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Abstract— We consider the problem of stochastic bandits,
with the goal of maximizing a reward while satisfying pathwise
constraints. The motivation for this problem comes from cog-
nitive radio networks, in which agents need to choose between
different transmission profiles to maximize throughput under
certain operational constraints such as limited average power.
Stochastic bandits serve as a natural model for an unknown,
stationary environment. We propose an algorithm, based on
a steering approach, and analyze its regret with respect to
the optimal stationary policy that knows the statistics of the
different arms.

I. INTRODUCTION

In this paper we introduce a new approach to the problem
of stochastic bandits with pathwise constraints. The problem
and proposed solution are inspired by the field of cognitive
radio networks.

A. Cognitive Radio Networks

The term Cognitive Radio (CR), first introduced in [11],
refers to a challenging field in the world of communications.
Basic CR problems consist of multimedia, multi-user com-
munication networks, occupied by primary and secondary
users. Primary users have precedence over secondary users
in use of network resources. Thus, secondary users face the
challenge of identifying and exploiting available resources.
Through their interaction with the network, secondary users,
also called Cognitive Agents (CAs), characterize available
resources and choose adequate transmission profiles. The
complex dynamic and stochastic nature of these problems,
combined with issues of partial observability, give rise to
questions of sensing, estimation and action selection.

B. The Multi-armed Bandit Framework

In [5], the Multi-Armed Bandit (MAB) framework is
proposed as a model for CR problems. A simple instance
of Markov Decision Processes (MDP), MABs have been
widely studied in the context of balancing exploration and
exploitation in sequential decision problems [4]. These prob-
lems comprise an agent repeatedly choosing a single arm
from a set of arms whose characteristics are unknown, and
receiving a certain reward based on every choice. Over time,
the agent characterizes the different arms’ performance in
order to make well-informed decisions (exploration) while
maximizing some function of the reward (exploitation). The
MAB setting fits the problem of CR quite naturally: sec-
ondary users, attempting to make the best possible use of an
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unknown communication network, may be viewed as playing
a MAB whose arms are the available transmission profiles.

The problem of identifying and choosing the best arm
when playing a MAB has been addressed in a series of
papers [1]–[3], [6], all based on the concept of index based
selection. With each time step, the algorithms proposed in
these papers assign a number to each of the bandit’s arms,
reflecting the profitability of choosing it. Choosing the arm
with the maximal index yields logarithmic regret with respect
to always choosing the optimal arm. A simple, optimal,
algorithm, which uses an upper confidence bound (UCB) for
calculating the aforementioned index, is proposed in [3]. We
borrow ideas from this algorithm and incorporate them into
our proposed solution.

C. Constrained Problems

An important aspect of the CR problem is that the
transmission profiles chosen by the CA must meet certain
operational constraints, such as, for example, maximal power
consumption. Despite being an integral part of CR problems,
this property has not been taken into account so far in the
CR-MAB setting. We suggest applying the formalism of con-
strained MABs (or constrained MDPs, in general) in order
to incorporate constraints into this setting. A framework that
enables the incorporation of constraints into online learning
problems is proposed in [10]. This framework introduces a
stochastic game in which a penalty is incurred, in addition
to the traditional notion of acquiring a reward. Unlike the
average reward the agent seeks to maximize, the average
penalty ought to converge to a certain set that reflects the
constraints. Taking average values is a natural choice for the
CR problem since the choices CAs make are valid for short
periods of time and averages converge quickly enough to
serve as reliable performance measures. Since the algorithm
proposed in [10] is computationally inefficient, we propose
a different solution with improved convergence rates.

D. Steering Algorithms

The concept of steering policies in the context of average
performance measures was introduced by [7], [8], [12]. Later,
[9] suggested a class of policies based on steering for multi-
criterion reinforcement problems. However, this approach
requires knowledge of the environment and has problematic
convergence rates. In order to solve the constrained MAB
problem, we combine the framework of MABs with the
concept of steering policies.

The remainder of this paper is structured as follows.
Section II includes a detailed formulation of the problem and
states its optimal solution. Section III introduces an algorithm
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for achieving the optimal solution and theoretical results
concerning it. Section IV displays results of simulations and
Section V concludes our work.

II. FORMULATION AND OPTIMAL SOLUTION

We model the CR problem as a MAB problem: every
transmission profile is represented by a single arm. We
assume a finite time horizon and a finite number of arms.
For simplicity, we deal with the case of a scalar reward
and a single scalar constraint. We formulate our problem
as follows. At every time step, t, the agent chooses an arm,
k ∈ {1..K}, according to a mixed policy, π = (p1, . . . , pK),
that assigns probabilities to the different arms. As a result of
this choice, an instantaneous reward, rt , is received and an
instantaneous penalty, ct , is incurred. These are the agent’s
only source of knowledge. The reward and penalty are drawn
from distributions that are unknown to the agent. We assume
stationary Gaussian distributions:

rt ∼ N (µr (k) ,σ r (k))

ct ∼ N (µc (k) ,σ c (k)) .

