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Abstract— Research on sub-optimal Model Predictive Control
(MPC) has led to a variety of optimization methods based
on explicit or online approaches, or combinations thereof. Its
foremost aim is to guarantee essential controller properties,
i.e. recursive feasibility, stability, and robustness, at reduced
and predictable computational cost, i.e. computation time and
storage space. This paper shows how the input sequence of
any (not necessarily stabilizing) sub-optimal controller and the
shifted input sequence from the previous time step can be used
in an optimal combination, which is easy to determine online, in
order to guarantee input-to-state stability (ISS) for the closed-
loop system. The presented method is thus able to stabilize
a wide range of existing sub-optimal MPC schemes that lack
a formal stability guarantee, if they can be considered as a
continuous map from the state space to the space of feasible
input sequences.

I. INTRODUCTION

The growing complexity of modern control systems and
the increasing availability of powerful hardware has extended
the scope of applications for Model Predictive Control
(MPC). Unlike traditional control methods, it requires the
solution of an optimization problem (MPC problem) over a
receding finite prediction horizon at every time step.

For linear systems with fast dynamics and high sampling
rates, which are the focus of this paper, restricted hardware
capacities—both in terms of computational speed and storage
capacity—remain a critical limiting factor. One approach to
reduce the computation efforts is explicit MPC (see [2]),
where the polyhedral piecewise-affine solution of the MPC
problem is pre-computed and stored for every relevant initial
condition. For systems of small dimensions, the storage
requirements are typically small, and the online procedure
reduces to a fast look-up operation. However, as its worst-
case complexity grows exponentially with the problem size,
explicit MPC loses much of its effectiveness for larger
systems, where it is outperformed by appropriately tailored
online algorithms.

The need for increased efficiency has led research to
focus on sub-optimal MPC, for which essential properties
such as recursive feasibility, stability, or robustness, however,
are often difficult to establish. For online MPC, a common
approach is to stop an iterative algorithm early, e.g. as in [15]
for interior point methods, [3] for active set methods, or [11]
for fast gradient methods. In explicit MPC, approximations
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to the exact solution, but having a lower complexity, are
constructed.

Most recent explicit MPC approaches partition the state
space into regions of a predefined shape, like hypercubes (see
[6], [13]) or simplices (see [14]), and interpolate the stored
solution at its extreme points (see [7]). While they permit
to construct MPC controllers of very low complexity, they
require a (often rather high) degree of complexity for stability
guarantees. This paper presents a simple add-on scheme, to
be used in conjunction with sub-optimal control schemes
of arbitrarily low complexity, that provides robust stability.
Its only key requirement is that the controller represents
a continuous map from the state space into the space of
feasible full-horizon input sequences.

The method is based on conventional Lyapunov stability
theory for sub-optimal MPC, as described in [12]; however
the decrease in the cost function is achieved not by close
approximation of the optimal solution, but by a combination
of (a) the current sub-optimal input sequence and (b) the
shifted input sequence of the previous time step. The idea has
originally been proposed by [14], yet only for the nominal
case and without robustness properties. In this paper, it is
modified so as to yield input-to-state stability (ISS) in the
presence of state disturbances.

The method makes minor modifications to the MPC
problem and introduces a simple and fast online procedure
(Section III), which usually amounts to a few matrix-vector
multiplications. It admits a rigorous proof of ISS in the
presence of state disturbances (Section IV). Finally, practical
application of the method is demonstrated for a single mass
oscillator (Section V).

II. NOTATION & PRELIMINARIES
A. Notation

N = {0, 1, 2, ...} denotes the set of natural numbers and 0,
R the set of real numbers, and R+ (R0+) the set of positive
(non-negative) real numbers. In the product space Rn, Bn is
the closed unit ball in the Euclidean norm ∥ · ∥. The space
of real sequences {tn}n∈N is denoted by RN.

A polyhedron is the finite intersection of closed half-spaces
in Rn, and a polytope is a bounded polyhedron.

For some index k ∈ N, non-bold letters indicate vectors
xk ∈ Rn, and bold letters xk := {xk|k, xk+1|k, ..., xk+N |k}
an ordered collection of vectors xk+i|k ∈ Rn that can also
be considered as a large stacked-up vector xk ∈ R(N+1)n.

