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Abstract— Performance optimization for networked and em-
bedded control systems refers to the ability of minimizing con-
trollers’ resource utilization and/or improving control perfor-
mance. Event-driven control has been shown to be a promising
technique for minimizing controllers’ computational demands.
However, optimization of control performance for event-driven
control has not been fully addressed. For LTI plants, this
paper presents a boundary for event-driven controllers that
determines at each job execution when the next job execution
should occur in order to minimize a continuous-time quadratic
cost function while minimizing controllers’ computational de-

mand. Simulation results illustrate the qualitative shape of this
boundary.

I. INTRODUCTION

Networked and embedded control systems are often de-

signed under resource constraints such as processor capacity,

communication bandwidth, battery life, etc. In order to make

these systems cost-effective, it is mandatory to efficiently

use the computational resources [1]. Since the computational

load imposed by controllers depends on their rate of execu-

tion, it is of interest to study approaches to control systems

design capable of producing controllers with low resource

demands.

As repeatedly indicated in the research literature (e.g., [2]

or [3]), although event-driven control systems lacks a system

theory, it provides interesting benefits like reducing resource

utilization. Although several theoretical results for event-

driven control have recently appeared in the literature, (e.g.,

[4] or [5]), control performance guarantees for event-driven

controllers have not been treated in the context of optimal

control.

In [6] a preliminary attempt to jointly study resource

utilization and control performance in an optimal control

setting for event-driven controllers was made. The goal was

to specify an event-driven control technique able to minimize

cost while using the same amount of resources than in

the periodic case. However, only a numerical receipt was

provided. In [7] a comprehensive study was presented in

terms of numerically assessing if non-periodic controller

activation times could lead to a lower cost than in the periodic

case. Finally, it is worth noting that in [8] an optimal control
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design methodology where adding the opportunity to update

the control law at instants within the standard periodic ones

was proved to only lead to an improvement of a quadratic

cost function. Although the later approach results in an

increase of resource utilization, it also combines non-periodic

sampling and optimal control.

Inspired by the problem defined in [6] and the numerical

results given in [7], this paper studies whether an optimal

control performance problem that also takes into account

minimization of resource utilization can be transformed

into an event condition for event driven controllers. More

specifically, and for the case of LTI plants, this paper presents

a boundary for event-driven controllers, named “one-step”

boundary, whose application at each controller execution

tries to maximize the time when the next execution will occur

while minimizing a finite-horizon quadratic cost function,

and considering that the rest of controller executions will be

periodic. Simulation results have been carried out to evaluate

the one-step finite-horizon boundary controller in terms of

resource utilization and control performance.

The rest of the paper is organized as follows. Section II

formalizes the problem to be solved, whose solution is devel-

oped in Section III. Section IV presents detailed simulation

results. Finally, Section V concludes this paper.

II. PROBLEM TO BE SOLVED

We consider the control system

ẋ(t) = Ax(t) +B u(t)
y(t) = C x(t)

(1)

with x ∈ R
n×1, A ∈ R

n×n, B ∈ R
n×m, u ∈ R

m×1, and

C ∈ R
1×n.

Let

u(t) = uk = Lx(tk) = Lxk ∀t ∈ [tk, tk+1) (2)

be the control updates given by a linear feedback controller L
designed in the discrete-time domain using only samples of

the state at discrete instants t0, t1, . . . , tk, . . .. We refer to tk
as the controller activation times. Between two consecutive

control updates, u(t) is held constant. In periodic sampling

we have tk+1 = tk + h, where h is the period of the

controller.

In event-driven control, the sequence of activation times

tk occur when the system trajectory crosses a boundary that

specifies the tolerated threshold where the system trajectory

can move without requiring control actions. Event conditions

can be generalized by introducing a function f : Rn×R
n →

R that defines a boundary measuring the tolerated error with
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respect to the sampled state [9]. The condition that must be

ensured is

f(x(t), xk) ≤ η t ∈ [tk, tk+1) (3)

where η is the error tolerance. Typical prerequisites for f
are: f be continuous, f(x, x) = 0.

Control performance is often measured by an infinite-

horizon continuous-time quadratic cost function

J =

∫

∞

0

[

xT (t)Qcx(t) + uT (t)Rcu(t) + 2xT (t)Ncu(t)
]

dt

(4)

where the weighting matrices Qc and Rc are symmetric

positive semidefinite matrices.