The agent’s goal is to maximize the acquired reward while
minimizing the incurred penalty. This can be expressed as
an optimization problem of the form

max
π
{WT} (1)

s.t.
K

∑
k=1

pk = 1, pk ≤ 1 k = 1, . . . ,K,

where WT = Eπ [r̂T −λL(ĉT ,C )]; r̂T , 1
T ∑

T−1
τ=0 rτ and ĉT ,

1
T ∑

T−1
τ=0 cτ are the average reward and average penalty ac-

cumulated up till time T , respectively, L(ĉt ,C ) is a loss
function with respect to a predetermined set of constraints
C , and λ is a weight factor. We assume the loss function to
be of the form:

L(ĉt ,C ) =

{
0 ĉt ∈ C

f (ĉt ,C ) ĉt /∈ C ,

where f is a function that is monotone in a chosen measure
of distance between ĉt and C . For example, f may be the
set-to-point distance. Solving problem (1) proves to be very
difficult even for a simple case in which K = 2 with linear
or square loss. The problem is neither convex nor concave
and cannot be solved analytically.

We therefore take a different approach, and treat the
penalty constraint as a hard constraint. Thus, the optimization
problem becomes (we omit the constraints on pk for clarity)

max
π
{r̂T} (2)

s.t. ĉt ∈ C .

The optimal solution to problem (2), π∗ = (p∗1 . . . , p∗K),
depends on the characteristics of the different arms. We
introduce the concept of domination.

Definition 1: An arm k is dominated by an arm j if
µr (k)< µr ( j) and µc (k)≥ µc ( j).

Clearly, an arm k which is dominated by one of the other
arms cannot participate in the optimal solution, i.e. p∗k = 0.
Therefore, the optimal solution is obtained by applying a
mixed policy over non-dominated arms. Specifically, if a sin-
gle arm dominates all others, then the optimal policy involves
this arm alone. We refer to this case as the degenerate case.

As mentioned above, we assume a single, scalar penalty
constraint. Thus, the condition ĉt ∈C can be restated as ĉt ≤
C0, where C0 denotes the maximal average penalty allowed.
We focus our interest on cases in which there is no single
dominating arm and the penalty constraint can be met (i.e.
∃k : µc (k)≤C0). Fig. 1 illustrates the cases discussed.
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Fig. 1: Examples of different scenarios with K = 4; (a) is
the scenario on which we focus in our derivation; (b) is a
scenario in which there is a single dominating arm (k1).
The ellipses around the centers represent the distribution
variances, and the optimal solution is drawn in red.

We continue with our analysis of the non-degenerate, 2-
dimensional (scalar reward, scalar constraint) case.

Proposition 1: In the 2-dimensional, non-degenerate case,
a stationary solution of optimization problem (2) is

c∗ =C0

r∗ = max
k1∈S1,k2∈S2

{αµ
r (k1)+(1−α)µ

r (k2)} ,

where S1 and S2 are sets defined by

S1 = {k ∈ {1, . . . ,K} : µ
c (k)>C0}

S2 = {k ∈ {1, . . . ,K} : µ
c (k)≤C0} .

The parameter α = α (k1,k2) for each pair of arms k1 ∈
S1, k2 ∈ S2 is deterministic and is calculated based on
knowledge of distribution parameters:

αµ
c (k1)+(1−α)µ

c (k2) =C0.
Proof: Being a set of linear combinations of points in

a 2-dimensional space, the set of all possible reward-penalty
combinations is a convex polytope. Thus, any point on its
perimeter, including the optimal solution, can be represented
as a convex combination of at most two extreme points. Since
the optimal constraint for the non-degenerate case is c∗ =C0,
the two arms which make up the optimal solution must be
situated on opposite sides of the constraint.
We are now ready to formally define our objective. First, we
define constraint satisfaction:

3863



Definition 2: A policy π is Probabilistically Constraint
Satisfying (PCS) if there exist f (t) and g(t) such that

P
{
[ĉt −C0]

+ < f (t)
}
≥ 1−g(t) ,

where f (t)→ 0 and g(t)→ 0 as t→ ∞.
Next, we define a performance measure for the reward.

Our definition is based on the classical notion of regret
that compares the expected reward obtained by a applying a
certain policy to the reward that could have been obtained
by applying an optimal stationary policy with hindsight.
Generally, the expected regret for applying a certain policy
π when playing a MAB with K arms is defined by

Rt , µ (k∗) t−
t

∑
τ=1

rτ ,

where µ (k∗) is the expected reward of the optimal arm.
In order to reflect the specific nature of the constrained

problem, we use an adapted definition of the regret and
restrict ourselves only to policies that are PCS.

Definition 3: The expected regret is defined by

Rt , µ
r (p∗) t−

t

∑
τ=1

rτ ,

where µ (p∗) is the expected reward of an optimal stationary
PCS policy, as defined in Proposition 1.

Our objective is to propose a policy that is PCS and min-
imizes the expected reward regret, compared to an optimal
stationary PCS policy.

We now turn to our proposed algorithm and analyze its
performance compared to the optimal solution, (r∗,c∗).

