, . . . , d:

μii �
(
ρ

2

λmin(H)

λmax(H)

)−1
⎛
⎝ d∑

j=1

|αijLij |+ 1

2
σi

⎞
⎠ . (23)

Owing to μii < 1, we obtain the condition (11). Now,
consider (17), together with (23). Assume δi =

ρ
2
λmin(H)
λmax(H) −∑d

j=1 |αijLij |. The (20) (23) can be rewritten as{
dfi

λmax(H)

2δi
� di < ρΔi,

δi > 0,
(24)

which matches the conditions of the Theorem. Thereby, we
can apply Lemma 2, which proves the Theorem.�

Condition (12) of the Theorem 1 says that the higher the
disturbance level is, the bigger is the size of the limit set of
the network.

Remark 1: Let ρ∗ denote degree of stability of nominator
of the function gTχ(s − L). Using results of [6] it can be
shown that if function gTχ(s−L) is hyper-minimum-phase,

then as θ∗ and ρ in (10) we can take θ∗ = κg and any
ρ : 0 < ρ < ρ∗, where κ > 0 is sufficiently big number.
Thereby, inequality (11) can be replaced with

d∑
j=1

|αijLij | < γ, (25)

where γ = ρ∗
2λ∗

.

C. Matched nonlinearity

Let us study the case when ϕ0(xi) = Bψ0(yi), ψ0 : Rl →
R

1. Then the subsystem (4) can be rewritten as

ẋi = Axi+B(ui+ψ0(yi))+
d∑

j=1

αijϕij(xi−xj)+fi(t),

yi = CTxi, (26)

and the leading system can be rewritten in the following
form:

ẋ = Ax+B(u+ ψ0(y)), y = CTx, (27)

where u ∈ R
1 - is the given control which is assumed to

be known. For formulating the ongoing results, we need the
following definition:

Definition 2: Let G ∈ R
l. Function f : R

l → R
1 is

called G-monotonically decreasing, if for any x, y ∈ R
l the

following inequality is true: (x− y)TG(f(x)− f(y)) � 0.
Assumption 3: ϕij are globally Lipschitz functions, with

constants Lij > 0, and ψ0(·) is such, that existence and
uniqueness of solutions of all the subsystems.
We can choose (7),(9) again as the control input. Consider
real matrices H = HT > 0, g, θ∗ of sizes n×n, l× 1, l× 1
respectively, and number ρ > 0 such that:

HA∗+AT

∗H < −ρH, HB = Cg, A∗ = A+BθT

∗C
T. (28)

Note that this is equivalent to (10) with L = 0.
Theorem 2: Suppose that for every ξ ∈ Ξ assumption 3

is true, and assumption 1 with L = 0 holds for the sys-
tem (26). Also assume that function ψ0(·) is g-monotonically
decreasing. Denote δi =

ρ
2
λmin(H)
λmax(H) −

∑d
j=1 |αijLij |. If for

all i = 1 . . . d the following condition holds:
d∑

j=1

|αijLij | < γ, (29)

where γ = ρ∗/(2λ∗), λ∗ - condition number of matrix H ,
ρ∗ - degree if stability of nominator of gTχ(s). Then for all
i = 1, . . . , d adaptive control (7),(9) provides fulfilment of
the control goal:

lim
t→∞|xi(t)− x(t)| � Δi, (30)

for all Δi, that satisfy the following inequality:

Δi >
dfiλmax(H)

2ρδi
,

meanwhile the vector of adjustable parameters θi remains
bounded on [0,∞) for all solutions of the closed loop
system (7),(9),(26),(27).
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Proof. The proof of this theorem is similar to the proof of
Theorem 1. To prove it one should apply lemmas 1 and 2
with L = 0.

To this end prove that ω(zi, θ∗) � −ρQ(zi) for i =
1, . . . , d.

Using previously made assumptions it can be shown that:

ωi(zi, θ∗) = zT

i H[Azi +B(ũi + ψ0(yi)− ψ0(y))] =

= zT

i H(A+BθT

i C
T)zi + (yi − y)Tg(ψ0(yi)− ψ0(y)) �

� zT

i H(A+BθT

i C
T)zi, (31)

The latter inequality holds since ψ(·) is g-monotonically
decreasing. Then,

ωi(zi, θ∗) � zT

i H[A+BθT

∗C
T]zi =

=
1

2
zT

i [HA∗ +AT

∗H]zi, i = 1, . . . , d.