A function α : R0+ → R0+ is a K-function if it is
continuous, strictly monotonically increasing, and α(0) = 0;
it is a K∞-function if in addition α(r) → ∞ as r → ∞.
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A function β : R0+ × R0+ → R0+ is a KL-function if
for any fixed t ∈ R0+ β( · , t) is a K-function and for
any fixed r ∈ R0+ β(r, · ) is monotonically decreasing and
β(r, t) → 0 as t→ ∞.

Let (X, dX) be a metric space and S be a subset, written
S ⊂ X . The point-to-set distance of some x ∈ X to S is

dX(x, S) := inf
s∈S

dX(x, s) ;

the distance to the empty set dX(x, ∅) := ∞ by convention.
For any ε > 0, the ε-neighborhood of S is denoted by

UεS := {x ∈ X | dX(x, S) < ε} .

B. Control System with State Disturbance
Consider a linear time-invariant system in discrete-time

xk+1 = Axk +Buk + wk , x0 ∈ X , (1)

where A ∈ Rn×n and B ∈ Rn×m, whose trajectory of states
xk ∈ Rn must be kept in the state constraint set X ⊂ Rn for
all k ∈ N. Here uk ∈ U ⊂ Rm is the external control input
and wk ∈ W ⊂ Rn a random state disturbance at step k.

Assumption II.1 (System Dynamics). (a) The pair of ma-
trices A, B is stabilizable. (b) The state is measured at every
step k. (c) The state constraint set X is convex and contains
the origin in its interior. (d) The set of admissible controls
U is compact, convex, and contains the origin in its interior.

Assumption II.2 (Disturbances). The disturbance set W is
compact and contains the origin; neither W nor the proba-
bility distribution of wk are known for controller design.

For closed-loop controllers, control sequences {uk}k∈N
are provided by a state feedback law κ : Xκ → Rm on
some domain Xκ ⊂ X, assigning uk := κ(xk).

Definition II.3 ((Robustly) Feasible Controls). A control
sequence (or state feedback law) is said to be (recursively)
feasible for x0 if (a) it is admissible and (b) the resulting
state trajectory satisfies the state constraints at all times
k ∈ N. It is called robustly (recursively) feasible for x0 if
the above conditions are met for all possible outcomes of
the disturbance sequence {wk}k∈N ∈ WN.

Definition II.4 ((Robustly) Positively Invariant Set). A set
Xκ ⊂ X is called positively invariant (PI) for (1) under
κ if for all ξ ∈ Xκ it holds that: (a) κ(ξ) ∈ U and (b)
[Aξ +Bκ(ξ)] ∈ Xκ. It is called robustly positively invariant
(RPI) for (1) under κ if, moreover, [Aξ +Bκ(ξ)]⊕W ⊂ Xκ.

In this paper, a more general parameterized feedback law
κ : P × Xκ → Rm will be considered. Namely, it allows
for uk := κ(pk, xk) to depend also on a specific sequence
of parameters pk in some compact set P. The sequence
is recursively defined for all k ∈ N by some non-linear
transition map f : P× X → P:

pk+1 = f(pk, xk) , p0 ∈ P .

Note that these ‘dynamics’ use the state trajectory as ‘inputs’.
Definitions II.3 and II.4 hold analogously.

C. Point-to-Set Mappings

Let X and Y be metric spaces and Λ be a point-to-set
mapping from X into the power set 2Y ; in short Λ : X ⇒ Y .

Definition II.5 (Continuity). [1, p. 25] Λ : X ⇒ Y is
(a) closed at x̄ ∈ X if for any two sequences {xt}t∈N and
{yt}t∈N, where yt ∈ Λ(xt) for all t ∈ N and

xt → x̄ and yt → ȳ

as t→ ∞, it holds that ȳ ∈ Λ(x̄);
(b) Hausdorff upper semicontinuous (H-u.s.c.) at x̄ ∈ X if
for every ε > 0 there exists δ > 0 such that

Λ(x) ⊂ UεΛ(x̄) ∀ x ∈ Uδ{x̄} ;

(c) Hausdorff lower semicontinuous (H-l.s.c.) at x̄ ∈ X if
for every ε > 0 there exists δ > 0 such that

Λ(x̄) ⊂ UεΛ(x) ∀ x ∈ Uδ{x̄} .

