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Abstract— A generalized state space representation of a dy-
namical system with random modes is presented. The dynamics
equation includes the effect of the state’s linear minimum mean
squared error (LMMSE) optimal estimate, representing the
behavior of a closed loop control system featuring a state esti-
mator. The measurement equation is allowed to depend on past
LMMSE estimate of the state, which can be used to represent
the fact that measurements are obtained from a validation
window centered at the predicted measurement position and
not from the entire surveillance region. The matrices comprising
the system’s mode constitute an independent stochastic process.
It is shown that the proposed formulation generalizes several
important problems considered in the past, and allows a unified
modeling of new ones. The LMMSE optimal filter is derived
for the considered general problem and is shown to reduce, in
some special cases, to some well known classical algorithms. The
new concept, as well as the derived algorithm, are demonstrated
for the problem of target tracking in clutter, and are shown to
attain performance that is competitive to that of several popular
nonlinear methods.

I. INTRODUCTION

State estimation in dynamical systems with randomly

switching coefficients is an important problem in a variety of

applications. Perhaps the most natural examples are maneu-

vering target tracking, and fault detection and isolation (FDI)

methods featured, e.g., in aerospace navigation systems.

Standard state space modeling presumes that the dynamics

of the continuously-valued random state and, possibly, its

measurement equation, are controlled by an evolving mode

that takes discrete values, which is the well known concept

of hybrid systems [1]. In problems involving uncertain,

or intermittent observations [2]–[8], the mode affects the

matrices of the measurement equation. In maneuvering target

tracking applications [9]–[11], the mode usually affects the

matrices of the dynamics equation.

We consider a state space representation of dynamical

systems with switching coefficients that is more general

than standard state space modeling. First, we allow the

state and measurement equations to depend on functions of

past measurements. Specifically, the state evolution dynamics

depends, in addition to the previous state and process noise,

on some latest estimate of the state vector. This modeling

may represent the behavior of a closed loop control system

featuring a state estimator. The measurement equation is
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allowed to depend, in addition to the current state and

measurement noise, on some current state estimate. This can

be used to represent the fact that observations are not taken

in the entire space, but in a small validation window set

around the predicted state of the target. Further, we broaden

the class of problems that may be treated under the hybrid

systems framework by allowing the mode to take values in

a continuous, rather than in some finite, domain. Finally,

the random (matrix) coefficients may change not only in

their values, but also in their dimensions, provided that the

dimensions of the corresponding state vectors are properly

chosen.

It is well known [9] that, even for the simplest case

of independently switching modes, the optimal estimate of

the state cannot be obtained without resorting to exhaustive

enumeration. Therefore, significant efforts have been ded-

icated to developing suboptimal approaches. In the sequel

we consider optimality within a narrower family of linear

filters. Specifically, we derive a linear optimal algorithm

that may be conveniently implemented in a recursive form,

thus eliminating the need for unbounded memory. We also

show that the filter reduces to previously reported results

when the parameters of the underlying problem are adjusted

appropriately.

To illustrate the applicability of the proposed framework

we show how it can be used to model the problem of tracking

a target in clutter, and solve it optimally in the linear MMSE

sense. The derived filter is shown to attain performance

comparable to that of several popular nonlinear approaches.

The remainder of the paper is organized as follows. In

Section II we define and discuss the proposed dynamics

and measurement models. Related contributions are surveyed

in Section III. The linear optimal recursive state estimation

algorithm is developed in Section IV. An application of

the approach to target tracking in clutter is presented in

Section V. A representative numerical example is given in

Section VI. Concluding remarks are made in Section VII.

II. SYSTEM MODEL

We consider the following dynamical system:

xk+1 = Akxk + Ckx̂k +Bkwk (1a)

yk = Hkxk + Fkx̂k−1 +Gkvk, (1b)

where xk ∈ R
n and yk ∈ R

m are, respectively, the state and

measurement vectors at time k. The process and measure-

ment noise sequences, {wk} and {vk}, respectively, are zero

mean, unit variance and white, and x0 is a random vector
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with mean x̄0 and covariance P0. The vectors x̂k ∈ R
n

and x̂k−1 ∈ R
n are linear optimal, in the Minimum Mean-

Squared Error (MMSE) sense, estimates of xk and xk−1

using the measurement histories Yk and Yk−1, respectively,

where, Yk , {y1, . . . , yk}. Finally, Ak, Bk, Ck, Hk, Gk, Fk

are matrices of appropriate dimensions.

The mode of the system, Mk ,

{Ak, Bk, Ck, Hk, Gk, Fk}, constitutes an independent

random process such that the distribution at time k, p (Mk),
is known. The random quantities {wk}, {vk}, {Mk}, and

x0 are assumed to be mutually independent.