Here A∗ = A + BθT
∗C

T. Since HA∗ + AT
∗H is negatively

determined, exists such ρ > 0, that HA∗ + AT
∗H � −ρH ,

and that provides fulfilment of the following inequality

ωi(zi, θ∗) � −ρQ(zi), i = 1, . . . , d.

Repeating further the proof of the Theorem 1 and taking into
account Remark 1, ends the proof. �

IV. NETWORKS WITH DELAYED COUPLINGS

Now study the case when the agents are not influenced by
disturbances, but there are delayed couplings instead:

ẋi = Axi + bui + ϕ0(xi, t) +
N∑
j=1

αij(t)xj+

N∑
j=1

βij(t)xj(t− τ),

yi(t) = CTxi(t), i = 1, . . . , d.

(32)

Let matrices α(t) = (αij(t)) and β(t) = (βij(t)) satisfy the
following conditions:

1) If the i-th node is connected with the j-th node (i �= j)
at time t ≥ 0, then αij(t) > 0, βij(t) > 0;

2) If the i-th node is not connected with the j-th node
(i �= j) at time t ≥ 0, then αij(t) = 0, βij(t) = 0;

3) αii(t) = −∑N
j=1,j �=i αij(t), βii(t) =

−∑N
j=1,j �=i βij(t) ∀i = 1, . . . , N ∀t ≥ 0.

Let C([−τ, 0],Rn) be the Banach space of continuous func-
tions mapping the interval [−τ, 0] into R

n with the norm
‖φ‖C = sup−τ≤z≤0 ‖φ(z)‖. Initial conditions of the system
(32) are given by functions ϕi(t) ∈ C([−τ, 0],Rn): xi(t) =
ϕi(t) ∀t ∈ [−τ, 0].

Here we treat the issue of synchronization, i. e. the control
goal is to make the trajectories of all the subsystems converge
to the trajectory of the leader system:

lim
t→∞(xi(t)− x̄(t)) = 0, i = 1, . . . , d. (33)

The problem is to find control functions ui = Ui(yi, t) i =
1, . . . , d ensuring achievement of the goal (33).

A. Control synthesis

The error equation in this case can be written as follows:

żi = Azi + ϕ0(xi, t)− ϕ0(x̄, t) +

d∑
j=1

αijzj+

d∑
j=1

βijzj(t− τ) +Bũi,

ỹi = CTzi, i = 1, . . . , d.

(34)

Again applying the speed gradient method we obtain the
following control law:

ui =− θi(yi − ȳ) + ū,

θ̇i =γi(yi − ȳ)Tg(yi − ȳ).
(35)

B. Lipschitz-type nonlinearities

In this part the systems with Lipschitz-type nonlinearities
are considered. First, reformulate assumption 1 for the cur-
rent system type.

Assumption 4: There exists g ∈ R
l such that the transfer

function gTCT(sIn −A)−1B is hyper-minimum-phase.
Under this assumption according to Lemma 1, there exist
H > 0, θ∗ and ρ > 0 such that conditions

HA∗+AT

∗H < −ρH,HB = CTg,A∗ = A−BθT

∗C
T, (36)

hold.
Introduce the following numbers:

μ = sup
t∈[0,∞)

max
i∈{1,...,d}

d∑
j=1,j �=i

(αji(t)− αij(t));

ν = sup
t∈[0,∞)

max
i∈{1,...,d}

d∑
j=1

(|βij(t)|+ |βji(t)|).

Remark 2: It is clear that μ ≥ 0, ν ≥ 0. for any matrices
α(t) and β(t) satisfying conditions 1—3.
The value μ has the meaning of maximum asymmetricity of
the matrix α(t). Thus if the matrix α(t) is symmetric at any
time t ≥ 0, then μ = 0.