III. PROPOSED ALGORITHM

In this section we suggest an approach that is based
on steering. The motivation for using this approach is the
temporal character of our problem—every choice the agent
makes is valid for a very short interval. Thus, single choices
have a small effect on the average, and convergence to
asymptotic values is rather fast.

Steering policies attempt to reach a certain goal by adapt-
ing their actions to changing conditions. In our case, the
policy steers the average penalty incurred, ĉt , into the set C ,
thus ensuring that the constraint is satisfied. While doing
so, it attempts to maximize the average reward obtained,
r̂t . Satisfying the constraint is achieved by predicting the
average penalty after the next step, ĉp

t+1, based on arm
characteristics (either known or learned) and on the average
penalty incurred so far. This prediction is made using an
augmented form of the penalty, incorporating a version of
the UCB algorithm introduced in [3]. Once the subset of
constraint-satisfying arms has been determined, a single arm
is selected based on an augmented form of the reward. Since
we assume Gaussian reward and penalty distributions, we
implement the UCB1-NORMAL algorithm [3]. We note that
the proposed algorithm is designed for the 2-dimensional
case, in which the reward and penalty are both scalar. The
extension to more constraints is natural.

Algorithm 1 A steering policy incorporating UCB

1: loop
2: if one of the arms has been sampled less than d8log te

times
then

3: Sample it; if there is more than one such arm -
sample the arm which has been sampled the least.

4: else
5: Calculate augmented penalty and reward:

6: µ̄c
t (k)← µ̃c

t (k)−4

√
qc

t (k)−nt (k)(µ̃c
t (k))

2

nt (k)−1
ln(t−1)

nt (k)

7: µ̄r
t (k)← µ̃r

t (k)+4

√
qr

t (k)−nt (k)(µ̃r
t (k))

2

nt (k)−1
ln(t−1)

nt (k)

8: Calculate projected average penalty for next step:
9: ĉpr

t+1 (k)←
1

t+1 (µ̄
c
t (k)+ tĉt)

10: Feasible set consists of arms k for which ĉpr
t+1 (k)≤

C0; choose a feasible arm based on Algorithm 2
11: end if
12: Receive reward rt and penalty ct
13: Calculate average reward r̂t and penalty ĉt
14: Update empirical means, µ̃r

t (k) , µ̃
c
t (k) and sums of

square rewards, qr
t (k) ,q

c
t (k)

15: end loop
16: Note: nt (k) is the number of times arm k was played up

till time t

In order to state our convergence results, we define the set
of stages during which our bounds hold. These are almost all
stages, except for an initial exploration period and stages in
which forced exploration is needed, according to the UCB
approach : T =

{
t > K d8log te∩T C

jump

}
, where Tjump =

{t : d8log te< d8log(t + i)e , 1≤ i≤ K}.
We now state and prove the main results of this paper.
Theorem 2: For the problem of a K-armed bandit with

normally distributed penalties and rewards, the steering pol-
icy described in Algorithm 1 is PCS for all t ∈T , with

f (t) =
1
t

[
|C0|+ |µ|+δ +

√
2σ2

]
g(t) = 3t−3/2 +

1
2

1

1− e−δ 2/(2σ2)
t−3δ 2/(2σ2),

where µ,σ are the distribution parameters of one of the arms
and δ > 0 is a parameter (see proof for details).

Our proof is based on the fact that for all t ∈ T , the
proposed algorithm chooses the next arm to be played from
a set of feasible arms, whose projected augmented penalty
meets the constraint. Explicitly, the condition ∀t ∈T is

µ̄c
t (k)+ tĉt

t +1
≤C0, k ∈ {1, . . . ,K}, (3)

where we use the assumptions introduced above regarding
the scalar reward and penalty and µ̄c

t (k) is defined in
Algorithm 1. Using (3), we derive an upper bound on the
convergence rate of the average penalty, ĉt , to the optimal
penalty, c∗ =C0.
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Algorithm 2 A procedure for optimal arm selection

1: Input: Set of feasible arms - St ; vectors µ̃c
t , µ̄

c
t , µ̄

r
t ; C0

2: if St = { /0} then
3: Play arm which minimizes µ̄c

t (k).
4: else
5: Establish set of non-dominated arms, Nt .

An arm k is dominated if there exists an arm j such
that

µ̄
c
t ( j)≤ µ̄

c
t (k)

µ̄
r
t ( j)> µ̄

r
t (k)

6: Find best match for each arm in Nt for which µ̄c
t (k)≤

C0:
Best matches are arms for which µ̄c

t ( j) > C0 and
which minimize the slope of the line connecting arms
k and j in the reward-penalty plane:

j = argmin
i

{
µ̃c

t (i)− µ̃c
t (k)

µ̄r
t (i)− µ̄r

t (k)

}
Note: only positive slopes are considered, in order to
avoid pairing arms with arms they dominate.
When a match does not exist, k is its own best match.

7: Find intersection with constraint, r∗t (p,k), for all pairs.
For single arms, replace the intersection by µ̄r

t (k).
8: Choose pair for which r∗t (p,k) is maximal; play the

feasible arm.
If both arms are feasible play the one with higher
reward.