Affecting the state at time k+1, the term Ckx̂k represents

the effect of a linear closed loop control input. Because the

controller does not posses perfect knowledge of the state due

to the process and measurement noises, a state estimator is

used to generate an estimate of the state using the available

measurements; this estimate is then used to generate the

control signal Ckx̂k, where the gain Ck may be obtained

as a solution of an appropriate optimal control problem.

Affecting the measurement at time k, the term Fkx̂k−1 can

be used to represent the fact that observations are not taken in

the entire (feasible) space, but, rather, in a small (admissible)

validation window, set about the predicted state.

We seek to obtain a linear optimal estimate x̂k+1 using

the measurements Yk+1 , {y1, . . . , yk+1}. It will be shown

in the sequel that this linear optimal estimate conveniently

possesses the following, recursive form:

x̂k+1 = Lkx̂k +Kkyk+1. (2)

Namely, the desired linear optimal solution will be shown to

fuse the (extrapolated) previous estimate with the most re-

cently acquired measurement vector, effectively eliminating

the need to store the entire measurement sequence.

The system (1) may be viewed as a generalization of the

popular Jump Markov Linear System (JMLS) model, which

is a special case of the hybrid systems paradigm, in which

continuous uncertainties associated with the system state are

accompanied by discrete ones representing the system mode.

Specifically, in the present case, the system mode does not

have to assume values in a discrete domain. Moreover, as

opposed to the classical multiple model based treatment of

hybrid systems, the present formulation allows evolution not

only of the entries of the matrices constituting the mode,

but also of their dimensions. This distinction provides a

convenient basis for treating problems that, to the best of the

authors’ knowledge, have not been previously considered, as

will be discussed in detail in Section V.

III. RELATED WORK AND MODEL GENERALITY

In the sequel we show how several estimation problems,

that were considered and solved in the past, may be cast as

special cases of the general formulation (1) addressed herein.

Nahi [2] considered the problem of state estimation with

uncertain observations:

yk = γkHnomxk +Gnomvk, (3)

where Hnom and Gnom are some known deterministic ma-

trices representing sensor geometry and measurement noise

covariances, respectively, and {γk} is a sequence of inde-

pendent Bernoulli random variables. Nahi’s formulation (3)

is obtained from (1b) by substituting Hk = γkHnom, Gk =
Gnom, and Fk = 0.

A generalization of Nahi’s work has been recently pro-

posed in [8], where multiplicative faults, {γk}, were accom-

panied by additive ones:

yk = γkHnomxk + δkGnomvk, (4)

with {δk} being a sequence of random variables taking

values in {1, C}, and C > 1 is some known constant. For the

case of independently distributed {γk, δk} a linear optimal

recursive algorithm has been developed. This formulation

may be obtained from (1b) by setting Hk = γkHnom,

Gk = δkGnom, and Fk = 0.

In [12] Costa considered the problem of state estimation

with a random mode variable taking values in some discrete

domain, and derived a linear optimal estimation scheme. This

modeling follows in a direct manner from the formulation

proposed herein by setting Ck = 0 and Fk = 0. It is

important to note that, unless the mode matrices Ak and Bk

are deterministic, the solution proposed in [12] requires state

augmentation, as opposed to the solution proposed here.

It should be noted that both [8] and [12] also consider,

in addition to independently evolving modes, Markov mode

dynamics, thus deviating from the focus of this paper.

When the Markov property is degenerated to independently

evolving modes, both contributions follow as special cases

of the present work as discussed above.

Several additional contributions related to the considered

problem include [3], in which a generalized version of

Nahi’s problem was addressed by allowing correlated fault

indicators; [4], that allowed correlations between subsequent

fault variables; [13] that proposed a linear optimal estimator

for the Static Multiple Model (SMM) problem [14]; and [11],

that considered linear optimal estimation in systems with

bounded and unbounded numbers of actuator faults. Nonlin-

ear suboptimal solutions for related problems were proposed

in [9]–[11], [15] and references therein.

In passing, we note that all the contributions mentioned

above consider modes taking values in some discrete (and

finite) domain, but fail to address (except in a few simple

cases) problems where a continuum of mode values should

be assumed. Such cases include, for example, terrain-based

target tracking applications, in which the measurement noise

intensity may evolve in a continuous manner. In contradis-

tinction, the model considered in this paper, as well as

the algorithm developed in the sequel, do not make this

restrictive assumption, and allow treatment of continuously

as well as discretely varying modes, as long as {Mk} is an

independent sequence.

IV. LINEAR OPTIMAL RECURSIVE ESTIMATION

It is well known [16], [17] that the estimate x̂k+1 is

optimal if and only if the following orthogonality conditions
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are satisfied:

E
[

(x̂k+1 − xk+1)y
T
i

]

= 0, i = 1, . . . , k + 1. (5)

Given a linear optimal estimate x̂k, we will search for

matrices Lk and Kk such that x̂k+1 in (2) satisfies (5).