If Λ is both H-u.s.c. and H-l.s.c. at x̄ ∈ X , then it is H-
continuous at x̄ ∈ X . The qualifier ‘at x̄’ is omitted if a
property holds for all x̄ ∈ X .

Proposition II.6. [1, p. 26] If the mapping Λ : X ⇒ Y is
H-u.s.c. at x̄ ∈ X and the set Λ(x̄) is closed, then Λ is
closed at x̄.

D. Lyapunov Stability Theory

This section briefly introduces input-to-state stability (e.g.
[10], [5]), in particular for constrained systems (e.g. [9]).

Definition II.7 (Input-to-State Stability). Consider the dy-
namic system (1) under a feedback law κ that is robustly
recursively feasible on some RPI set Γκ ⊂ Xκ. The origin is
input-to-state stable (ISS) on Γκ if there exist a KL-function
β and a K-function τ such that

∥xk∥ ≤ β
(
∥x0∥, k

)
+ τ

(
sup

i≤k−1
∥wi∥

)
∀ k ∈ N ,

for x0 ∈ Γκ and any disturbance sequence {wk}k∈N ∈ WN.

Definition II.7 reduces to asymptotic stability (AS) of the
origin on Γκ if {wk}k∈N = 0. The stability analysis of a
system under a parameterized feedback law κ(pk, xk) entails
the dependence of the Lyapunov function on the parameters
pk ∈ P; it shall therefore be referred to as a parameterized
Lyapunov function (a similar concept is used in [12]).

Definition II.8 (Parameterized ISS Lyapunov Function).
V : P×Xκ → R0+ is called a parameterized ISS Lyapunov
function for system (1) under κ on Γκ, if Γκ ⊂ Xκ is a RPI
set for (1) under κ, and V satisfies the following conditions:
(a) There exist two K∞-functions α1 and α2 such that

α1(∥ξ∥) ≤ V (pk, ξ) ≤ α2(∥ξ∥) ∀ pk ∈ P, ∀ ξ ∈ Γκ. (2)

(b) There exists a K∞-function α3 and K-function σ with

V (pk+1, xk+1) ≤ V (pk, xk)− α3(∥xk∥) + σ(∥wk∥) (3)

for all k ∈ N, any x0 ∈ Γκ, and any {wk}k∈N ∈ WN.
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Definition II.8 reduces to an ISS Lyapunov function if the
dependence on the parameters pk ∈ P is removed; it reduces
to a parameterized Lyapunov function if the term σ(∥wk∥) is
removed in equation (3); and it reduces to a classic Lyapunov
function if both of these simplifications are made.

The following theorem is a straightforward extension of
ISS Lyapunov theory for parameterized systems (see [8]).

Theorem II.9 (ISS Lyapunov Stability). [4, p. 2131] Let κ
be a parameterized feedback law and Γκ be a RPI set for (1)
under κ. If there is a parameterized ISS Lyapunov function
for (1) under κ on Γκ, then the origin is ISS on Γκ.

Corollary II.10. [12, p. 649] Let κ be a parameterized
feedback law and Γκ be a PI set for (1) under κ. If there is
a parameterized Lyapunov function for (1) under κ on Γκ,
and if {wk}k∈N = 0, then the origin is AS on Γκ.

III. PROPOSED SUB-OPTIMAL MODEL
PREDICTIVE CONTROLLER

A. MPC State Feedback

This section briefly introduces the MPC state feedback
κoN which, with some abuse of the term, is referred to as the
optimal state feedback law. It is based on a finite prediction
horizon N > 0 and a stage cost function ℓ : X×U → R0+,
penalizing the state and the control input at every predicted
step over the horizon (for more details see e.g. [10]).

Assumption III.1 (Cost Function). The stage cost function
ℓ is continuous, ℓ(0, 0) = 0, and it has some lower-bounding
K∞-function αl,

ℓ(ξ, υ) ≥ αl (∥ξ∥) ∀ ξ ∈ X, ∀ υ ∈ U .

Assumption III.2 (Terminal Set). (a) There exists a termi-
nal set Xf ⊂ X which is compact, convex, and contains the
origin in its interior.
(b) On Xf , there is a terminal state feedback law κf such
that Xf is a PI set for (1) under κf .
(c) There exists a terminal cost function ℓf : Xf → R0+

which is continuous, ℓf (0) = 0, and it has some upper-
bounding K∞-function αu,

ℓf (ξ) ≤ αu (∥ξ∥) ∀ ξ ∈ Xf .

