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Abstract— We present a decentralised control design that is
based upon the Kalman-Yakubovich-Popov lemma. We use our
technique to design an integrated chassis controller.

I. INTRODUCTION

Decentralized control is an essential feature of control en-

gineering practice. Most real complex systems are controlled

using a number of control systems, each designed to control

a particular sub-process. Our objective in this paper is to

develop one such method that is based on frequency domain

design techniques. In particular, we present a passivity based

design method that is suitable for the design of decentralized

controllers for applications where robustness to sensor failure

is a concern [1]. Our approach is based on a novel use

of the Kalman-Yakubovich-Popov lemma, and the use of

DK-iterations to provide a method for controller design. An

advantage of this approach over competing LMI based design

methodologies is that uncertainty can be captured in terms

of frequency domain models, and that output feedback con-

trollers can easily be designed. We then apply the techniques

developed to an automotive application; namely, to track the

lateral and vertical motions of the vehicle in order to emulate

a reference vehicle.

II. BASIC IDEA

Our starting point is to consider a plant composed of

two interacting subsystems. The main objective is to find a

decentralized control structure that simultaneously stabilises

not only each subsystem but also the full interacting plant

with respect to both parameter uncertainty and structural

perturbations. A basic mechanism for achieving this objective

is to select the feedback structures such that the linearized

closed loop system admits a block-diagonal Lyapunov func-

tion. Roughly speaking, this problem can be described as

follows. Let A ∈ R
n×n be a Hurwitz stable (closed loop

system) matrix with

A =

[

A11 A12

A21 A22

]

, (1)

and where both A11 ∈ R
m×m and A22 ∈ R

(n−m)×(n−m)

are assumed to be Hurwitz stable. The question is whether
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one can find a symmetric, positive-definite, block diagonal

matrix

P =

[

P11 0
0 P22

]

(2)

such that ATP + PA < 0. The block diagonal nature

of P implies that AT
11P11 + P11A11 < 0 and AT

22P22 +
P22A22 < 0. In this section, we present two equivalent

conditions for block diagonal stability: a passivity condition

and a small-gain condition. The passivity condition was

first suggested in [2] in the context of diagonal stability,

and in [3] in the context of automotive dynamics. The

small gain condition profits from the well-known connection

between passivity and the small-gain theorem [4]. We begin

with the following theorem on block diagonal stability [1].

Theorem 2.1: The following statements are equivalent for

a square 2 × 2 block matrix A with the structure given in

(1).

(i) The system ẋ = Ax is block-diagonally stable.

(ii) The matrix A11 is Hurwitz and there exists a matrix

P22 = PT
22 > 0 such that the transfer function −P22G

is ESPR (extended strictly positive real [1]) where

G(s) = A22 +A21(sI −A11)
−1A12 .

(iii) The matrix Ah11 = A11 + A12(I − A22)
−1A21 is

Hurwitz and there exists a constant nonsingular matrix

D such that ||DHD−1||∞ < 1 where

H = (G+ I)(G − I)−1 .

Comment: Consider the system ẋ = Ax where xT =
[xT

1 , x
T
2 ] and A is given by (1). Defining input w = x2 and

output z = ẋ2 we obtain the following input-output system:

ẋ = A11x+A12w
z = A21x+A22w

(3)

Clearly, the transfer functionG in the above passivity charac-

terization of block diagonal stability is the transfer function

of this system, that is, G is the transfer function from x2 to

ẋ2. If we now introduce new input and output variables

wh := (w − z)/
√

2 = (x2 − ẋ2)/
√

2

zh := (−w − z)/
√

2 = (−x2 − ẋ2)/
√

2
(4)

then,

w = (wh − zh)/
√

2

z = (−wh − zh)/
√

2
(5)
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and one can readily show that the transfer function H =
(G + I)(G − I)−1 in the above small gain characterization

of block diagonal stability is the transfer function from wh

to zh.

A. Example

The above result can be used in some situations to obtain a

more computationally efficient method of determining block

diagonal stability. Suppose for example that the number m of

state variables in the first subsystem is large and the number

m2 := n −m of state variables in the second subsystem is

relatively small. One can check block diagonal stability by

determining whether or not the associated LMI is feasible

with a symmetric block diagonal matrix P = diag(P11, P22)
satisfying P > 0. Since P11 is a symmetric m×m matrix,

it involves a large number (m(m + 1)/2) of independent

variables; P22 involves m2(m2+1)/2 independent variables.