We separate orthogonality to past measurements, yi, i =
1, . . . , k, from orthogonality to the latest observation, yk+1.

A. Orthogonality w.r.t. Past Observations

Consider the conditions (5) for i = 1, . . . , k. Substituting

xk+1 from (1a) as well as the conjectured form (2) yields

0 = E
[

(Akxk +Bkwk + Ckx̂k − Lkx̂k −Kkyk+1)y
T
i

]

= E
[

(Akxk + Ckx̂k − Lkx̂k −Kkyk+1)y
T
i

]

, (6)

which follows from the independence of Bk, wk and yi, i =
1, . . . , k. Substituting (1b) for yk+1, (6) becomes

0 = E[(Akxk + Ckx̂k − Lkx̂k

−Kk(Hk+1xk+1 +Gk+1vk+1 + Fk+1x̂k))y
T
i ]. (7)

Utilizing the independence of Gk+1, vk+1 and yi, i =
1, . . . , k, and substituting (1a) for xk+1, (7) reads

0 = E[(Akxk + Ckx̂k − Lkx̂k − (KkHk+1Akxk

+KkHk+1Ckx̂k +KkFk+1x̂k))y
T
i ]

= E[(Ak −KkHk+1Ak)xky
T
i

+ (Ck −KkHk+1Ck − Lk −KkFk+1)x̂ky
T
i ], (8)

where we have also utilized the independence of Bk, wk and

yi, i = 1, . . . , k. Note that xky
T
i and x̂ky

T
i are deterministic

functions of {wj , Aj , Bj , Cj}
k−1

j=1
, {vj , Hj , Gj , Fj}

k
j=1

, and

x0. Bearing in mind that the mode sequence is independent,

we conclude that for i = 1, . . . , k, the random matri-

ces xky
T
i and x̂ky

T
i are independent of {Ak, Hk+1} and

{Ck, Fk+1, Hk+1}, respectively.

By assumption, x̂k is a linear optimal estimate of xk,

satisfying the orthogonality conditions w.r.t. yi, i = 1, . . . , k.

In particular,

E
[

x̂ky
T
i

]

= E
[

xky
T
i

]

, i = 1, . . . , k, (9)

which is essentially the same relation as (5), satisfied by

xk and x̂k. Combining (9) with the above independence

property, (8) reads

E[(Ak + Ck − Lk −Kk(Hk+1(Ak + Ck) + Fk+1)]

× E
[

xky
T
i

]

= 0. (10)

Finally, utilizing the independence of Hk+1 and Ak, Ck,

we find that orthogonality with respect to the measurements

yi, i = 1, . . . , k is guaranteed by requiring that the matrices

Lk and Kk satisfy the following relation:

Lk = (I −KkE[Hk+1])E[Ak + Ck]−KkE[Fk+1] . (11)

B. Orthogonality w.r.t. Latest Observation

First, we define the following symmetric matrices:

Sk , E
[

xkx
T
k

]

(12)

Uk , E
[

x̂kx̂
T
k

]

= E
[

x̂kx
T
k

]

, (13)

where the RHS of (13) follows from the orthogonality

principle satisfied by xk. Substituting (2) and (1b) in the

last orthogonality condition of (5) we have:

E
[

(x̂k+1 − xk+1)y
T
k+1

]

= LkE
[

x̂ky
T
k+1

]

+KkE
[

yk+1y
T
k+1

]

− E
[

xk+1(Hk+1xk+1 +Gk+1vk+1 + Fk+1x̂k)
T
]

= LkE
[

x̂ky
T
k+1

]

+KkE
[

yk+1y
T
k+1

]

− Sk+1E
[

HT
k+1

]

− E
[

xk+1x̂
T
k

]

E
[

FT
k+1

]

, (14)

where the last transition follows from the independence of

xk+1 and Gk+1vk+1 as well as the independence of Fk+1

and xk+1x̂
T
k . We compute next each of the terms E

[

x̂ky
T
k+1

]

,

E
[

xk+1x̂
T
k

]

, and E
[

yk+1y
T
k+1

]

separately.

Using (1b), the independence of x̂k and Gk+1vk+1, the in-

dependence of {x̂k, xk+1} and Hk+1, and the independence

of x̂k and Fk+1, we have:

E
[

x̂ky
T
k+1

]

= E
[

x̂k(Hk+1xk+1 +Gk+1vk+1 + Fk+1x̂k)
T
]

= E
[

x̂k(Hk+1xk+1 + Fk+1x̂k)
T
]

= E
[

x̂kx
T
k+1

]

E
[

HT
k+1

]

+ UkE
[

FT
k+1

]

= E
[

x̂k(Akxk +Bkwk + Ckx̂k)
T
]

E
[

HT
k+1

]

+UkE
[

FT
k+1

]

= Uk

(

E
[

AT
k + CT

k

])

E
[

HT
k+1

]

+ UkE
[

FT
k+1

]

, (15)

where the fourth transition follows from using (1a), and the

last one from the independence of {Bk, wk} and x̂k, the inde-

pendence of {Ak, Ck} and {xk, x̂k}, and the definition (13).