Moreover, ℓf is a control Lyapunov function for system (1):

min
υ∈U

{
ℓf (Aξ +Bυ)− ℓf (ξ) + ℓ(ξ, υ)

}
≤ 0 ∀ ξ ∈ Xf .

The MPC cost function JN : X× UN → R0+ is

JN
(
xk|k,uk

)
=

N−1∑
i=0

ℓ
(
xk+i|k, uk+i|k

)
+ ℓf

(
xk+N |k

)
,

where the predictive model dynamics

xk+i+1|k = Axk+i|k +Buk+i|k ∀ i = 0, ..., N − 1 (4)

are understood to be substituted recursively in order to
remove the dependence on all states other than xk|k. This
‘sequential approach’ is chosen to facilitate the notation.

Remark III.3. From Assumptions III.2(c) and III.1, and
the continuity of the predictive dynamics (4), it follows
immediately that the MPC cost function JN is continuous.

All of this is assembled into the MPC Problem:

min
uk

JN (xk,uk) (5a)

s.t. xk+i+1|k = Axk+i|k +Buk+i|k, xk|k = xk, (5b)

uk ∈ UN , (5c)

xk ∈ XN ×Xf , (5d)

where i ∈ {0, ..., N − 1}. Problem (5) represents an opti-
mization problem parameterized by the initial state xk; it
is solved for a (full-horizon) input vector uk of the lowest
possible cost. Let XN denote the set of all initial states for
which there exists a solution; Π : XN ⇒ UN be the feasible
set map and Φ : XN ⇒ UN be the solution map, i.e. Π(xk)
and Φ(xk) are the sets of feasible and cost-minimal input
vectors, respectively. Moreover, define ϕ : XN → R0+ as
the extreme value map, i.e. ϕ(xk) is the minimal cost at xk.

The MPC state feedback law κoN (xk) returns the first
element (a vector of dimension m) of some input vector
from Φ(xk) (a vector of dimension Nm).

B. Suboptimal State Feedback
Consider a feasible solution map s : SN → UN for the

MPC Problem, defined on SN ⊂ XN , i.e. for ξ ∈ SN s(ξ)
returns a feasible (yet not necessarily optimal) point of (5).
It is assumed that the evaluation of s is much cheaper than
solving the MPC Problem, in terms of computation time
and/or storage space.

Assumption III.4 (Sub-Optimal Solution Map). (a) The
map s : SN → UN is defined on a compact set SN ⊂ XN

with the origin in its interior, (b) s(ξ) is feasible for all
ξ ∈ SN , and (c) s is a continuous function with s(0) = 0.

Assumption III.4 does not suffice to guarantee stability
of the closed-loop system if (in analogy to optimal MPC)
the sub-optimal controller were to use the first element of
s(xk), as it does not ensure a cost decrease. Feasibility
implies stability, in the sense of [12], only if a cost decrease
can be ensured—e.g. by further iterations of some descent
algorithm. As discussed in [14], in the nominal case a
convex combination of the sub-optimal input trajectory with
the shifted input sequence from the previous step always
achieves a cost decrease. However, this only works if the
shifted input sequence remains feasible, which does not hold,
in general, in the presence of state disturbances. Therefore
some alterations to this approach are introduced in the next
section that allow to establish input-to-state stability.

C. Affine Combination Feedback
Definition III.5 (Shift Operator). For a given xk|k ∈ XN ,
the shift operator σxk|k : Π(xk|k) → UN removes the first
input element from an input vector and adds a terminal
feedback input at its tail:

σxk|kuk =
{
uk+1|k, ..., uN−1|k, κf (xk+N |k)

}
.
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Note σxk|kuk is feasible for xk+1|k, as uk is feasible for
xk|k and κf (xk+N |k) ∈ Xf . For clarity of notation, the index
of σxk|k will be omitted, as it is understood from the context.

The modifications proposed to the approach of [14] are
twofold. First, the MPC Problem for which the sub-optimal
map s (satisfying Assumption III.4) provides a feasible solu-
tion is modified. Namely, the state and terminal constraints
are tightened by some δ > 0, i.e. X and Xf are replaced by
X⊖ δBn and Xf ⊖ δBn, respectively.

