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Abstract— Traditionally, the frequency response function has
been estimated directly by dividing the discrete Fourier trans-
forms of the output and the input of the system. This approach
suffers from leakage errors and noise sensitivity. Lately these
errors have been studied in detail. The main observation is that
the error has a smooth frequency characteristic that is highly
structured. The recently proposed local polynomial method uses
this smoothness, and tries to estimate the frequency response
function along with a smooth approximation of the error term.
In this paper we propose a method, closely related to the local
polynomial method, but instead of using the smoothness of the
error we explore the structure even further.

The proposed approach to estimate the frequency response
function seems promising, as illustrated by simulations and
comparison with current state of the art methods.

I. INTRODUCTION

In most system identification problems, the goal is to
estimate a parametric model of a system from input and
output data. It is, however, common to first identify a
non-parametric model of the frequency response function
(FRF) of the system to get a feel for the complexity of
the problem at hand. Frequency response functions have, of
course, many other applications and are used intensively in
many engineering fields, for example in audio applications,
power systems and vibration analysis.

Traditionally the estimate has been calculated with the
empirical transfer function estimate (ETFE) [1], [2], i.e.,

directly use the discrete Fourier transform. This approach
has however some well known inherent drawbacks. Due
to finite-length data record and non-periodic signals the
estimates suffer from leakage errors, frequency content at one
frequency "leaks" into the neighboring frequencies. Also, as
there is no data compression, the estimate suffers from noise
sensitivity.

One way to cope with these problems is to window the
data with some window function [3]. This smoothes the
frequency response function over neighboring frequencies.
This gives, however, rise to interpolation errors.

In recent years, this leakage error has been studied in
detail. The main observation is that the leakage error is
highly structured with a smooth frequency characteristic [4],
[5]. This smoothness of the error is used in the recently pro-
posed local polynomial method [6], where it is approximated
with a truncated Taylor series expansion. A least squares
problem is formed and the FRF together with the Taylor
series coefficients are estimated. The problem is then solved
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locally in every frequency, estimating new Taylor coefficients
for every local least squares problem. This approach has been
shown to be superior over window methods [6].

The main contribution of this paper is to develop a new
method of identifying the FRF of linear systems. It is
closely related to the local polynomial method but the main
difference is that it uses the fact that the structure of the
leakage error is known. Exploring this insight leads to one
large least squares problem instead of many local problems.
By way of extensive simulations we show that this is a
promising approach.

The outline of the paper is as follows. In Section II we
will generalize the transient error term. The generalization
is then used to set up a regression problem in Section III.
Section IV compares the proposed method with the related
local polynomial method. A numerically efficient way to
solve the regression problem is shown in Section V. The
performance of the method is verified through simulations
in Section VI, while Section VII concludes the paper.

II. GENERALIZATION OF TRANSIENT TERM

Consider the asymptotically stable linear MIMO system

xt+1 = Axt +But

yt = Cxt

(1)

where the inputs and outputs are ut ∈ R
nu and yt ∈ R

ny .
The initial state of the system is x0.

If we have N samples of the input and output of system
(1) then applying the N -point DFT

ZN(ω) =
1√
N

N∑

t=0

zte
−jωt

gives [5]

YN (ωk) = G(ejωk)UN (ωk) +
1√
N

T (ejωk) (2)

where

T (ejωk) = ejωkC(ejωkI −A)−1(I −AN )(x0 − xp)

xp = (I −AN )−1
N−1∑

t=0

AtBu(N − 1− t).

where xp is the initial state that would lead to a periodic
output, i.e., xN = xp. This expression is valid for the
frequencies ωk = 2πk

N
, k = 0, . . . , N − 1. The extra term

T (ejωk) is zero for periodic signals. See [5] for more details.
A generalization of this expression that is valid for all

frequencies ω is given in the following lemma:

Lemma 1 (Generalization of transient term): Suppose
that both the N samples of the input and output of the
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system (1) are zero-padded with 2JN zeros, with J an
integer. Then the relation between the Ne = (2J + 1)N -
point DFT of the zero-padded input, UNe

(ω), and output,
YNe

(ω), is

YNe
(ω) = G0(e

jω)UNe
(ω) + Y tra

N (ω) +
1− e−jωN

√
N

Yp(ω)

(3)
where Y tra

N is the DFT of the transient due to the fact that
x0 �= xp, i.e.,

Y tra
N (ω) �

1√
N

N−1∑

k=0

ytrak e−jωk

ytrak = CAk(x0 − xp) ∈ R
ny×1

and

Yp(ω) �

∞∑

k=0

ypke
−jωk

ypk = CAkxp ∈ R
ny×1

is just the Discrete-Time Fourier Transform (DTFT) of the
system response when x(0) = xp and u ≡ 0.