Similar arguments yield:

E
[

xk+1x̂
T
k

]

= E[Ak + Ck]Uk. (16)

Finally, due to the independence of Hk+1xk+1 and

Gk+1vk+1,

E
[

yk+1y
T
k+1

]

= E[(Hk+1xk+1 +Gk+1vk+1 + Fk+1x̂k)

× (Hk+1xk+1 +Gk+1vk+1 + Fk+1x̂k)
T ]

= E
[

Hk+1xk+1x
T
k+1H

T
k+1

]

+ E
[

Gk+1vk+1v
T
k+1G

T
k+1

]

+ E
[

Fk+1x̂kx̂
T
k F

T
k+1

]

+ E[Hk+1]E
[

xk+1x̂
T
k

]

E
[

FT
k+1

]

+ E[Fk+1]E
[

x̂kx
T
k+1

]

E
[

HT
k+1

]

,

which, using (16) becomes

E
[

yk+1y
T
k+1

]

= E
[

Hk+1xk+1x
T
k+1H

T
k+1

]

+ E
[

Gk+1vk+1v
T
k+1G

T
k+1

]

+ E
[

Fk+1x̂kx̂
T
k F

T
k+1

]

+ E[Hk+1]E[Ak + Ck]UkE
[

FT
k+1

]

+ E[Fk+1]UkE
[

AT
k + CT

k

]

E
[

HT
k+1

]

. (17)

It remains to compute E
[

Hk+1xk+1x
T
k+1

HT
k+1

]

,

E
[

Gk+1vk+1v
T
k+1

GT
k+1

]

, and E
[

Fk+1x̂kx̂
T
k F

T
k+1

]

. Consider
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the first term. From the smoothing property of the

conditional expectation,

E
[

Hk+1xk+1x
T
k+1H

T
k+1

]

= E
[

E
[

Hk+1xk+1x
T
k+1H

T
k+1

∣

∣ Hk+1

]]

= E
[

Hk+1E
[

xk+1x
T
k+1

∣

∣ Hk+1

]

HT
k+1

]

= E
[

Hk+1Sk+1H
T
k+1

]

, (18)

where the conditioning on Hk+1 was omitted due to the

independence of xk+1 and Hk+1. Bearing in mind that

E
[

vk+1v
T
k+1

]

= I , and E
[

x̂kx̂
T
k

]

= Uk, the other two terms

are computed in a similar manner and result in the following:

E
[

Gk+1vk+1v
T
k+1G

T
k+1

]

= E
[

Gk+1G
T
k+1

]

(19)

E
[

Fk+1x̂kx̂
T
k F

T
k+1

]

= E
[

Fk+1UkF
T
k+1

]

. (20)

For future reference, we also note that

E
[

Akxkx
T
kA

T
k

]

= E
[

AkSkA
T
k

]

(21)

E
[

Akxkx̂
T
kC

T
k

]

= E
[

AkUkC
T
k

]

(22)

E
[

Ckx̂kx̂
T
kC

T
k

]

= E
[

CkUkC
T
k

]

(23)

E
[

Bkwkw
T
k B

T
k

]

= E
[

BkB
T
k

]

, (24)

where (24) follows from the fact that {wk} is a unit-variance

sequence. Using (18)-(20) in (17) and substituting (15)–(17)

in (14) yields the second relation between Lk and Kk:

0 = LkUk

(

E
[

AT
k + CT

k

]

E
[

HT
k+1

]

+ E
[

FT
k+1

])

+Kk

(

E[Hk+1Sk+1Hk+1]

+ E[Hk+1]E[Ak + Ck]UkE
[

FT
k+1

]

+ E
[

Gk+1G
T
k+1

]

+ E[Fk+1]UkE
[

AT
k + CT

k

]

E
[

HT
k+1

]

+ E
[

Fk+1UkF
T
k+1

]

)

− Sk+1E
[

HT
k+1

]

− E[Ak + Ck]UkE
[

FT
k+1

]

. (25)

Using (11) and canceling out identical terms yields

Kk = (Sk+1 − Vk+1)E
[

HT
k+1

]

×
(

E
[

Hk+1Sk+1H
T
k+1

]

− E[Hk+1]Vk+1E
[

HT
k+1

]

+ E
[

Fk+1UkF
T
k+1

]

− E[Fk+1]UkE
[

FT
k+1

]

+ E
[

Gk+1G
T
k+1

]

)

−1

, (26)

where

Vk+1 , E[Ak + Ck]UkE
[

AT
k + CT

k

]

. (27)

Next we provide recursive mechanisms for the computa-

tion of Sk+1 and Uk+1.