A formulation of the resulting problem, referred to as the
Tightened MPC Problem, is omitted. Note that the terms
‘state constraint set’, ‘terminal constraint set’, or ‘feasible’
shall remain with respect to the original MPC Problem.

Remark III.6. δ can be regarded as a design parameter.
Together with properties of the system and the sub-optimal
solution, it determines the ‘ISS gain’ in a trade-off against
the (maximum) size of the controller domain.

The second modification is to solve the following Affine
Combination Problem (similar, but not identical to [14])
online at every step to obtain the sub-optimal control input:

min
α

JN (xk,uk) (6a)

s.t. uk = ασxk−1|k−1
uk−1 + (1− α)s(xk) , (6b)

|α| ≤ 1 , (6c)
xk+i+1|k = Axk+i|k +Buk+i|k, xk|k = xk, (6d)

uk ∈ UN , (6e)

xk ∈ XN ×Xf , (6f)

where i ∈ {0, ..., N − 1}. Its decision variable is a scalar
α ∈ [−1, 1] that determines an optimal combination of the
sub-optimal input vector s(xk) with the shifted input vector
σuk−1. Problem (6) can be initialized by setting σu−1 := 0.

Problem (6) includes the parameter σuk−1 ∈ UN in
addition to xk. Indexed by this parameter, let Ξσuk−1

:
SN ⇒ B1 and Ψσuk−1

: SN ⇒ B1 denote its feasible set
map and its solution map, and ψσuk−1

: SN → R0+ be its
extreme value map. The sub-optimal parameterized feedback
law κsN (σuk−1, xk) returns the first element of the input
vector obtained from some element of Ψσuk−1

.

Remark III.7. (a) Unlike the state feedback law κoN , κsN is
a parameterized feedback law with the shifted input vectors
being the parameters with their own dynamics and contained
in a compact set, namely UN (compare Section II-B).
(b) Depending on the disturbance wk−1, σuk−1 ∈
Π(xk|k−1) may or may not be feasible for xk, i.e. it is not
necessarily an element of Π(xk).
(c) By virtue of the constraint system of (6), any feasible
solution to (6) corresponds to a feasible input vector for (5).
Moreover, a feasible solution to (6) always exists, because
s(xk) (corresponding to α = 0) is feasible for (5), and even
for the Tightened MPC Problem, by Assumption III.4.

Remark III.8. In many practical cases (6) can be solved
analytically. More details on this are found in Section V for
the numerical example.

AS for the proposed controller when {wk}k∈N = 0 follows
from the existing theory (e.g. in [14]); moreover, it is a
special case of Theorem IV.7. The next section is concerned
with proving ISS for the proposed controller.

IV. INPUT-TO-STATE STABILITY
A. Continuity of the Cost Function

The key to obtaining ISS is to prove continuity of the
extreme value function, to which this section is dedicated.
Note that for the existing approach of [14], the optimal cost
may be discontinuous as a result of the shifted input sequence
becoming infeasible.

Theorem IV.1. Choose any uσ ∈ UN . The extreme value
function of the Affine Combination Problem

ψuσ : SN → R0+

is continuous at any x0 ∈ SN .

The proof is based on Theorem 4.2.1 (1,2) and Lemma
2.2.1 in [1]. Indeed, for any given uσ ∈ UN it is sufficient
that the cost function JN ( · ,uσ) be continuous, and that the
feasible set map Ξuσ : SN ⇒ R and the optimal solution
map Ψuσ : SN ⇒ R be closed (and their images non-empty).

These results shall be proven in a sequence of lem-
mas, whose proofs are based on a certain geometric per-
spective on the problem which is now described. Let
xσ,0(x0), ..., xσ,N (x0) denote the predicted state trajectory
starting at x0 and driven by the input vector uσ,0, ..., uσ,N−1.
Note that while the inputs are fixed (and admissible),
each state of the trajectory is a continuous function of
x0 ∈ SN , and not necessarily inside X. Similarly, let
uπ,0(x0), ..., uπ,N−1(x0) be the feasible input vector pro-
vided by s(x0), and xπ,0(x0), ..., xπ,N−1(x0) be the corre-
sponding state trajectory. Note that each input and state is a
continuous function of x0, and the trajectory is feasible (by
Assumption III.4).