If the gain L in (2) is designed using periodic linear

quadratic (LQR) control for a given h, the minimum cost

of (4) is [10]

J∗ = xT

0 S(h)x0 (5)

where S(h) is the solution to the discrete algebraic Riccati

equation of the discretized system with period h, and x0 is

a given initial state.

Rather than applying periodic control with period h, we

are interested in assessing whether a different sequence of

activation times can demand less resource utilization than the

periodic case without degrading the performance, assuming

that the controller gain L designed for the periodic scenario

is left unchanged. Without loss of generality, let us set the

latest sampling instant t0 equal to 0 and x0 the sampled state

at t0 = 0. We aim at computing the largest τ such that the

sampling sequence

t0 = 0, t1 = τ, tk = τ + (k − 1)h

will provide a cost not larger than the cost J∗ of a periodic

controller with period h (of Equation (5)). In this problem,

the time interval τ becomes the decision variable for achiev-

ing the desired operation at τ . In addition, we need to make

the cost (4) explicitly depending on τ and reflecting that after

τ the controller activations will be periodic. To do so, we

split cost (4) into two sub-costs J1 and J2. The first cost J1
applies to the τ time interval, which is unknown and must be

maximized, and the second cost applies from τ to ∞, where

activations are expected to be periodic at the maximization

time. Remembering that the controller gain L is optimal for

(4) given the sampling period h, cost (4) can be re-written

as

J = J1 + J2 (6)

where

J1 =

∫ τ

0

[

xT (t)Qcx(t) + uT

0 Rcu0 + 2xT (t)Ncu0

]

dt (7)

and

J2 = xT (τ)Sx(τ). (8)

Notice that in (7) the input is represented by u0, since u(t)
is constant in [0, τ).

Hence, the boundary should permit to easy solve the

optimization problem formally stated as

maximize τ (9)

subject to
∂J

∂τ
= 0 (10)

J∗ − J(τ) > 0 (11)

τ > 0 (12)

x (τ) = Φ(τ)x0 + Γ(τ)u0 (13)

where u0 = Lx0 and

Φ(τ) = eAτ , Γ(τ) =

∫ τ

0

eAsdsB, τ ∈ [tk, tk+1). (14)

Noting that the objective function (9) is continuous and

the constraint set is compact (constraint (10) reduces the

constraint set to a set of isolated points), the problem has

solution.

Note that if the feasible domain given by restrictions (10)-

(13) is an empty set, then we specify τ = h.

III. THEORETICAL APPROACH

Solving problem (9)-(13) implies two main steps: a) to

find the set of positive isolated points τi that fulfill conditions

(10) and (12) (among them, there will be the minimums of

the cost function (6)); b) from those points, to choose the

longest τi whose cost evaluated using (6) is lower than the

cost (5) provided by the periodic controller, that is, fulfilling

restriction (11).

A. One-step Finite Horizon Optimal Boundary

The first step of the solution to the problem (9)-(13) is

announced next.

Proposition 1: Given the closed-loop system (1)-(2)

where L is the discrete time LQR optimal gain minimiz-

ing (4) for a given sampling period h, the boundary condition

that permits finding the set of isolated τi that fulfill con-

straint (10) for any arbitrary initial state x0 considering that

after τ time units the controller activation will be periodic is

[

x(τ) u0

]

[

Q̄ N̄
N̄T R̄

] [

x(τ)
u0

]

= 0 (15)

where

Q̄ =
[

ATS + SA+Qc

]

, N̄ = [Nc + SB] , R̄ = Rc.
(16)

Proof: Since J = J1 + J2, we compute its derivative

w.r.t. τ , by computing the ones of J1 and J2 respectively.

∂J1
∂τ

= xT (τ)Qcx(τ) + uT

0 Rcu0 + 2xT (τ)Ncu0 (17)

∂J2
∂τ

=
∂

∂τ
xT (τ)Sx(τ) + xT (τ)S

∂

∂τ
x(τ) (18)

since S does not depend on τ . From the system dynamics (1),

it follows that

∂

∂τ
x(τ) = Ax(τ) +Bu(τ) = Ax(τ) +Bu0

1663



Then it follows that

∂J2
∂τ

= xT (τ)ATSx(τ) + uT

0 B
TSx(τ)

+ xT (τ)SAx(τ) + xT (τ)SBu0

= xT (τ)(ATS + SA)x(τ) + 2xT (τ)SBu0 (19)

Hence, by recalling that J = J1 + J2, we obtain

∂J

∂τ
= xT (τ)Qcx(τ) + uT

0 Rcu0 + 2xT (τ)Ncu0

+ xT (τ)(ATS + SA)x(τ) + 2xT (τ)SBu0

= xT (τ)Q̄x(τ) + uT

0 R̄u0 + 2xT (τ)N̄u0

=
[

xT (τ) u0

]

[

Q̄ N̄
N̄T R̄

] [

x(τ)
u0

]

(20)

where

Q̄ =
[

ATS + SA+Qc

]

, N̄ = [Nc + SB] , R̄ = Rc.