C. Computation of Second Order Moments Matrices

Consider first the second-order moment matrix of xk+1.

We have

Sk+1 = E
[

xk+1x
T
k+1

]

= E
[

(Akxk+Bkwk+Ckx̂k)(Akxk+Bkwk+Ckx̂k)
T
]

= E
[

AkSkA
T
k

]

+ E
[

AkUkC
T
k

]

+ E
[

CkUkA
T
k

]

+ E
[

CkUkC
T
k

]

+ E
[

BkB
T
k

]

, (28)

where we utilized the independence of Bkwk and

{Akxk, Ckx̂k} and (21)-(24).

Next consider Uk+1. Using (1b) and (2) we have:

Uk+1 = E
[

x̂k+1x
T
k+1

]

= E
[

(Lkx̂k +Kkyk+1)x
T
k+1

]

= LkE
[

x̂kx
T
k+1

]

+KkE
[

(Hk+1xk+1 + Fk+1x̂k)x
T
k+1

]

= (Lk +KkE[Fk+1])E
[

x̂kx
T
k+1

]

+KkE[Hk+1]Sk+1,
(29)

where the fifth transition follows from the independence

of {Gk+1vk+1, Hk+1} and xk+1, and the independence of

x̂kx
T
k+1

and Fk+1. Using (16) and taking into account the

fact that Uk is symmetric yields

Uk+1 = (Lk +KkE[Fk+1])UkE
[

AT
k + CT

k

]

+KkE[Hk+1]Sk+1. (30)

D. Filter Summary

The complete algorithm comprises the following steps:

a) Initialization: x̂0= x̄0, S0=P0 + x̄0x̄
T
0 , U0= x̄0x̄

T
0 .

b) Recursion: For k = 1, 2, . . . perform the main

routine summarized in Alg. 1.

Algorithm 1

Input: yk+1, x̂k, Sk, Uk

1: Using the known distribution of Mk compute E[Ak],
E
[

BkB
T
k

]

, E[Ck], E
[

AkSkA
T
k

]

, E
[

AkUkC
T
k

]

, and

E
[

CkUkC
T
k

]

.

2: Compute Vk+1 and Sk+1 using Eqs. (27) and (28).

3: Using the known distribution of Mk+1 compute

E[Hk+1], E
[

Gk+1G
T
k+1

]

, E[Fk+1], E
[

Fk+1UkF
T
k+1

]

,

and E
[

Hk+1Sk+1H
T
k+1

]

.

4: Compute Kk using Eq. (26).

5: Compute Lk using Eq. (11).

6: Compute Uk+1 using Eq. (30).

7: Compute x̂k+1 using Eq. (2).

Output: x̂k+1, Sk+1, Uk+1

E. Special Cases

The derived algorithm is a general, linear MMSE solution

to the estimation problem posed in Section II. We next

consider several special cases it reduces to, when the general

problem is degenerated appropriately.

1) Standard Kalman Filter: A standard Kalman Filter

(KF) solution is obtained for the case where {Mk} is a

deterministic sequence with Ck = 0, Fk = 0. In this

case, (11) and (26) become KF matrices when the time and

measurement updates are combined in a single update:

Lk=Ak −KkHk+1Ak, (31)

Kk=Pk+1H
T
k+1

(

Hk+1Pk+1H
T
k+1 +Gk+1G

T
k+1

)

−1. (32)

Here Pk+1 , Sk+1 − Vk+1 is the KF estimation error

covariance, since, in the considered case, Vk+1 = AkUkA
T
k ,

which is the second-order moment of the estimate of xk

using {y1, . . . , yk−1} (the one-step ahead predicted estimate

of xk).
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2) Generalized Kalman Filter: By letting the mode se-

quence {Mk} be deterministic we may generalize the stan-

dard KF to incorporate the additional terms of (1):

Lk=(I −KkHk+1) (Ak + Ck)−KkFk+1, (33)

Kk=Pk+1H
T
k+1

(

Hk+1Pk+1H
T
k+1 +Gk+1G

T
k+1

)

−1. (34)

Similarly to the previous case, Pk+1 , Sk+1 − Vk+1 is the

KF estimation error covariance. Note that the filter com-

pensates for the deterministic, (non-informative in this case)

term Fkx̂k−1 in the measurement equation by subtracting

KkFk+1 from the nominal Lk. The resulting filter operates

in essentially the same manner as the standard KF.