Also, this LMI has a large dimension of n×n. However the

equivalent frequency domain condition in (iii) of the above

theorem is equivalent to the existence of a symmetric matrix

P22 > 0 such that

H(ω)∗P22H(ω) − P22 < 0 (6)

for all ω ∈ R ∪ {∞}. Although this is an infinite number

of LMIs, one can choose a finite number of frequencies

ω1, . . . , ωN with ωN = ∞ and determine the feasibility of

H(ωk)∗P22H(ωk) − P22 < 0 , for k = 1, · · · , N .
(7)

In these LMIs, the number of independent variables is low

(m2(m2 + 1)/2). Thus, it may be computationally more

efficient to determine the feasibility of (7) for a reasonable

number of frequencies rather than the original LMI. To

illustrate, we randomly generated a block diagonally stable

system in which m = 100 and m2 = 2. Computations

were carried out using the software packages YALMIP and

MATLAB 2010(a) on a laptop equipped with an Intel Core

2 Duo P8800 CPU. It took about 50 seconds to determine

the feasibility of the Lyapunov LMI (which involves 5053

variables) while it only took about 7.6 sec to determine

the feasibility of the frequency domain LMIs using 501

frequencies; 500 frequencies were chosen between 0 and

5000 and one point at infinity. Using 11 frequencies, the

computation only took about 0.33 seconds. The frequency

domain LMIs only involve 3 variables. To demonstrate that

the P22 matrices found using a finite number of frequencies,

do indeed guarantee satisfaction of the frequency domain

inequalities for all frequencies, and to illustrate item (ii)

of the above theorem, we depict λ(ω) in Figures 1 and 2

where λ(ω) is the minimum eigenvalue of −P22G(jω) −
G(jω)∗P22. Note that this quantity should be positive for all

ω which indeed it is.

.

III. CONTROL DESIGN

Consider the plant illustrated in Figure 3(a) which has

two control inputs u1, u2 and two measured outputs y1, y2.
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Fig. 1. Plot of λ for P22 obtained with 501 frequency grid points
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Fig. 2. Plot of λ for P22 obtained with 11 frequency grid points

For i = 1, 2, each subsystem Gi of the plant is associated

with an input ui and an output yi. The controller K1 is

required to stabilise subsystem one and controller K2 is

required to stabilise subsystem two. The problem is to find

K1 to stabilise the plant G̃ (with a given K2 in the loop)

such that the overall system is block diagonally stable (see

Figure 3(b)).

G2

G1

y2

u1 y1

u2

(a)

G̃

u2y2

K1

G2

G1

K2

u1 y1

(b)

Fig. 3. (a) 2-block decentralized output-feedback control problem. (b) For
a given controller K2, the problem may be seen as finding a stabilizing

controller K1 for virtual plant G̃.

Suppose that the plant G̃ with K2 in the loop has state

[xT
1 x

T
2 ]T , control input u1, output y1 and is described by

ẋ1 = A11x1 +A12x2 +B11u1

ẋ2 = A12x1 +A22x2 +B21u1

y1 = C11x1 + C12x2 +D11u1
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In what follows we shall identify a system with its system

matrix. The system matrix for the plant G̃ is given by




A11 A12 B11

A21 A22 B21

C11 C12 D11



 : G̃. (8)

Introducing the variables w = x2 and z = ẋ2, the corre-

sponding system Ĝ with state x1, input (w, u1) and output

(z, y1) has the following system matrix:




A11 A12 B11

A21 A22 B21

C11 C12 D11



 : Ĝ. (9)

Consider this plant subject to controller u1 = K1y1 and

let Fℓ(Ĝ,K1) be the transfer function from w to z of the

resulting closed loop system. It now follows from Theo-

rem 2.1, that the closed-loop system resulting from controller

K1 applied to plant G̃ described in (8) is block diagonally

stable if and only if K1 stabilizes the plant Ĝ and there exists

a positive symmetric matrix P22 such that

ĜSPR is ESPR (10)

where

ĜSPR := −P22Fℓ(Ĝ,K1) (11)

Recall the variables wh and zh and let Ĥ be the system

corresponding to the the plant G̃ with state x1, input (wh, u1)
and output (zh, y1). Then, one may readily show that Ĥ has

the following system matrix:




Ah11 Ah12 Bh11

Ah21 Ah22 Bh21

Ch11 Ch12 Dh11



 : Ĥ (12)

where

Ah11 = A11 +A12(I−A22)
−1A21,

Ah12 =
√

2A12(I−A22)
−1

Ah21 =
√

2(A22 − I)−1A21,
Ah22 = (A22 − I)−1(A22 + I)
Bh11 = B11 −A12(I−A22)

−1B21,
Bh21 = (A22 − I)−1B21

Ch11 = C11 − C12(A22 − I)−1A21,
Ch12 = C12 − C12(A22 − I)−1(A22 + I)
Dh11 = D11 − C12(A22 − I)−1B21

(13)

Consider this plant subject to controller u1 = K1y1 and let

Fℓ(Ĥ,K1) be the transfer function from wh to zh of the

resulting closed loop system. We now obtain the following

result from Theorem 2.1.