Proof: See Appendix I.
The expression (3) is, unlike (2), valid for all frequencies

ω. It collapses to (2) for ω = 2πk/N, k = 0, 1, 2, . . ..

III. ESTIMATION OF FREQUENCY RESPONSE FUNCTION

In this section we use the generalized expression for the
transient term to form a regression problem to estimate the
frequency response function.

A. Regression problem

We start by looking at the relation between G0(e
jω) and

G0(e
jω̄) for two given frequencies ω and ω̄. The difference

can be expressed as

G0(e
jω)−G0(e

jω̄)

=

∞∑

k=0

CAkBe−jω(k+1) −
∞∑

k=0

CAkBe−jω̄(k+1)

=

∞∑

k=0

CAkB(e−jω(k+1) − e−jω̄(k+1))

=
∞∑

k=1

gkϕk(ω, ω̄)

(4)

where gk = CAk−1B ∈ R
ny×nu , k = 1, 2, . . . are the

impulse response coefficients of the system and ϕk(ω, ω̄) =
e−jωk − e−jω̄k.

Inserting (4) into (3) gives

YNe
(ω) =

(

G0(e
jω̄) +

∞∑

k=1

gkϕk(ω, ω̄)

)

UNe
(ω)

+ Y tra
N (ω) +

1− e−jωN

√
N

Yp(ω)

= G0(e
jω̄)UNe

(ω) +

∞∑

k=1

gkϕk(ω, ω̄)UNe
(ω)

+
1√
N

N−1∑

k=0

ytrak e−jωk +
1− e−jωN

√
N

∞∑

k=0

ypke
−jωk.

(5)

We want to use (5) to form a regression problem. The
goal is to estimate G0(e

jω) for the frequencies ω = 2πs
N

,
s = 0, . . . , N − 1 and hence it is natural to set

ω̄ = ωs,0 �
2πs

N
.

If we use (5) directly to set up the regression problem we
would have to estimate infinitely many terms G0(e

jωs,0),
ytrak , ypk and gk from finite data. Thus we have to make
some approximations.

The terms in the sums ytrak = CAk(x0−xp), y
p
k = CAkxp

and gk = CAk−1B all tends to zero when k tends to infinity
since we have assumed an asymptotically stable system.
Therefore the sums are approximated with the following
truncations

Y tra
N =

1√
N

N−1∑

k=0

ytrak e−jωk ≈ 1√
N

n1−1∑

k=0

ytrak e−jωk

Yp(ω) =

∞∑

k=0

ypke
−jωk ≈

n2−1∑

k=0

ypke
−jωk

∞∑

k=1

gkϕk(ω, ω̄) ≈
n3∑

k=1

gkϕk(ω, ω̄).

Finally it has to be decided for which frequencies the
regression problem will be set up in. We will use the 2L
neighboring frequencies to ωs,0, i.e.,

ω =ωs,l �
2π

(2J + 1)N
((2J + 1)s+ l), l = −L, . . .L

where J is the over-sampling factor. The number of neigh-
boring frequencies L is a design parameter and has to be
chosen by the user.

With these approximations the regression problem be-
comes

ŶNe
(ωs,l) = G0(ωs,0)UNe

(ωs,l)

+
1√
N

n1−1∑

k=0

ytrak e−jωs,lk

+
1− e−jωs,lN

√
N

n2−1∑

k=0

ypke
−jωs,lk

+

n3∑

k=1

gkϕk(ωs,l, ωs,0)UNe
(ωs,l),

l = −L, . . . , L.