3) Estimation with Uncertain Observations: Considered

in [2], the case of linear optimal estimation with uncertain

observations follows by setting Ak = A, Bk = B, Ck = 0,

Fk = 0, Gk = Gnom, and Hk = γkHnom. In this case, (11)

and (26) become

Lk = A−KkE[γk+1]HnomA, (35)

Kk = E[γk+1] (Sk+1 − Vk+1)H
T
nom

×
(

E[γk+1]HnomSk+1H
T
nom

− (E[γk+1])
2HnomVk+1H

T
nom +GnomG

T
nom

)

−1

,

(36)

which coincide with Nahi’s solution [2]. Similarly, the linear

optimal estimator for random fault variables considered in [8]

follows by setting Ak = A, Bk = B, Ck = 0, Fk = 0,

Gk = δkGnom, and Hk = γkHnom,

4) Estimation with Actuator Faults: Considered in [18],

the problem of tracking with actuator faults follows by

setting Ak ∈
{

A1, . . . , Ar
}

, Bk ∈
{

B1, . . . , Br
}

, such

that P
{

{Ak, Bk} =
{

Ai, Bi
}}

= pi, Ck = 0, Fk = 0,

Gk = Gnom, Hk = Hnom. In this case, (11) and (26) read

Lk = E[Ak]−KkHnomE[Ak] , (37)

Kk = (Vk+1 − Sk+1)H
T
nom

×
(

Hk+1(Sk+1 − Vk+1)H
T
nom +GnomG

T
nom

)

−1
.

(38)

V. APPLICATION: TARGET TRACKING IN

CLUTTER

A. System and Clutter Models

Consider a single target obeying a linear dynamical model.

The evolution of the state is obtained from (1a) by setting

Ak = A, Bk = B, and Ck = 0 which results in

xk+1 = Axk +Bwk. (39)

Here A and B are deterministic matrices representing the

state dynamics and the square root of the process noise

covariance, respectively.

At time k the target state is observed via the following

linear measurement equation:

yk,true = Hnomxk +Gnomvk,true. (40)

Here, yk,true and vk,true represent the true measurement of

the target and the true measurement noise, respectively.

In addition to the actual measurement, yk,true, a number

of clutter measurements are obtained. These will be denoted

as yk,cl. Clutter measurements originate from false (or ghost)

targets and do not carry any information about the target of

interest. They are, however, indistinguishable from true de-

tections. At each time, the clutter measurements are assumed

to be independent of each other, of the clutter measurements

at other times, and of the true state and observation. In

addition, we assume that these measurements are uniformly

distributed in space, which is a common assumptions in such

applications [19].

Instead of scanning the entire surveillance region, the

sensor initiates a validation window centered at the predicted

target position, and the algorithm operates on measurements

obtained within this window. Since the clutter is uniformly

distributed in space, it is also uniformly distributed within the

validation window. For simplicity of exposition, we assume

that the true measurement is always present in the validation

window. This assumption can be relaxed, as discussed in the

sequel.

In this setting, the acquired measurement vector at time k,

yk, is a concatenation of N measurements, for some integer

N , such that N − 1 of them originate from false targets, or

clutter, and only one originates from the (single) true target.

The false measurements are centered around the predicted

target state (since this is the center of the validation window),

as opposed to the true measurement which is generated using

the true target state (40).

The described observation model follows from (1b) by

defining the following probability distribution of the mode

Mk which comprises the matrices {Hk, Gk, Fk}, such that:

{Hk, Gk, Fk} =




































































































































































Hnom

0
...

0













, diag













Gnom

Gcl

...

Gcl













,













0

HnomA
...

HnomA



































, w.p. p1















































0

Hnom

0
...

0

















, diag

















Gcl

Gnom

Gcl

...

Gcl

















,

















HnomA

0

HnomA
...

HnomA















































, w.p. p2

...
...

...


































0
...

0

Hnom













, diag













Gcl

...

Gcl

Gnom













,













HnomA
...

HnomA

0



































, w.p. pN ,

(41)
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where the following notation was introduced:

diag











A1

A2

...

AN











,











A1 0 . . . 0
0 A2 0 0
...

. . .
. . .

...

0 . . . 0 AN











. (42)

Here, Gcl is the square-root of the clutter covariance matrix.

Consider, for example, the first realization of

{Hk, Gk, Fk} in (41). Namely,

{Hk, Gk, Fk}=





























Hnom

0
...

0











, diag











Gnom

Gcl

...

Gcl











,











0
HnomA

...

HnomA





























.

(43)

This realization corresponds to the case where the first of the

N acquired measurements is the true target measurement,

yk,true, generated according to (40). The other N − 1 mea-

surements are clutter, each of which is generated according

to the following model:

yk,cl = HnomAx̂k−1 +Gclvk,cl. (44)

Note that HnomAx̂k−1 is the predicted measurement at time

k, which is also the center of the validation window as

set by the sensor. Thus, clutter measurements acquired at

time k may be viewed as generated uniformly around this

quantity. We make the distinction between the true and clutter

measurement noises (vk,true and vk,cl, respectively) to em-

phasize that the two types of observations are generated with

different driving noises that are independent, in compliance

with the modeling assumption of Section II, where vk is a

unit variance vector.

The fact that exactly one of the N observations is target-

originated is reflected in (41) by the fact that exactly one of

the blocks of Fk is set to Hnom with others being set to 0.