The closed-loop system resulting from controller K1 ap-

plied to the plant G̃ described in (8) is block diagonally

stable if and only if K1 stabilizes the plant Ĥ and there

exists a nonsingular matrix D such that

||DFℓ(Ĥ,K1)D
−1||∞ < 1 (14)

Finally, a K1 and D are found iteratively by solving the

condition in (14) with an approach similar to the standard

D-K iteration: for an initial D (such as D = I) a K1 is found

to minimize the H∞ norm ||DFℓ(Ĥ,K1)D
−1||∞ using

standard robust control techniques, then a single D is found

also to minimize ||DFℓ(Ĥ,K1)D
−1||∞. This procedure is

repeated until the inequality in (14) is satisfied. A procedure

based on this idea is presented in the next section.

IV. ITERATIVE DESIGN METHODOLOGY

A general practical design procedure is now presented.

It is analogous to the well known D-K iteration method

with constant D-scaling matrices used in µ-synthesis [5].

This procedure to design a controller K1 for a given K2

is summarized in the following steps:

(i) Choose an initial estimate of the scaling matrix D.

(ii) Solve an H∞-optimization problem to minimize

||DFℓ(Ĥ,K1)D
−1||∞ over all stabilizing K1’s. Let its

minimizing controller be denoted by K̂1.

(iii) Minimize σ̄(DFℓ(Ĥ, K̂1)D
−1) for a single non-

singular matrix D across all frequencies. Note that this

time, the controller K̂1 from the last step is being used.

The minimization produces a new scaling matrix D
denoted as D̂.

(iv) Compare D̂ with the previous estimate D. Stop if they

are close. Otherwise, replace D with D̂ and return to

step (ii).

The closed-loop system is block-diagonal stable if

||D̂Fℓ(Ĥ, K̂1)D̂
−1||∞ < 1.

V. DECENTRALISED DESIGN OF AN INTEGRATED

CHASSIS CONTROLLER (ICC)

We now apply the design methodology proposed in the

previous section to an application from automotive dynamics

[6]. Specifically, we consider the design of an integrated

chassis controller for application to vehicle emulation.

A. The variable dynamics vehicle

The basic objective of vehicle emulation is to recreate the

chassis motions of a wide range of virtual and production

vehicles. Typically, such vehicles are fitted with 4-wheel-

steering and active suspension. The test vehicle performing

this task is referred to as a vehicle emulator. In this work, the

emulation is constrained to lateral and vertical motions. The

lateral motion of a vehicle can be described by the lateral

velocity and yaw-rate of its chassis while the vertical motions

can be described by its heave, pitch and roll motions [7].

Since lateral motion has no significant influence on heave

or pitch, in this work the emulation of vertical motions is

constrained to chassis roll. Therefore, the integrated chassis

control (ICC) for vehicle emulation described in this paper

aims at accurately tracking lateral velocity, yaw-rate and roll

of a reference vehicle. The reference motions to be tracked

by the vehicle represent the motions of virtual or production

vehicles. The vehicles to be emulated range from a small

urban vehicle to a large bus.
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B. Single track model with roll degree of freedom

Full details of the vehicle model can be found in [1].

Here we give only an overview. The wheels at each axle

Jxx

cφ

uφ

kφ

+

φ

zrφ

m
g

ψ

Fyr

roll center

aycg

Fyf

vy

Fig. 4. Single-track model with roll

are lumped together into a single imaginary wheel located

at the center of the respective axle. The two resulting

imaginary wheels are interconnected by a one-dimensional

rigid element acting as a roll axis for the chassis. Pitch,

heave and vertical tyre dynamics are neglected. The CoG

of the chassis is located at a distance hcg from the roll axis,

a distance lf from the front axle and a distance lr from the

rear axle. It is also assumed that the longitudinal speed vx

is constant and that the only horizontal forces acting on the

model are the cornering forces Fyf and Fyr. Thus, the force

acting on the front (rear) wheel of the model corresponds to

the combined forces acting on the front (rear) wheels of the

vehicle. Finally, the motion of the single-track model with

roll degree of freedom is controlled with three control inputs:

front and rear steering angles (δf , δr) and a roll displacement

input uφ.