9: end if

Before proceeding with the proof, we state and prove an
intermediate result that appears as a conjecture in [3].

Lemma 3: Let X be a χ2 random variable with K degrees
of freedom. Then

P{X ≥ 4K} ≤ e−
K+1

2 .
Proof: We derive a Chernoff bound for X . For any

α > 0 and t > 0,

P{X ≥ αK}= P
{

etX ≥ eαKt}≤ E
[
etX
]

eαKt =
(1−2t)−K/2

eαKt ,

where we use the fact that the moment generating func-
tion for a central Chi-square distribution is E

[
etX
]
=

(1−2t)−K/2. The expression is minimized when t = α−1
2α

;
substituting this and then substituting α = 4 we have

P{X ≥ αK} ≤ α
K/2e−(α−1)K/2 ≤ 4K/2e−3K/2.

Next, we rewrite −3K
2 =−K+1

2 + −2K+1
2 :

P{X ≥ 4K} ≤ 4K/2e
−2K+1

2 e−
K+1

2

= e
1
2 K ln4−K+ 1

2 e−
K+1

2 .

In order to reach the desired bound, we need to ensure that
the first factor is smaller than one, i.e. its exponent is smaller
than or equal to zero. This condition is met for every K ≥ 2,
and therefore P{X ≥ 4K} ≤ e−

K+1
2 ∀K ≥ 2.

We now proceed to prove Theorem 2.
Proof: Our proof consists of three stages. First, we state

and develop a condition which all feasible arms (in terms of
penalty) must fulfill. Next, we use this condition in order to
establish a bound on the convergence rate of the average
penalty to the optimal penalty. We do so by separately
characterizing the convergence rates of the confidence bound
and the empirical mean. Finally, we use the characteristics
of the problem and our algorithm to calculate an exact
expression for a parametric bound on the convergence rate.
Throughout our proof we assume the non-degenerate case,
as described in Section II; the trivial case in which a single
dominating arm exists is treated at the end of the proof.

Stage 1 - feasibility condition: As mentioned above, the
next arm to be played must fulfill the condition

µ̄c
t (k)+ tĉt

t +1
≤C0 ⇐⇒ ĉt −C0 ≤

C0− µ̄c
t (k)

t
. (4)

Using the definition of µ̄c
t (k) which appears in Algorithm 1,

ĉt −C0

≤ 1
t

C0− µ̃
c
t (k)+4

√
qc

t (k)−nt (k)(µ̃c
t (k))

2

nt (k)−1
ln(t−1)

nt (k)


≤ 1

t

C0− µ̃
c
t (k)+4

√
qc

t (k)−nt (k)(µ̃c
t (k))

2

nt (k)−1
ln(t)
nt (k)

 .

Stage 2 - confidence bound convergence: As shown in
[13], given nt (k), the random variable

Xt =
1

(σ c (k))2

(
qc

t (k)−nt (k)(µ̃c
t (k))

2
)

is χ2-distributed with nt (k)− 1 degrees of freedom. Thus,
using Lemma 3, we have that

P{Xt ≥ 4(nt (k)−1)}

=
∞

∑
n=1

P [Xt ≥ 4(nt (k)−1)|nt (k) = n]P{nt (k) = n}

=
∞

∑
n=d8log te

P [Xt ≥ 4(nt (k)−1)|nt (k) = n]P{nt (k) = n}

≤
∞

∑
n=d8log te

P [Xt ≥ 4(nt (k)−1)|nt (k) = n]

≤
∞

∑
n=d8log te

e−n/2 ≤ 3t−3/2,

where we use the fact that nt (k)≥ d8log te ≥ 3ln t by defini-
tion of the UCB1-NORMAL algorithm. Thus, for every arm
in the feasible set, with probability greater than 1−3t−3/2,

ĉt −C0 ≤
1
t

(
C0− µ̃

c
t (k)+4

√
4
(
σ c

k

)2 ln t
nt (k)

)
.

Using the lower bound on nt (k) once again, we have that
with probability greater than 1−3t−3/2,

ĉt −C0 ≤
1
t

(
C0− µ̃

c
t (k)+

√
2(σ c (k))2

)
. (5)
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Stage 3 - empirical mean convergence: Using the fact
that, given nt (k), µ̃c

t (k) ∼ N
(

µc (k) ,σ c (k)/
√

nt (k)
)

, we
have for any ε > 0

P{µ̃c
t (k)≥ µ

c (k)+ ε}

=
∞

∑
n=1

P [ µ̃c
t (k)≥ µ

c (k)+ ε|nt (k) = n]P{nt (k) = n}

=
∞

∑
n=d8log te

P [ µ̃c
t (k)≥ µ

c (k)+ ε|nt (k) = n]P{nt (k) = n}

≤
∞

∑
n=d8log te

P [ µ̃c
t (k)≥ µ

c (k)+ ε|nt (k) = n]

=
∞

∑
n=d8log te

Q
(

µc (k)+ ε−µc (k)
σ c (k)/

√
n

)

≤ 1
2

∞

∑
n=d8log te

e
− nε2

2(σc(k))2

≤ 1
2

1

1− e−ε2/(2(σ c(k))2)
t−3ε2/(2(σ c(k))2),

where Q(·) is the tail probability of the standard normal
distribution, and the exponential bound for it appears in, e.g.,
[14]. Thus, for any δ > 0, we have that

C0− µ̃
c
t (k)≤ |C0|+ |µc (k)|+δ ,

with probability which is greater than

1− 1
2

1

1− e−δ 2/(2(σc(k))2)
t−3δ 2/(2(σ c(k))2).