From the constraint (10), by setting (20) equal to zero, we

obtain (15).

Once the set of τi have been identified, the solution to the

problem (9)–(13) requires selecting the longest τi that fulfills

restriction (11). If non of them applies, then τ = h.

Note that the event condition (15) will have solution if the

matrix characterized by Q̄, N̄ , N̄T and R̄ has positive and

negative eigenvalues.

B. Implementation Issues

The implementation of the one-step boundary event-driven

controller requires a dedicated hardware that at each con-

trol update continuously checks if condition (15) with the

selected τ is fulfilled. Hence, at each control update, the

optimization problem (9)-(13) must be solved to obtain τ
and then the dedicated hardware must be adjusted with this

value.

To avoid using dedicated hardware, a self-triggered im-

plementation may be desirable (e.g., [4] or [5]). A self-

triggered implementation requires computing at each control

update when the next controller activation will occur, and

then programming a timer with this value. In the one-

step boundary, this again requires solving the optimization

problem (9)-(13) to obtain τ .

Therefore, using either the dedicated hardware approach

or the self-triggered approach, computing the solution to

the optimization problem (9)-(13) is always required. The

following subsection tackles this problem.

C. Computation of the Next Activation Time

The computation of the next activation time requires

solving (15) to obtain the candidate points τi and then choose

the longest one fulfilling (11). To do so, the dependency of

x(τ) on τ must be made explicit, and then solve for τ . A

general approach can be to use a n-order approximation of

x(τ) if an exact expression for x(τ) does not exist.

First of all, Φ(τ) and Γ(τ) in (13) can be written in terms

of Ψ(τ) as [10]

Φ(τ) = eAτ = I +AΨ(τ) (21)

Γ(τ) =

∫ τ

0

eAsBds = Ψ(τ)B (22)

where Ψ(τ) is

Ψ(τ) =

∫ τ

0

eAsds =

∞
∑

i=0

Aiτ i+1

(i+ 1)!
. (23)

Substituting (21) and (22) in (13) we obtain

x(τ) = Φ(τ)x0 + Γ(τ)u0

= [I +AΨ(τ)]x0 +Ψ(τ)Bu0

= [I +AΨ(τ)]x0 +Ψ(τ)BLx0

= x0 +AΨ(τ)x0 +Ψ(τ)BLx0. (24)

Commuting matrices Ψ(τ) and A, (24) can be written as

x(τ) = x0 +Ψ(τ)(A +BL)x0. (25)

Finally, we approximate Ψ(τ) by a Taylor series of n-order

in a neighborhood of τ = 0 in (25), thus obtaining

x(τ) = x0 + (A+BL)x0τ +
A(A +BL)

2!
x0τ

2

+
A2(A+BL)

3!
x0τ

3 + . . . (26)

Using (21), (22), (23) and a convenient approximation

given by (26), eq. (15) can be solved for τ . Note that using

a n-order approximation will result in a 2n-order equation.

Among all solutions, the next activation time will be the

biggest real solution (i.e., longest τ ) providing a cost (6)

smaller than the one delivered by the periodic LQR controller

(5), that is, fulfilling constraint (11).

IV. SIMULATION RESULTS

In order to qualitatively evaluate the effectiveness of an

event-driven controller based on the one-step finite-horizon

boundary, a detailed simulation analysis has been carried out.

A. Simulation Settings

The LTI plant for simulation is the double integrator

system given by

ẋ =

[

0 1
0 0

]

x+

[

0
1

]

u

.

The cost function (6) to be minimized is characterized by

Qc =

[

1.6242 0.0363
0.0363 0.0008

]

, Nc =

[

0.4738
0.0106

]

,

Rc = 0.1382

and

S =

[

0.1095 0.0000
0.0000 0.0308

]

for a sampling period of h = 0.3s. The optimal LQR gain

for (4) with h = 0.3s is L =
[

−3.1232 −0.7488
]

.
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Fig. 2: Sampling intervals.
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Fig. 1: Periodic and one-step boundary

The evaluation of the one-step boundary event-driven con-

troller is compared to the LQR optimal periodic controller.