TABLE I

NOTATION

m Vehicle mass kg

Jzz Yaw moment of inertia kg m2

Jxx Roll moment of inertia kg m2

Jxeq Roll moment of inertia about roll axis kg m2

lf Distance from CoG to front wheel center m
lr Distance from CoG to rear wheel center m
Fyf Front tyre cornering force N
Fyr Rear tyre cornering force N
Cf Front tyre cornering stiffness N/rad
Cr Rear tyre cornering stiffness N/rad
αf Front tyre slip angle rad
αr Rear tyre slip angle rad
cφ Damping coefficient N s/m
kφ Suspension stiffness N/m
zrφ Road bank angle rad
hcg Height of CoG m

g Acceleration of gravity m/s2

vx Longitudinal speed m/s

As mentioned earlier, the lateral motion of the chassis is

described by the lateral velocity vy and yaw-rate ψ̇, while the

vertical dynamics are described by the roll angle φ. Three

differential equations govern the motions of the chassis (refer

to Table I for notation):

mv̇y = −mvxψ̇ + Fyf + Fyr +mhcgφ̈ (15)

Jzzψ̈ = Fyf lf − Fyrlr (16)

Jxeq
φ̈ = (mghcg−kφ)φ− cφφ̇+kφuφ +mhcgay(17)

with ay = v̇y + vxψ̇ being measured at the roll center and

Jxeq
= Jxx +mh2

cg. For small tyre slip angles (αf , αr) and

neglecting load sensitivity1, Fyf and Fyr can be approxi-

mated by:

Fyf = Cfαf = Cf

(

δf − vy + lf ψ̇

vx

)

(18)

Fyr = Crαr = Cr

(

δr −
vy − lrψ̇

vx

)

(19)

The model is valid on high friction roads below 0.4g (ap-

proximately 4 m/s2) about a constant vehicle speed [7].

Lateral dynamics: When designing controllers for the

lateral dynamics of the chassis, it is a common practice to

consider only the lateral motion of the vehicle as described

by the single-track model. The single-track model is depicted

in Figure 5 and its motion is described by the two differential

equations:

mv̇y = −mvxψ̇ + Fyf + Fyr (20)

Jzzψ̈ = Fyf lf − Fyrlr (21)

ψ

x0

δf

αf

αr

CoG

δr
lf

lr

ℓ

vy

vx

Fig. 5. Single-track model

φ

Jxx

cφ

uφ

kφ

Mφ

roll center

+

zrφ

Fig. 6. Roll model

Vertical dynamics: The vertical dynamics are simplified to

consider only roll dynamics. We assume that the suspension

can be modeled as a passive suspension with a displacement

input. The resulting roll model evolves according to the

differential equation:

Jxxφ̈ = (mghcg − kφ)φ− cφφ̇+ kφuφ +mhcgaycg
(22)

where φ is the roll angle of the chassis and aycg
is the lateral

acceleration at the CoG which is given by aycg
= v̇y +vxψ̇−

1The vertical force at each tyre affect the tyre stiffness. This is referred
to as load sensitivity and its effect should be considered for accelerations
above 0.4g [8].
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hcgφ̈. The road bank angle zrφ is neglected for simplicity.

Note that there is a strong perturbation coming from the

lateral dynamics via the lateral acceleration aycg
. In practice,

aycg
can be measured so that feed-forward control can be

used to cancel the effect of lateral dynamics on roll motion.

C. ICC Design - Simulation results

Our objective now is to design a decentralized controller

for a vehicle equipped with 4-wheel-steering and active

suspension. Our specific task is to stabilise the lateral and

roll dynamics of the vehicle where K1 stabilises the lateral

dynamics, and K2 the vertical dynamics; and to use the

resulting controllers to track a set of reference inputs. While

both subsystems clearly affect one another, the requirement

for a decentralized structure is a stringent one and comes

directly from the automotive manufacturers. A controller

for each subsystem was sequentially designed: first the

vertical subsystem and then the lateral dynamics at different

operating speeds; this latter subsystem is speed-dependent.

−

−

−

G

ψ̇ref

φref

vyref

∆3

kff

vy

ψ̇

φ

aycg

K1

K2

δf

δr

Gcaruφ

Fig. 7. Vehicle emulation using 2-block decentralized control. The
vehicle plant Gcar is stabilized using an inner feedback loop kff and a
decentralized controller to track the reference lateral velocity vyref , yaw-

rate ψ̇ref and roll angle φref .