Incorporating this into (5) and using the union bound yields

ĉt −C0 ≤
1
t

(
|C0|+ |µc (k)|+δ +

√
2(σ c (k))2

)
, (6)

with a probability of at least

1−3t−3/2− 1
2

1

1− e−δ 2/(2(σ c(k))2)
t−3δ 2/(2(σ c(k))2).

Finally, we maximize over k in order to reflect the worst
possible choice in terms of penalty. Such an event may
occur, since the choice between feasible arms (in terms of
penalty) is made according to the reward. For the arm which
maximizes the right hand side of (6) we denote µc (k) , µ

and σ c (k) , σ . Therefore, the convergence bound for the
average penalty of Algorithm 1 for any δ > 0 is

ĉt −C0 ≤
1
t

[
|C0|+ |µ|+δ +

√
2σ2

]
,

with probability

1−3t−3/2− 1
2

1

1− e−δ 2/(2σ2)
t−3ε2/(2σ2).

Therefore, in the terms of Definition 2, we have

f (t) =
1
t

[
|C0|+ |µ|+δ +

√
2σ2

]
g(t) = 3t−3/2 +

1
2

1

1− e−δ 2/(2σ2)
t−3ε2/(2σ2).

Theorem 4: The expected reward regret for running Al-
gorithm 1 on K arms with normally distributed rewards and
penalties, defined in Definition 3, is bounded for all t ∈T :

Rt ≤ 8ln t
K

∑
k=1

∆
r (k)+

K̃

∑
j=1

∆
r (p, j)

[
1+

5π2

3

+

(
256

((
σ r (k1)

∆k1

)2

+

(
σ r (k2)

∆k2

)2
))

ln t

]
,

where K̃ is the number of pairs of non-dominated arms,
∆r (k) , µr (p∗) − µr (k), ∆r (p, j) , µr (p∗) − µr (p,k),
µr (p∗) is the expected reward of the optimal combination
of arms, µr (p,k) is the expected reward of the k’th pair and
k1 and k2 are the arms which make up the k’th pair.

We note that the bound sums only over pairs of non-
dominated arms. Thus, depending on the geometry of the
problem, the confinement of Algorithm 1 to the non-
dominated arms considerably decreases its expected regret.

For the proof of Theorem 4 we assume the non-degenerate
scenario, an example of which is shown in Fig. 1a. In this
case, as explained above, the optimal reward is obtained by
choosing a certain combination of exactly two arms. We treat
the degenerate scenario, in which a single arm dominates the
others, immediately after the proof.

In our proof we show that the optimal pair of arms is
chosen with high probability and that the correct balance is
achieved; the correct balance is the one which achieves the
optimal penalty. In order to derive a bound on the algorithm’s
regret, we follow the lines of the proofs of Theorem 1 and
4 of [3]. We consider an equivalent problem, which consists
of choosing the optimal pair of arms among all available
pairs. Since we have already proved the convergence of the
average penalty incurred by our algorithm to the optimal
penalty, c∗ = C0, once we converge to the optimal pair of
arms, convergence to the correct balance is ensured. The
correct balance, as mentioned in Section II, is

αµ
r (k1)+(1−α)µ

r (k2) , α =
C0−µc (k2)

µc (k1)−µc (k2)
.

Before proceeding with the proof, we restate Conjecture
1 from the proof of Theorem 4 in [3], which we will use
further along the proof.

Conjecture 1: Let X be a Student’s t-distributed random
variable with s degrees of freedom. Then, for all 0 ≤ a ≤√

2(s+1),

P{X ≥ a} ≤ e−a2/4.
We now prove Theorem 4.

Proof: We begin our proof by defining and character-
izing another MAB, whose arms represent pairs of arms of
the original bandit. Then, using this definition, we bound the
expected regret in the reward sense.

Stage 1: Definition of pairs-MAB We define a new MAB,
whose every arm represents a pair of arms of the original
bandit. In general, such a bandit has 1

2 K (K−1) arms, but
the efficiency of the pairing process can be greatly improved
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by considering only arms which are not dominated (see
Definition 1) and by pairing only arms which are situated
on opposite sides of the penalty constraint.