(6)

By letting s = 0, . . . , N − 1, (2L + 1)N equations in the
N + n1 + n2 + n3 unknowns {G0(ωs,0}N−1

s=0 , {ytrak }n1−1
k=0 ,

{ypk}n2−1
k=0 and {gk}n3

k=1 are obtained. Solving this least
squares problem gives estimates of all aforementioned vari-
ables; in particular the estimate of the entire frequency
response is obtained.

B. Choosing parameter values

The performance of the method is highly dependent on the
values of the design parameters n1, n2, n3, L and J . These
values have to be chosen by the user. At present, it is hard
to give any general rules on how to chose the parameters.
Instead we will try to deduce some rules of thumb.
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First we take a look at n1, n2 and n3 which are the number
of parameters that are estimated in y tra

k = CAk(x0 − xp),
ypk = CAkxp and gk = CAk−1B respectively. We see that
all three terms decays as Ak. Hence it is natural to assume
that the number of terms that should be included in the esti-
mation is about the same. Thus n1 = n2 = n3 = n could be
a reasonable choice. For systems where the impulse response
decreases quickly (Ak decreases quickly) compared to the
number of samples N , n could be chosen "small" compared
to N and vice versa for systems with long impulse responses.
Based on extensive, but not exhaustive, simulations a choice
of the parameters that gives good performance in many cases
is n1 = n2 = n3 = 20, J = 1 and L = 10. These values
should be seen as a rule of thumb as the optimal parameter
values are case dependent.

IV. COMPARISON WITH LOCAL POLYNOMIAL METHOD

The presented method is very much inspired by the local
polynomial method presented and analyzed in a series of pa-
pers [6], [7], [8]. We highlight some of the main differences
between the methods.

• The local polynomial method uses the fact that the
transient term is smooth and approximates it with a
Taylor series expansion. The proposed method instead
explores the structure (3) of the transient term when
making the approximation.

• The same "surplus" variables {ytra
k }n1−1

k=0 , {ypk}n2−1
k=0

and {gk}n3

k=1 are used for all frequencies. This leads
to a large least squares problem as shown before. The
local polynomial method uses different parameters for
all frequencies and can hence be solved locally. This
leads to a small least square problem in each frequency.
By using the same parameters for all frequencies it
should be possible to decrease the noise induced error
at a cost of increased computational complexity.

V. EFFICIENT COMPUTATIONS

The least squares problem previously showed has (2L +
1)N equations and N + n1 + n2 + n3 unknowns. Even
for modest N , n1, n2 and n3 the direct solution becomes
computational prohibitive. The problem has, however, a
special structure that can be explored.

The regressor (6) can be written as

Y = Φ1G+Φ2θ

where

Yk =






YNe
(ωk,−L)

...
YNe

(ωk,L)




 ∈ C

(2L+1)×ny

Y =






Y0

...
YN−1




 ∈ C

(2L+1)N×ny

G =








G0(e
jω0,0 )

G0(e
jω1,0 )
...

G0(e
jωN−1,0)







∈ C

nuN×ny

and Φ1 is a regressor matrix, θ contains the "surplus-
variables" with the corresponding regressor matrix Φ2. The
complete expressions for the matrices are given in Ap-
pendix II.

This is a block angular least squares problem. Numerous
methods exploiting this special structure of the problem
has been proposed, see for example [9]. Here we will
use orthogonal transformations to solve the problem more
efficiently. We start by making the orthogonal decomposition

Φ2 = Φ
‖
2 +Φ⊥

2

where Φ⊥
2 is orthogonal to both Φ1 and Φ

‖
2, i.e.,

Φ⊥
2 = (I − Φ1(Φ

∗
1Φ1)

−1Φ∗
1)Φ2

= Diag{(I − Uk(U
∗
kUk)

−1U∗
k )}Φ2

=






(I − U0(U
∗
0U0)

−1U∗
0 )Φ

0
2

...

(I − UN−1(U
∗
N−1UN−1)

−1U∗
N−1)Φ

N−1
2




 .

(7)

This gives

Y = Φ1G+Φ
‖
2θ +Φ⊥

2 θ.

Multiplying both sides with (Φ⊥
2 )

∗ yields

(Φ⊥
2 )

∗Y = (Φ⊥
2 )

∗Φ1
︸ ︷︷ ︸

=0

G+ (Φ⊥
2 )

∗Φ
‖
2

︸ ︷︷ ︸

=0

θ + (Φ⊥
2 )

∗Φ⊥
2 θ

= (Φ⊥
2 )

∗Φ⊥
2 θ.