Theorem 3: Suppose the assumption 4 holds and ϕ0(x, t)
is Lipschitz with respect to x with a Lipschitz constant η.
Then, if 2η + μ+ ν < ρ the control algorithm (35) ensures
the achievement of the goal (33). Moreover, all tunable
parameters θi(t) will be bounded over the time interval
[0,∞) for all i = 1, . . . , d.
Proof. According to assumption 4, for some H > 0, θ∗ and
ρ > 0 the conditions (36) hold. Lets consider the following
function

V (zi) =

d∑
i=1

[zT

i (t)Hzi(t)+
1

γi
(θi(t)− θ∗)2+

∫ t

t−τ

zT

i (s)Pizi(s)ds] ≥ 0,

(37)
where Pi =

∑d
j=1 |βji(t)|H ≥ 0. By taking the derivative of

V (·) along the trajectories of the system (34), and bounding
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sums with coefficients αij and βij by means of inequality
2xTy ≤ xTQx+ yTQ−1y and using the Lipschitz condition
for ϕ0(x, t), the following estimate for V̇ is obtained:

V̇ ≤
d∑

i=1

zT

i [AT

∗H +HA∗] zi + 2η

d∑
i=1

zT

i Hzi+

μ
d∑

i=1

zT

i Hzi +
d∑

i=1

zT

i

⎡
⎣ d∑
j=1

|βij |H + Pi

⎤
⎦ zi+

d∑
i=1

zT

i (t− τ)

⎡
⎣ z∑
j=1

|βji|H − Pi

⎤
⎦ zi(t− τ),

(38)

where A∗ is from (36). Substituting Pi =
∑d

j=1 |βji|H and
using the first inequality from (36) we obtain:

V̇ ≤ (2η + μ+ ν − ρ)
d∑

i=1

zT

i Hzi ≤ 0, (39)

At the same time if ∃i ∈ {1, . . . , d} : zi �= 0, then
V̇ < 0. Thus, it was shown that the function V (·) is a
Lyapunov function for the error system. Therefore zi(t) = 0
is asymptotically stable solution which means that xi(t) −
x̄(t) → 0 while t → ∞ for i = 1, . . . , d. It is obvious that if
∃i ∈ {1, . . . , d} : θi(t) → ∞ while t → ∞, then V → ∞,
which is not possible because V (·) is a bounded function.
This proves the uniform boundedness of θi(t) and ends the
proof of the Theorem 3.�

C. Matched nonlinearity

Let nonlinearities satisfy the matching condition
ϕ0(x, t) = Bψ0(C

Tx, t), where ψ0 : R × [0,∞) → R is
some function.

Theorem 4: Suppose assumption 4 holds and ϕ0(x, t) =
Bψ0(C

Tx, t), where ψ0(C
Tx, t) is a g-monotonically de-

creasing function for any t ∈ [0,∞). Then, if μ+ν < ρ, then
the control algorithm (35) ensures achievement of the goal
(33). Moreover, all tunable parameters θi(t) will be bounded
in the time interval [0,∞) for all i = 1, . . . , d.
Proof. Consider function (37). Taking derivative along the
trajectories of the system (34) and using estimations from
the proof of the theorem 3 bounds V̇ as follows:

V̇ ≤ (μ+ ν − ρ)
d∑

i=1

zT

i Hzi+

+ 2

d∑
i=1

(yi − ȳ)Tg [ψ0(yi, t)− ψ0(ȳ, t)] . (40)

By conditions of the theorem 4 function ψ0 is g-
monotonically decreasing. Therefore

V̇ ≤ (μ+ ν − ρ)
d∑

i=1

zT

i Pzi ≤ 0. (41)

Similarly to the proof of the theorem 3, we conclude that
xi − x̄ → 0 as t → ∞ and i = 1, . . . , d and θi(t) are
uniformly bounded. That ends the proof of the theorem 4.�

V. CONCLUSIONS

In this paper in contrast to the existing results the solution
of the problem of convergence with pre-specified accuracy is
proposed. Synchronization conditions for delayed coupling
networks with switching topology consisting of nonlinear
systems under incomplete measurement, incomplete con-
trol, incomplete information about system parameters are
obtained. The design of the control algorithm providing
synchronization property is based on speed-gradient method,
while derivation of synchronizability conditions is based on
the passification theorem.

Further research may be aimed at application more sophys-
ticated adaptive control techniques [16] to synchronization of
networks.
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