As in the case of the arms of the original bandit problem,
every arm is represented by an index which reflects its
empirical mean reward together with an upper confidence
bound. The penalty of all arms (i.e., pairs) converges to
the same value: c(p,k) = c∗ = C0. Denoting the reward
confidence bound of a single arm by br (k), we set the reward
index of each pair of arms to be

µ̄
r (p,k) = αµ̄

r (k1)+(1−α) µ̄
r (k2)

= α (µ̃r (k1)+br (k1))+(1−α)(µ̃r (k2)+br (k2))

, µ̃
r (p,k)+br (p,k) ,

where br (p,k) = αbr (k1) + (1−α)br (k2) is the confi-
dence bound of the k’th pair and µ̃r (p,k) = αµ̃r (k1) +
(1−α) µ̃r (k2) is its empirical mean reward. We note that
the parameter α (k1,k2) is determined for every pair of arms
based on their parameters, and is used only for the sake of
the analysis.

Stage 2: Bounding the expected regret Based on Defi-
nition 3, the expected reward regret is

Rt , µ
r (p∗) t−

T

∑
τ=1

rτ

= ∑
k:µr(p,k)<µr(p∗)

(µr (p∗)−µ
r (p,k))E [nt (p,k)]

+
K

∑
k=1

(µr (p∗)−µ
r (k))E [nt (k)],

where the “∗” notation indicates the optimal pair. In order to
bound the regret, we must bound the number of times every
suboptimal pair of arms is sampled, nt (p,k), and the number
of times every single arm is sampled, nt (k).

Let us examine br
t,s (p,k), which is the reward confidence

bound for the k’th pair at time t, after this pair has been
sampled s times. We denote by br

t,s (p∗) the same term for
the optimal pair, and follow the proof of Theorem 1 of [3].
Defining the event of pair k being chosen as {It = p(k)}
and using the notation τ0 = 1+ d8log te, we have for some
l ≥ d8log te

nt (p,k) = d8log te+
t

∑
τ=τ0

1
{

Iτ = p(k)
}

≤ l +
t

∑
τ=τ0

1
{

Iτ = p(k) ,nτ−1 (p,k)≥ l
}

≤ l +
t

∑
τ=τ0

1
{

µ̃
r
nτ−1

(p,k∗)+br
τ−1,nτ−1

(p,k∗)

≤ µ̃
r
nτ−1

(p,k)+br
τ−1,nτ−1

(p,k)
}

1
{

nτ−1 (p,k)≥ l
}
.

We further develop our bound by comparing the worst case

of the optimal arm with the best case of the sub-optimal arm:

nt (p,k)≤ l +
t

∑
τ=τ0

1
{

min
0<s<τ

[
µ̃

r
s (p,k∗)+br

τ−1,s (p,k∗)
]

≤ max
l<sk<τ

[
µ̃

r
sk
(p,k)+br

τ−1,sk
(p,k)

]}
≤ l +

∞

∑
τ=1

τ−1

∑
s=1

τ−1

∑
sk=l

1
{

µ̃
r
s (p,k∗)+br

τ,s (p,k∗)

≤ µ̃
r
sk
(p,k)+br

τ,sk
(p,k)

}
.

Denoting

S ,
{

µ̃
r
s (p∗)+br

τ,s (p∗)≤ µ̃
r
sk
(p,k)+br

τ,sk
(p,k)

}
,

A ,
{

µ̃
r
s (p∗)≤ µ

r (p∗)−br
τ,s (p∗)

}
,

B ,
{

µ̃
r
sk
(p,k)≥ µ

r (p,k)+br
τ,sk

(p,k)
}
,

C ,
{

µ
r (p∗)≤ µ

r (p,k)+2br
τ,sk

(p,k)
}
,

we have that S⊆ A∪B∪C. This follows from the definitions
of these events: A is the event in which the optimal pair
underperforms, B is the event in which a sub-optimal arm
overperforms and C is the event in which the expected
rewards of the optimal and suboptimal pairs are too close
to be distinguishable. Thus, event S requires that at least
one of the events A,B,C occur.

By breaking up the optimal pair into the arms of which it
consists, event A can be rewritten as A⊆ A1∪A2, where

A1 ,
{

µ̃
r
s1
(k∗1)≤ µ

r (k∗1)−br
τ,s1

(k∗1)
}

A2 ,
{

µ̃
r
s2
(k∗2)≤ µ

r (k∗2)−br
τ,s2

(k∗2)
}
,

and k∗1 and k∗2 are the arms which make up the op-
timal pair, p∗. We bound the probabilities of events
A1 and A2 by following the proof of Theorem 4
in [3]. For any single arm k, the random variable(
µ̃r

sk
(k)−µr (k)

)
/

√(
qr

sk
− sk

(
µ̃r

sk
(k)
)2
)
/(sk (sk−1)) has

a Student’s t-distribution with sk − 1 degrees of freedom
[13]. Combining this with Conjecture 1 using s = sk−1 and
a = 4lnτ , we have for arm k∗1, for example

P
{

µ̃
r
s1
(k∗1)≤ µ

r (k∗1)−br
τ,s1

(k∗1)
}

= P


µ̃r

s1
(k∗1)−µr (k∗1)√(

qr
s1
− s1

(
µ̃r

s1

(
k∗1
))2
)
/(s1 (s1−1))

≤ 4
√

lnτ


≤ τ

−4.
(7)

Thus, the probability of event A is bounded by applying the
union bound:

P{A} ≤ P{A1}+P{A2} ≤ 2τ
−4.