(8)

Now a least squares estimate θ̂ of θ can be calculated
from (8). Finally the least squares estimate Ĝ of G can be
computed as

Ĝ = (Φ∗
1Φ1)

−1Φ∗
1∆Y = Diag{(U∗

kUk)
−1U∗

k}∆Y

=






(U∗
kUk)

−1U∗
k∆Y0

...
(U∗

N−1UN−1)
−1U∗

N−1∆YN−1






(9)

where

∆Y =






∆Y0

...
∆YN−1




 � Y − Φ2θ̂. (10)

To summarize, Ĝ defined in (9), can be calculated as

i) Compute the projections Φ⊥
2 from (7). This corre-

sponds to calculating N matrix inversions (U ∗
kUk)

−1

of size nu × nu.
ii) Solve the system of ny(n1 + n2 + nun3) linear equa-

tions (8) in the ny(n1 + n2 + nun3) unknowns θ.
ii) Compute ∆Y defined in (10).
iv) Compute Ĝ from (9). This involves inverting N ma-

trices of size nu × nu.

VI. SIMULATION RESULTS

In this section the performance of the proposed method is
evaluated through simulations. The results are compared with
the current state of the art method to estimate the frequency
response function, the local polynomial method.
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A. Random systems

We start the comparison by apply the two methods to a
large amount of randomized linear systems. The input-output
relation for the simulated data is

yt = G0(q)ut +H0(q)et

where yt is the output, ut the input and et is white Gaussian
noise. In each simulation both the system model, G0(q), and
the noise model H0(q) are randomized with the MATLAB
command drss and then normalized to get H2 norm equal to
one. Furthermore the order of the system, the order of the
noise model, the length of the sampled data sequence, N , and
the noise variance are independently randomized according
to Table I.

TABLE I

SYSTEM PARAMETERS

Parameter Distribution
Order of system model G Uniform[1, 20]
Order of noise model H Uniform[1, 20]

Samples, N Uniform[50, 600]
Noise variance, Var et Uniform[0, 1.5]

Initial state x0 Normal(0, I)

The input is chosen as white Gaussian noise with unit
variance and new realizations of the noise and the input are
generated in each simulation.

The used settings are n1 = n2 = n3 = 20, J = 1 and L =
10 for the proposed method and the recommended values [6]
R = 2 and n = 3 for the local polynomial method. A total
of 4000 simulations are performed and the ratio between the
mean square errors (MSE)

MSE =
1

N

N−1∑

k=0

∣
∣
∣G0(e

j 2πk
N )− Ĝ(k)

∣
∣
∣

2

of the proposed method and the local polynomial method is
calculated after each simulation. A histogram of the ratios
is shown in Fig. 1. Values above 1 means that the local
polynomial method has a lower MSE and a value below
1 means that the proposed method has a lower MSE. It
is clearly seen that the proposed method in general gives
lower MSE with an average improvement of about a factor
9. In 98% of the simulations the proposed method performed
better.

The average time per iteration was 4.8 s for the proposed
method and 0.06 s for the local polynomial method. Hence
the gain in performance comes with a large increase of
computational complexity.

B. Resonant system

Here we study a single resonant system. The performance
will be compared to the local polynomial method and to the
Blackman-Tukey spectral analysis method [3].

Consider the continuous time system

G0(s) =
ω2
1

s2 + 2ξω1s+ ω2
1

+
ω2
2

s2 + 2ξω2s+ ω2
2

where ω1 = 5, ω2 = 3ω1 and ξ = 0.1. The system is sampled
with sampling period Ts = 0.1.

10
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10
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10
1
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F
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Fig. 1. Histogram of the ratio between the MSE of the proposed method
and the local polynomial method for the 4000 simulations.

Again the input is chosen as white Gaussian noise with
unit variance and the output of the system is disturbed with
white Gaussian noise with variance λe. The estimation error
will be assessed via Monte-Carlo simulations where new
realizations of both the noise and the input are generated.