In [11] the boundary in the form of (3) is given for periodic

discrete-time systems, producing the periodic activation of

control jobs. The periodic boundary of the LQR optimal

controller is used for comparative purposes.

Figure 1 shows the boundary shapes for both the one-

step boundary controller and the periodic LQR controller,

given the specific simulation settings. For both boundaries,

this figure illustrates the allowed distance (error) that, from

any given state (located in the center of the boundary), the

closed-loop system trajectory will move without requiring

a control update. The control signal will be updated when

the trajectory will hit the solid line for the one-step boundary

controller or the dashed line for the periodic controller. While

the periodic boundary has an expected circle shape, the one-

step boundary (plotted considering always the longest τ )

offers an irregular shape that indicates that depending on

the trajectory direction, more or less space and time will be

covered without requiring a control update.

B. Resource Utilization Analysis

Figures 2 and 3 illustrate the computational demand of the

one-step boundary controller. In particular, Figure 3 plots for

both the one-step boundary controller and the LQR periodic

controller the expected sampling interval given the orienta-
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Fig. 3: Comparative of sampling intervals

tion of the current state. For example, for any state orienta-

tion, the sampling period of the periodic controller (dashed

line) is 0.3s. However, the period (separation between two

consecutive controller activations) for the one-step boundary

controller varies depending on the orientation of the current

step (see [12] for a deeper analysis of activation patterns for

certain types of event-driven controllers). For example, if the

current state orientation is 90◦, the figure tells that the next

controller activation will occur after 0.23s approximately.

And if the current state orientation is 59◦, the next controller

activation time would be after 0.6s approximately. Hence,

from Figure 3 it can be observed the type of sampling

intervals that the one-step boundary will produce compared

to the periodic boundary. In some cases, sampling intervals

will be longer than the periodic case (h = 0.3s) and in other

cases they will be shorter.

Sub-figure 2a shows the activation pattern for the one-

step boundary for a given initial condition, x0 =
[

0 1
]T

.

The x-axis is simulation time, and the y-axis is the sampling

interval also in seconds. Each job activation time is repre-

sented by a vertical line, whose height indicates the next

job expected execution time (the next sampling interval). As

it can be seen in the figure, an oscillatory pattern occurs,

alternating a long sampling interval of 0.55s with several

short intervals ranging from 0.25s to 0.21s.
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Sub-figure 2b shows a similar sequence of activations

than the case illustrated in sub-figure 2a but for the case of

restricting the execution to a minimum period. Since the one-

step boundary can produce shorter periods than the periodic

case, it is also of interest to restrict the timing of the one-

step boundary controller to the case where longer periods

than 0.3s are allowed while shorter periods than 0.3s are

saturated to 0.3s. This will permit a more accurate analysis of

the control performance of several control strategies, which

is presented next.

C. Control Performance Analysis

Figure 4 shows the closed-loop system dynamics for both

the one-step boundary controller and the periodic controller

for the same initial condition used for generating the acti-

vation patterns shown in Figure 2. As it can be seen, the

one-step boundary is capable of driving the state toward

zero quicker than the optimal LQR periodic case. This is an

expected result observing the activation pattern of the one-

step boundary (sub-figure 2a) and the fact the the period of

the LQR controller is 0.3s. Note that the one-step boundary

has an average sampling interval of 0.28s, and therefore it

seems reasonable that the dynamics progress quicker than

for the periodic case.

It is also interesting to observe in Figure 4 the next sam-

pling interval that occurs for the state
[

−0.24 −0.41
]T

belonging to the one-step boundary trajectory, and for the

state
[

−0.24 −0.52
]T

belonging to the periodic trajec-

tory. Both states have a similar orientation, which approx-

imately is 239◦ and 245◦, respectively. However, although

having a similar orientation, the next sampling for the

one-step boundary will occur at
[

−0.30 0.19
]T

after

almost 0.6s. For the periodic case, to reach a similar state,
[

−0.35 0.19
]T

, it is required to apply an extra control

update, each one of 0.3s. Hence, depending on the state

orientation, the sampling intervals that apply can be very

different for both controllers.

Figure 5 shows the control performance evaluation of

several controllers. The cost is evaluated using (4) with the

specific matrices given in sub-section IV-A. Four strategies

have been tested, although only three are plotted. From

the same initial condition, the one-step boundary controller
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Fig. 5: Control performance evaluation

provides the best cost (solid line) compared to the LQR

periodic controller with h = 0.3s (dash-dotted line). This

was a known result already stated before and illustrated in

Figure 4.