We rewrite event B similarly: B⊆ B1∪B2, where

B1 ,
{

µ̃
r
s1
(k1)≥ µ

r (k1)+br
τ,s1

(k1)
}

B2 ,
{

µ̃
r
s2
(k2)≥ µ

r (k2)+br
τ,s2

(k2)
}
,
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and k1 and k2 are the arms which make up the k’th pair.
Using an argument analogous to (7),

P{B} ≤ P{B1}+P{B2} ≤ 2τ
−4.

Finally, we address event C, which can also be rewritten as
C ⊆C1∪C2, where

C1 ,
{

µ
r (k∗1)≤ µ

r (k1)+2br
τ,s1

(k1)
}

C2 ,
{

µ
r (k∗2)≤ µ

r (k2)+2br
τ,s2

(k2)
}
.

We examine C1, for example.

P [C1|s1 = s] = P
[
(µr (k∗1)−µ

r (k1))
2 < 4

(
br

τ,s (k1)
)2
∣∣∣s1 = s

]
.

Denoting ∆k1 , µr (k∗1)− µr (k1), using the explicit expres-
sion for br

τ,s (k1) and reorganizing the equation yields

P [C1|s1 = s]

= P

[
qr

s (k1)− s(µ̃r
s (k1))

2

(σ r (k1))
2 > (s−1)

∆2
k1

(σ r (k1))
2

s
64ln t

∣∣∣∣∣s1 = s

]
,

which by using Lemma 3 is bounded for s ≥
256

(
σ r (k1)/∆k1

)2 lnτ:

P [C1|s1 = s]≤ P

[
qr

s (k1)− s(µ̃r
s (k1))

2

(σ r (k1))
2 > 4(s−1)

∣∣∣∣∣s1 = s

]
≤ e−s/2.

Denoting m1 , 256
(
σ r (k1)/∆k1

)2, we calculate P{C1}:

P{C1}=
∞

∑
s=1

P [C1|s1 = s]P{s1 = s}

=
∞

∑
s=m1 lnτ

P [C1|s1 = s]P{s1 = s}

≤
∞

∑
s=m1 lnτ

e−s/2

≤ 3τ
−m1/2.

The bound for P{C2} is similar, and thus we have that

P{C} ≤ P{C1}+P{C2} ≤ 3τ
−m1/2 +3τ

−m2/2.

Using the bounds for events A,B,C we have that

P{S} ≤ P{A}+P{B}+P{C} ≤ 4τ
−4 +3τ

−m1/2 +3τ
−m2/2.

Finally, the bound for the expected number of times a
suboptimal pair of arms is sampled is

E [nt (p,k)]≤
⌈
mp ln t

⌉
+

∞

∑
τ=1

τ

∑
s=1

τ

∑
si=l

(
4τ
−4 +6τ

−mp/2
)
,

where mp = max{8,min{m1,m2}}. Since mp ≥ 8, we have

E [nt (p,k)]≤

(
8+256

((
σ r (k1)

∆k1

)2

+

(
σ r (k2)

∆k2

)2
))

ln t

+
5π2

3
+1.

At this point we note that this expression bounds only the
mean number of times pairs of non-dominated arms are
sampled. All arms are sampled at least d8ln te times, and
therefore the bound for the expected reward-regret is

Rt ≤ 8ln t
K

∑
k=1

∆
r (k)+

K̃

∑
j=1

∆
r (p, j)

[
1+

5π2

3

+

(
256

((
σ r (k1)

∆k1

)2

+

(
σ r (k2)

∆k2

)2
))

ln t

]
,

where K̃ is the number of pairs of non-dominated arms,
∆r (k) , µr (p∗)− µr (k), and ∆r (p, j) , µr (p∗)− µr (p,k).

Remark: The proofs of Theorem 2 and Theorem 4 deal
with the non-degenerate case, in which there is no single
dominating arm. When such an arm exists, the optimal
solution is to sample it alone. Thus, the optimal penalty is
the expected penalty of this arm, µc (k∗), and the optimal
reward is its expected reward, µr (k∗). Algorithm 1 treats the
selection of the next arm to be played in a pairwise manner; a
single dominating arm is paired with itself. Thus, the problem
of convergence to the optimal reward is analyzed in the
same manner as in the non-degenerate case, and the expected
reward regret is bounded as stated in Theorem 4. The penalty
aspect, however, is a bit different. The structure of Algorithm
1 allows exploration, based on confidence bounds, as long
as the penalty constraint is met (in our case, as long as
ĉt ≤C0). Therefore, the average penalty incurred converges to
the constraint C0 linearly (as shown in Theorem 2) and then
continues to converge towards the optimal penalty, µc (k∗),
at a logarithmic rate which is the convergence rate of the
procedure for optimal arm selection, bounded in Theorem 4.