The used settings are the recommended n1 = n2 = n3 =
20, L = 10 and J = 1 for the proposed method and R =
2 and n = 3 for the local polynomial method. N = 100
samples are collected of the output. A Hann window is used
in the Blackman-Tukey method. A good window width for
this case is found to be 45 lags.

Fig. 2 shows
∣
∣G0(e

jω)
∣
∣ together with the mean of the

estimation errors over 500 Monte Carlo simulations in the
noise free case (λe = 0) for both the new method and
the local polynomial method. The used parameters are not
optimal for this problem. By means of a search in the
parameter space the values n1 = n2 = n3 = 36, J = 1 and
L = 30 are found to give good performance for this system
and noise setting. The resulting mean over the estimation
error, for this setting, is also shown in Fig. 2.

The MSE is 0.31 for the new method, 0.57 for the
local polynomial method and 0.66 for the Blackman-Tukey
method. The "best" parameters for the proposed method yield
a MSE of 0.08.

Fig. 3 shows the result under the same conditions as
before, save for that the noise variance is λe = 0.3. This
gives a MSE of 0.44 for the new method, 1.09 for the
local polynomial method and 0.77 for the Blackman-Tukey
method. The parameters n1 = 31, n2 = n3 = 25, J = 1 and
L = 34 yield a MSE of 0.34. For this setup the average time
per iteration was 0.5 s for the proposed method and 8 ·10−6

s for the local polynomial method, respectively.
The experiments are repeated, but this time with a uni-

formly distributed white input signal with unit variance. No
significant difference in the results with this input signal is
observed.

VII. CONCLUSIONS

We have introduced a new method of identifying the fre-
quency response function of a linear multiple input multiple
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Fig. 2. Mean of the estimation error for the noise free case for the proposed
method with recommended parameters (− △ −), for the proposed method
with "best" parameters (−�−) and the local polynomial method (− ∗ −).
True frequency response G0(ejω) is shown as (− ◦ −).
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Fig. 3. Mean of the estimation error with noise for the proposed method
(− △ −) and the local polynomial method (−∗−). True frequency response
G0(ejω) is shown as (− ◦ −).

output system. The method is closely related to the local
polynomial method [6]. The difference is that instead of a
polynomial approximation the structure of the problem is
exploited. Oversampling or zero padding is also used, it is
however, not fully understood why this gives better estimates.

The performance of the method was evaluated through
numerical simulations. It shows promising performance com-
pared to current state of the art methods for estimating
the frequency response function. However, a thorough the-
oretical analysis of the method has to be done to verify
the performance and to gain more insight into the method.
From this theoretical analysis it might be possible to get a
better understanding on how the parameter values should be
chosen.
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APPENDIX I
PROOF OF GENERALIZED TRANSIENT TERM

Proof: If the sequence of N samples of the output y t

is zero padded with 2JN zeros then the zero padded signal,
yzt can be expressed as

yzt = ȳt − ypt−N (11)

where ȳt is the output of the system when the input ut, zero
padded with 2J zeros, is used and yp

t−N is defined as

ypt =

{
CAtxN t ≥ 0

0 t < 0.
(12)

The signal ypt is hence the transient that stems from the
nonzero state of the system at time N . See Fig. 4 for a
sketch of the signals.

ȳt

yzt
ypt

N (2J + 1)N

Fig. 4. Relationship between the signals for the zero padded output.

Computing the Ne = (2J + 1)N -point DFT of the zero-
padded output (11) yields

YNe
(ω) = G0(e

jω)UNe
(ω) + Y tra

Ne
(ω)− Y p

Ne
(ω).

The term

Y tra
Ne

(ω) =
1√
N

ejωC(ejωI −A)−1(I −ANe)(x0 − xe
p),

xe
p =(I −ANe)−1ANe−N (I −AN )xp

is just the transient term from [5] for the zero padded signal
ȳt.
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The third term is the DFT of yp
t−N , (12), i.e.,

Y p
Ne

(ω) =
1√
N

Ne−1∑

t=0

ypt−Ne−jωt =
1√
N

Ne−1∑

t=N

CAt−Ne−jωtxN

= {s = t−N} =
1√
N

C

Ne−N−1∑

s=0

Ase−jωse−jωNxN

=
1√
N

ejωC(ejωI −A)−1(e−jωNI −ANe−N )xN .