Likewise, all but one block of Fk are taken to be HnomA.

Captured by the matrix Gcl, the covariance of the clutter

measurements is typically higher than the true measurement

noise covariance (represented by Gnom). However, it is not

known a-priori which of the concatenated measurements

carries useful information. We assume that any ordering of

the true and clutter observations in the validation window is

equiprobable and, thus, set pi = 1

N , i = 1, . . . , N . Hence

Hk, Gk, and Fk correspond to random permutations of N
possible positions of the true measurement among the clutter

measurements. Note that the overall number of validated

measurements (i.e., those that are in the validation window),

N , is assumed to be known, but may vary in time.

As previously stated, we assume herein, for simplicity of

exposition, that the true measurement is always present in the

validation window. This is not a very restrictive assumption,

that may be relaxed without sacrificing the optimality of

Alg. 1 in the linear MMSE sense. To account for the

possibility that the true measurement does not fall in the

validation window with N > 0, the following option needs to

be added to the set of possible realizations of {Hk, Gk, Fk}
in (41)





























0
0
...

0











, diag











Gcl

Gcl

...

Gcl











,











HnomA
HnomA

...

HnomA





























. (45)

Note that if N = 0, namely, there are no measurements

in the validation window, (2) becomes x̂k+1 = Lkx̂k, which

corresponds to a simple prediction (time update) without a

consecutive measurement update.

B. Matrix Computations

Since the matrices in (39) are deterministic, we have

E[Ak] = Ak, E
[

BkB
T
k

]

= BkB
T
k , E[Ck] = 0. (46)

Similarly, E
[

AkUkC
T
k

]

= 0, E
[

CkUkC
T
k

]

= 0, and

E
[

AkSkA
T
k

]

= AkSkA
T
k . (47)

According to the probability distribution defined above

E[Hk+1] =
1

N







Hnom

...

Hnom






, E[Fk+1] =

N − 1

N







HnomA
...

HnomA






.

(48)

Computation of the remaining expectations yields the fol-

lowing results:

E
[

Hk+1Sk+1H
T
k+1

]

=
1

N
diag











HnomSk+1H
T
nom

HnomSk+1H
T
nom

...

HnomSk+1H
T
nom











, (49)

E
[

Gk+1G
T
k+1

]

=
1

N
diag











GnomG
T
nom + (N − 1)GclG

T
cl

GnomG
T
nom + (N − 1)GclG

T
cl

...

GnomG
T
nom + (N − 1)GclG

T
cl











,

(50)

E
[

Fk+1UkF
T
k+1

]

= Ξ⊗
(

HnomAUkA
THT

nom

)

, (51)

where ⊗ is the Kronecker product, and Ξ is defined by

Ξ =

{

0, N = 1
1

N

(

(N − 2)1N1
T
N + IN

)

, N > 1
(52)

where 1N is an N × 1 vector comprising all ones.

It remains to describe the computation of the clutter

covariance matrix, GclG
T
cl

. Following the uniform distri-

bution assumption, the spatial distribution of the clutter

measurements is uniform in the validation window. Thus,

GclG
T
cl

is the covariance matrix of a random vector uniformly

distributed in the validation window. For simplicity of the

computation we assume that the window is rectangular, so

that the covariance computation boils down to finding the

variance of a scalar uniform random variable.

Together with GclG
T
cl

, Eqs. (46)-(52) enable the compu-

tation of the coefficients Lk and Kk of the linear optimal

filter, according to (11) and (26), respectively.
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C. Algorithm Analysis

Lemma 1: The linear optimal algorithm for tracking a

target in clutter is algebraically equivalent to a linear optimal

estimator operating on a manipulated measurement sequence,

where the measurement at each time is obtained by summing

up all available observations at that time.

Proof: The lemma follows by showing that, for the

considered case, the filter gain, Kk, given in (26), has the

form Kk = 1
T
N ⊗ Ψk, where Ψk is some (time-dependent)

matrix. Then, since yk+1 is a concatenated vector of all the

observations acquired at time k + 1, the product Kkyk+1

in (2) is nothing but a sum of the individual measurements

constituting yk+1 premultiplied by Ψk. The details of the

proof are omitted due to space constraints.

Corollary 1: The linear optimal estimator may be imple-

mented using a generalized KF (defined by (33) and (34))

designed for the system defined by the matrices Ak = A,

Bk = B, Ck = 0, Hk = Hnom, and Gk = (GnomG
T
nom +

(N − 1)GclG
T
cl
)1/2.

Proof: The Corollary follows from Lemma 1 in a

straightforward manner. The details of the proof are omitted

due to space constraints.

D. Discussion

The result of Lemma 1 should not be a surprising one.