As we pointed out before, the average sampling period

for the one-step boundary controller is 0.28s. Hence, it

seems interesting to compare the one-step boundary con-

troller against a LQR periodic controller with a period of

0.28s (dashed line in Figure 5). Both controllers have the

same resource demands. However, the one-step controller

still delivers better control performance.

Finally, it is worth mentioning that the one-step controller

with restricted minimum period, whose activation pattern

was shown in Figure 2b, has also been evaluated. Note

that this one consumes less resources than the periodic with

h = 0.3s because from time to time it applies a long

sampling interval near 0.6s. Regarding the cost, the restricted

one-step boundary controller provides the same cost than the

periodic case. The curve was omitted in Figure 5 for the sake

of clarity.

D. Next Activation Time for Self-triggered Implementation

This section illustrates the computation of the next acti-

vation time described in sub-section III-C if a self-triggered

implementation is pursued.

With the simulation settings presented in sub-section IV-A,

the one-step boundary matrix in (15) is

[

Q̄ N̄
N̄T R̄

]

=









1.6240 0.1458 0.4738

0.1458 0.0009 0.0414

0.4738 0.0414 0.1382









.

To better illustrate the procedure for computing the next

activation time, we will use an initial condition giving a

longer next activation time than 0.3s that would be the

case for the periodic LQR controller. Looking at Figure 3,

we outlined that for states with orientation 60◦, the next

sampling interval is long. Hence, we take as initial condi-

tion x0 =
[

1/2 1/2
√
3
]T

. In addition, for the double

integrator system, x(τ) has an exact closed expression given
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by

x(τ) =

[

x1(τ)
x2(τ)

]

=

[

0.5000− 1.105 τ2 + 0.8660 τ

−2.210 τ + 0.8660

]

.

And recalling that u0 = Lx0 = −2.2101, then eq. (15)

reduces to

1.983 τ4 − 2.396 τ3 + 0.9043 τ2 − 0.1095 τ + 0.00218 = 0.

The solutions τi to the previous equation are given next,

as well as their cost (6),

τi =















0.5790s

0.4229s

0.1813s

0.02518s















, Ji =















0.05053

0.05072

0.05038

0.05057















.

because the specific value of τ will be chosen to be the

longest period giving a cost lower than the periodic case, as

indicated in the optimization problem (9)-(13). By observing

that the cost of the periodic LQR controller with h = 0.3s is

J∗ = 0.05054, it is easy to assert that the candidate values

for τ are τ1 and τ3 because they will deliver a smaller cost

than J∗. Since among these two candidates we are interested

in the one minimizing resource utilization, we pick for the

next activation time the longest sampling interval, that is

τ1 = 0.5790s.

Note that it provides a lower cost than the periodic case while

being almost twice than the period of the periodic case.

E. Discussion

From the previous performance analysis, it is worth com-

menting several issues.

First of all, from the performance analysis shown in

Figure 5, an interesting conclusion can be drawn. Given an

optimal LQR periodic controller, better control performance

(evaluated using the same cost function) can be obtained

if the same amount of resources used by the periodic

controller are redistributed following a non-periodic pattern.

In particular, the one-step boundary presented in Section III

can provide such a non-periodic pattern that consuming the

same resources that the periodic controller, is able to provide

better control performance.

Second, in the execution of the one-step boundary con-

troller, the controller gain that applies is always the same,

which is the LQR gain for the periodic controller. Current

work is analyzing the effectiveness of the one-step boundary

controller in two different scenarios: when the controller gain

changes according to each sampling interval that will apply,

and when the control signal u0 becomes also a decision

variable of the optimization problem (9)-(13) together with τ .

Third, similar to model predictive control, the length of

the finite-horizon determines the goodness of the controller.

Current work is also investigating whether a boundary in

closed form can be obtained such that its application would

result in optimizing a finite-horizon cost function for two or

more steps rather than just one.

V. CONCLUSIONS

This paper has presented the one-step boundary for event-

driven controllers. With this boundary, at each sampled state,

the next activation time becomes the decision variable to

be maximized considering also that the delivered cost must

be not worse than the one achieved by the periodic LQR

controller. A close form for the boundary has been derived,

and a general procedure for solving the computation of the

next activation time has been presented. Detailed simulation

results have evaluated the resource utilization and control

performance of the one-step boundary controller compared

to an optimal LQR periodic controller. It has been shown

that, using the same amount of resources, better control per-

formance can be obtained using aperiodic sampling than the

standard periodic approach. Hence, “clever” redistribution of

resources is the key for improving control performance.
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