The state of the system at time N can be expressed as

xN =ANx0 + (I −AN )xp.

Combining the above equations give

YNe
(ω) = G0(e

jω)UNe
(ω) + Y tra

Ne
(ω)− Y p

Ne
(ω)

= G0(e
jω)UNe

(ω)

+
1√
N

ejωC(ejωI −A)−1(I − ANe)(x0 − xe
p)

− 1√
N

ejωC(ejωI −A)−1(e−iωNI −ANe−N)xN

= G0(e
jω)UNe

(ω)
1√
N

ejωC(ejωI −A)−1

×
(

(I −ANe)x0 −ANe−N (I −AN )xp

− (e−jωN I −ANe−N )(ANx0 + (I −AN )xp)

)

= G0(e
jω)UNe

(ω)

+
1√
N

ejωC(ejωI −A)−1(I − e−jωNAN )(x0 − xp)+

1− e−jωN

√
N

ejωC(ejωI −A)−1xp.

(13)

The second term of (13) can be rewritten as

1√
N

ejωC(ejωI −A)−1(I − e−jωNAN )(x0 − xp)

=
1√
N

C(I −Ae−jω)−1(I − e−jωNAN )(x0 − xp)

=

{

(I − T )−1(I − TN) =

N−1∑

k=0

T k

}

=
1√
N

C

N−1∑

k=0

e−jωkAk(x0 − xp)

=
1√
N

N−1∑

k=0

CAk(x0 − xp)e
−jωk

=
1√
N

N−1∑

k=0

ytrak e−jωk � Y tra
N (ω).

The third term of (13) can be rewritten as

1− e−jωN

√
N

ejωC(ejωI −A)−1xp

=
1− e−jωN

√
N

∞∑

k=0

CAkxpe
−jωk

=
1− e−jωN

√
N

∞∑

k=0

ypke
−jωk

�
1− e−jωN

√
N

Yp(ω).

We see that (13) is independent of the oversampling factor
J . The factor J can hence be chosen arbitrary large and the
frequency resolution could be made arbitrary small. Hence
the expression is valid for all ω.

APPENDIX II
MATRICES FOR THE REGRESSOR PROBLEM

Uk =









UT
Ne

(ωk,−L)

.

.

.
UT
Ne

(ωk,L)









∈ C
(2L+1)×nu

Φ1 =











U0 0 ··· 0

0 U1 ··· 0

.

.

.
.
.
.

. . .
.
.
.

0 0 ··· UN−1











∈ C
(2L+1)N×nuN

θ =









































(ytra0 )T

.

.

.
(ytra

n1−1)T

(y
p
0
)T

.

.

.
(y

p
n2−1

)T

gT1

.

.

.
gTn3









































∈ C
(n1+n2+nun3)×ny

Ψk,1 =



















1√
N

e
−jωk,−L

√
N

··· e
−jωk,−L(n1−1)

√
N

1√
N

e
−jωk,−L+1

√
N

··· e
−jωk,−L+1(n1−1)

√
N

.

.

.
.
.
.

.

.

.

1√
N

e
−jωk,L

√
N

··· e
−jωk,L(n1−1)

√
N



















∈ C
(2L+1)×n1

Ψk,2 =













1−e
−jωk,−LN

√
N

··· 1−e
−jωk,−LN

√
N

e
−j(n2−1)ωk,−L

.

.

.
.
.
.

1−e
−jωk,LN
√

N
··· 1−e

−jωk,−LN
√

N
e
−j(n2−1)ωk,L













∈ C
(2L+1)×n2

Ψk,3 =









ϕ1(ωk,−L,ωk,0)UT
Ne

(ωk,−L) ···

.

.

.
ϕ1(ωk,L,ωk,0)UT

Ne
(ωk,L) ···

ϕn3 (ωk,−L,ωk,0)UT
Ne

(ωk,−L)

.

.

.
ϕn3 (ωk,L,ωk,0)UT

Ne
(ωk,L)









∈ C
(2L+1)×nun3

Φ2 =









Ψ0,1 Ψ0,2 Ψ0,3

.

.

.
.
.
.

.

.

.
ΨN−1,1 ΨN−1,2 ΨN−1,3









∈ C
(2L+1)N×(n1+n2+nun3)
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