The single-track model with roll is a simple model that

qualitatively captures the motions of the vehicle chassis

dynamics. The model is depicted in Figure 4 and evolves

according to (15)-(17) described in Section 2.2.

Consider the controller structure in Figure 7. With such a

structure, the plant Gcar is stabilised by using an inner-loop

feedback kff and a block-diagonal controller

K(s) =

[

K1(s) 0
0 K2(s)

]

.

The choice of the scalar kff results in the transformed

dynamics G having roll dynamics decoupled from the lateral

dynamics. Notice that in the case of failure of the inner-

loop kff , the roll dynamics are not independent of lateral

dynamics any more. In such a situation, a controller design

based on the decoupling assumption could result in the

closed-loop system being unstable. On the other hand, if

the controller is designed to provide block-diagonal stability

based on the plant with inner-loop failure, such a controller

also guarantees the stability of the decoupled case as well.

In order to design a block-diagonal controller consider a

roll dynamics PID controller K2(s) given by

K2(s) = kds+ kp +
ki

s
,

with kd = .0248, kp = 1.0596 and ki = 13.6429. This

controller stabilises the roll dynamics.

The partial closed-loop system (with only the roll con-

troller K2 loop closed) and with inner-loop kff failure

(kff = 0) evolves according to:

[

ẋ1

ẋ2

]

=

[

A11 A12

A21 A22

] [

x1

x2

]

+

[

B11

B21

]

u1

with

[

A11 A12

A21 A22

]

=

















−

Jxeq (Cf +Cr)

Jxxmvx
−vx +

Jxeq (Crlr−Cf lf )

Jxxmvx

(Crlr−Cf lf )

Jzzvx
−

Cf l2
f
+Crl2r

Jzzvx

−

hcg(Cf +Cr)

Jxxvx

hcg(Cr lr−Cf lf )

Jxxvx
0 0
0 0

,

−

hcg(cφ+kφkd)

Jxx

hcg(mghcg−kφ−kφkp)

Jxx
−

hcgkφki

Jxx
0 0 0

−

cφ+kφkd
Jxx

mghcg−kφ−kφkp

Jxx
−

kφki

Jxx
1 0 0
0 1 0















,

[

B11

B21

]

=

















IeqCf
Jxxm

IeqCr
Jxxm

Cf lf
Jzz

−
Crlr
Jzz

Cf hcg

Jxx

Crhcg

Jxx
0 0
0 0

















,

where x1 = [vy ψ̇]T , x2 = [φ̈ φ̇ φ]T , u1 = [δf δr]
T .

We now wish to find a state-feedback linear controller

u1 = K1(s)x1 such that the closed-loop system is block-

diagonally stable. From Section III, such a controller may be

obtained by finding a matrix D and controller K1 satisfying:

||DFℓ(Ĥ,K1)D
−1||∞ < 1, (23)

for the system Ĥ defined in (12).

The D-K iteration described in Section IV was used to

find controllers K1 for three different speeds: 40, 80 and 120

km/h. For example, for 120 km/h, the controller obtained is

K1(s) =

[

− 0.11s+.037
s

.1726
.013s+.02

s
−.075

]

Simulation results for a mid-sized vehicle emulating a light

commercial vehicle at 120 km/h are presented in Figure 8.

In Figure 8(a), the reference dynamics (dashed) are being

tracked by the vehicle outputs (solid) for the selected J-

turn and slalom maneuvers. The tracking of reference sig-

nals is very good with reference and output signals almost

overlapping. The required control inputs are depicted in

Figure 8(b). The tracking performance is improved by using

a feedforward term. Note that even though performance is not

part of the design procedure, good performance is obtained.

In addition, simulation results for a small and more agile

Smart for-two vehicle are depicted in Figure 9 for J-turn and

slalom maneuvers. Lateral and roll motions are tracked well.

Note that in this case, roll reference signals were close to

zero because of the very low roll motions of a small urban

vehicle.
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(b) 4-wheel-steering and roll inputs

Fig. 8. Emulation results for a light commercial vehicle at 120km/h using a
mid-sized vehicle. (a) Plant outputs (solid) track reference signals (dashed)
for a series of maneuvers with a maximum steering wheel rate of 500 deg/s.

VI. CONCLUSION

In this paper, based on previous results in [2], a passivity-

based design methodology for decentralized control is pre-

sented.
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