IV. SIMULATIONS

We demonstrate our results using simulations of a CR
problem. In our scenario, the CA repeatedly has to choose
one of 5 channels, applying one of two possible coding
techniques and transmitting at one of four possible power
levels. These parameters constitute 40 possible transmission
profiles. Using a hypothetical model, we map every profile
to Gaussian reward and penalty distributions. We base this
model on reasonable assumptions, such as the positive impact
of higher power levels on both reward and penalty.

We allow the CA to interact with the system for T =
40,000 cycles, monitoring its average reward (throughput)
and penalty (power) together with the number of times
it sampled every arm. For reference, we implement two
algorithms: an ideal one that applies an optimal stationary
(OS) policy, based on full knowledge of the arm character-
istics, and another that applies a certainty equivalence (CE)
approach, updating its estimate of the optimal solution based
on the empirical means of the reward and penalty.

The results of our simulations, averaged over 100 repeti-
tions, are presented in Fig. 2. Fig. 2a displays the problem
layout in the reward-penalty plane. The ellipses represent
the distributions of the arms, with their mean values and
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variances. The thickness of ellipse contours represents the
number of times an arm was sampled. The optimal solution
and the average performance of our algorithm are also
annotated. Clearly, dominated arms are sampled a minimal
number of times, while other arms are sampled proportion-
ally to their chance of participating in the optimal solution.

Fig. 2b displays the convergence of the average penalty
to the optimal penalty, together with the bound derived in
Theorem 2 and with the reference policies described above.
The times during which exploration overrides the penalty
constraint, defined by t 6∈T , are annotated by arrows. Note
that the graph is plotted using a logarithmic scale. We also
display the convergence of the average of the worst 5% of
the runs, where the advantage of the steering policy is clear.

Finally, we present the convergence of the average reward
to the optimal value. We compare our steering algorithm
to the optimal mixed policy, to the certainty equivalence
policy and to the theoretical bound derived in Theorem 4.
As expected, we pay for the steering policy’s strict adherence
to the constraint in terms of reward convergence. However,
reward convergence is identical in the average and worst case
scenarios, unlike that of the certainty equivalence approach.

V. CONCLUSIONS AND FUTURE WORK

We introduced a formulation of the CR problem using
stochastic MABs with pathwise constraints. In order to solve
this problem, we proposed a steering policy that results
in convergence of the average reward and penalty to their
optimal values.

An extension of our work to the case of bounded reward
and penalty distributions, using the UCB1 algorithm [3], is
straightforward using Hoeffding’s inequality.

Future directions include examining the proposed formu-
lation from a multiple agent point of view, in order to
understand issues of cooperation and competition in this
setting. We also plan to examine the issue of bandits with
correlated arms, in which the distributions of sub-groups
of arms are not independent. These may provide a realistic
model for closely related transmission profiles. Finally, we
hope to be able to apply our framework to real-world data.
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in stochastic environments. In Algorithmic Learning Theory, pages
150–165. Springer, 2007.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine learning, 47(2):235–256, 2002.

[4] D.A. Berry and B. Fristedt. Bandit problems: sequential allocation of
experiments. Chapman and Hall London, 1985.

[5] W. Jouini, D. Ernst, C. Moy, and J. Palicot. Multi-armed bandit based
policies for cognitive radio’s decision making issues. In Signals,
Circuits and Systems (SCS), 2009 3rd International Conference on,
pages 1–6. IEEE, 2010.

[6] T.L. Lai and H. Robbins. Asymptotically efficient adaptive allocation
rules. Advances in applied mathematics, 6(1):4–22, 1985.

[7] D.J. Ma and A.M. Makowski. A class of steering policies under a
recurrence condition. In Decision and Control, 1988., Proceedings of
the 27th IEEE Conference on, pages 1192–1197. IEEE, 1988.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Reward

P
en

al
ty

 

 

Average
Optimal

(a) Problem layout

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

t

 

 

Steering
OS
CE
Bound
5% WC Steering
5% WC CE

(b) Penalty convergence to optimal value

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

10
−6

10
−4

10
−2

10
0

10
2

t

 

 

Steering
OS
CE
Bound
5% WC Steering
5% WC CE

(c) Reward regret convergence

Fig. 2: Simulation results

[8] A.M. Makowski and A. Shwartz. Implementation issues for Markov
decision processes. TR 1986-63, 1986.

[9] S. Mannor and N. Shimkin. A geometric approach to multi-criterion
reinforcement learning. The Journal of Machine Learning Research,
5:325–360, 2004.

[10] S. Mannor, J.N. Tsitsiklis, and J.Y. Yu. Online learning with sample
path constraints. The Journal of Machine Learning Research, 10:569–
590, 2009.

[11] J. Mitola and G.Q. Maguire. Cognitive radio: making software radios
more personal. Personal Communications, IEEE, 6(4):13 –18, August
1999.

[12] K.W. Ross. Randomized and past-dependent policies for Markov
decision processes with multiple constraints. Operations Research,
37(3):pp. 474–477, 1989.

[13] S. S. Wilks. Mathematical statistics. Wiley, 1962.
[14] J. M. Wozencraft and I. M. Jacobs. Principles of communication

engineering, volume 28. Wiley New York, 1965.

3869