First, recall that the filter implements the linear optimal

estimator of the state, meaning that only linear manipu-

lations on the measurements are allowed. Moreover, the

classical Nearest Neighbor (NN) [20] and the Probabilistic

Data Association (PDA) [19] filters may also be viewed

as implementing a standard KF procedure on a (nonlinear)

function of the observations acquired at the current step.

By definition, the NN algorithm applies a standard KF on

the measurement nearest to the predicted estimate, ignoring

all other measurements. In other words, the measurement

used for update purpose is obtained by performing a (non-

linear) comparison of the distances between the predicted

measurement and all observations from the current scan.

Utilizing all measurements from the latest scan, the PDA

filter updates the predicted target state by assigning weights

to these measurements in accordance with their distance

from the predicted state. This is performed via a number of

standard KF updates for every measurement from the current

set, and then fusing these local estimates into a single one.

However, since the KF is a linear operator, the operation of

the PDA may be equivalently viewed as a single KF update

applied to an effective measurement, which is a weighted

average of all currently available observations. Obtaining

this effective measurement is a nonlinear operation, since it

requires calculation of the likelihoods of the measurements

in the set.

Thus, all three algorithms have conceptually similar modes

of operation – at each estimation cycle an effective measure-

ment is computed, followed by an application of a standard

KF update to this effective measurement.

VI. NUMERICAL STUDY

A. Simulation Details

In the following numerical study we consider a one-

dimensional tracking scenario in which a target is represented

via a two-dimensional state, comprising position and velocity

information, xk = (pk, vk)
T . Starting at x0 = (0, 0)T with

P0 = ( 0 0
0 0 ), the target is simulated for N = 1000 time units

driven by the dynamical equation (39) with A = ( 0.95 0.2
0 0.95 )

and B = ( 1 0
0 1 ). This particular choice for the transition

matrix A keeps the target in close vicinity to the origin

and prevents it from diverging. This is done for better

visualization as well as for easier implementation – instead

of generating clutter measurements in a large (potentially

unbounded) one-dimensional space, we can restrict ourselves

to a narrow neighborhood of interest about the origin, from

which the target does not escape.

The true measurement generation matrices of (40) used

in the simulation are Hnom = [1 0], Gnom = 0.32. For a

(one-dimensional) window of length d the clutter variance

of (44) is GclG
T
cl
= d2/12.

B. Compared Algorithms and Performance Measures

We compare the performance of the linear optimal filter

to that of the NN filter [20] and the PDA filter [19].

All the considered algorithms are designed to reduce the

mean-squared estimation error in either a heuristic or an

analytical manner. However, when dealing with tracking in

clutter, using the MSE as the only performance measure

may result in misleading conclusions. This is due to the

fact that once the estimated state draws away from the true

measurement, clutter measurements are more likely to be

treated as the true ones, eventually resulting in target loss

and rendering the algorithms’ MSE meaninglessly large.

Therefore, the MSE should be treated as a meaningful

performance measure only as long as the target is not lost.

We thus use the following two measures of performance to

evaluate the performance of the algorithms.

The first performance measure is the time until the target

is lost. The target is defined lost after the distance between

the predicted position and the true state has deviated by more

than five standard deviations of the (true) measurement noise

for three time units. The second measure is the average

squared error, calculated over the time interval until the

first of the three algorithms has lost track. This makes the

comparison fair, in the sense that none of the algorithms

incorporates meaninglessly large errors corresponding to a

lost target.

A good algorithm is expected to have long track loss times

while maintaining low average squared errors.

C. Results and Discussion

We test the algorithms versus increasing clutter density.

To this end we define ρ to be the average number of

clutter measurements falling in an interval of one standard

deviation of the (true) measurement noise. Averaged over

1000 independent Monte Carlo runs, the resulting track loss

times and average squared position errors for the three tested
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Fig. 1: Average squared position estimation errors and track loss times vs clutter density.

filters are plotted in Figure 1. It is readily seen that the linear

filter attains the longest track loss times while keeping the

estimation errors at a reasonable compromise between the

nonlinear PDA and NN filters.

VII. CONCLUSION

We have proposed a new general formulation of dynamical

systems with independently switching parameter matrices.

The dynamics and measurement equations are allowed to

depend on previously obtained estimates of the state. The

matrix coefficients constituting the system mode are allowed

to take values in a continuous domain, thus significantly

generalizing the popular hybrid systems paradigm. Moreover,

the dimensions of these matrices are allowed to vary in time.

Consequently, the proposed modeling framework generalizes

the classical ones and allows formulation of several new

problems within a single state space model.

A linear optimal recursive algorithm has been derived. The

algorithm has been shown to reduce to previously reported

methods when the parameters of the underlying problem are

adjusted appropriately.

The utility of the new approach has been demonstrated

by using it to derive a linear optimal filter for tracking a

maneuvering target in clutter. The linear optimal algorithm

has been numerically compared to the classical nonlinear NN

and PDA filters, exhibiting competitive performance.
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