Consider the state space Rn at any step k ∈ {0, ..., N}.
The state (or terminal) constraint set is convex and contains
xπ,k(x0) (with a distance to the boundary of at least δ, due
to the constraint tightening), while not necessarily contain-
ing xσ,k(x0). By virtue of the linear dynamics, the affine
combination parameter α defines a closed line segment

Lx
k := {αxπ,k(x0) + (1− α)xσ,k | |α| ≤ 1} ⊂ Rn . (7)

A similar view holds for the input space Rm at any step
k ∈ {0, ..., N−1}. U is convex, containing both uπ,k(x0) and
uσ,k(x0) in its interior or on its boundary. Again, the affine
combination parameter α defines a closed line segment

Lu
k := {αuπ,k(x0) + (1− α)uσ,k | |α| ≤ 1} ⊂ Rm . (8)

For the purpose of clarity, but without loss of generality,
assume that U and Xf are polytopes and that X is a polyhe-
dron, i.e. described by a finite number of linear inequalities.

Lemma IV.2. The feasible set Ξuσ (x0) is a non-empty
closed interval [α(x0), α(x0)] ⊂ [−1, 1] containing {0} for
any x0 ∈ SN .
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Proof: For each step k ∈ {0, ..., N}, the intersection of
the closed line segment Lx

k (or Lu
k) with the closed state or

terminal constraint set (or input constraint set) is a closed line
segment of smaller or equal size. Hence the set of feasible
α, with respect to step k, is some closed interval in [−1, 1].

The result is immediate, since the set of α that are
feasible with respect to all constraints is given as their
(finite) intersection; moreover, α = 0 is always feasible, as
mentioned in Remark III.7(c).

Next, it is shown that the interval’s upper and lower bound
vary continuously with x0 (Lemma IV.3), which is used to
establish H-continuity of the feasible set map (Lemma IV.4).

Lemma IV.3. The limits α(x0) and α(x0) of the feasible
interval in Lemma IV.2 are continuous functions of x0.

Note that the conditions that α be contained in a compact
interval and is upper bounded by 1 are crucial for this proof.
Despite all continuity assumptions stated above, there exist
simple examples in which the limits α(x0) and α(x0) are
discontinuous if this assumption were not satisfied.

Proof: Again, for clarity the limitations on α(x0)
and α(x0) imposed at each step k ∈ {0, ..., N} by the
state [αx

k(x0), α
x
k(x0)] and by the input [αu

k(x0), α
u
k(x0)] are

considered separately. If each of them can be shown to be
a continuous function of x0, then so are the maximum and
minimum of a finite number of them:

α(x0) = max
k

max{αx
k(x0), α

u
k(x0)} ,

α(x0) = min
k

min{αx
k(x0), α

u
k(x0)} .

The input line segment Lu
k is such that uσ,k (where α =

1) is feasible and fixed with respect to x0, and uπ,k(x0)
is feasible and varies continuously with x0. This allows to
deduce the following: (i) Clearly, αu

k = 1 for any x0. (ii) By
virtue of the lower bound at −1, αu

k(x0) varies continuously
with x0, possibly as the intersection of Lu

k with the boundary
of the convex set U, even if the points uσ,k and uπ,k coincide.

The state line segment Lx
k is such that xπ,k(x0) (where

α = 0) varies continuously with x0 and always remains
feasible with a distance of at least δ to the boundary of
the (state or terminal) constraint set. On the other hand,
xπ,k(x0) (where α = 1) varies continuously with x0, yet
may become infeasible. By virtue of these continuities, both
αx
k(x0) and αx

k(x0) vary continuously with x0, possibly as
the intersection of Lx

k with the boundary of the convex set
X (or Xf ), even if the points xσ,k and xπ,k coincide.

Corollary IV.4. The feasible set map Ξuσ : SN ⇒ B1 is
H-continuous at any x0 ∈ SN .

Proof: Straightforward extension of Lemma IV.3.

Corollary IV.5. The feasible set map Ξuσ : SN ⇒ B1 is
closed at any x0 ∈ SN .

Proof: Immediate consequence of Proposition II.6,
given that Ξuσ (x0) is closed (Lemma IV.2) and H-u.s.c.
(Corollary IV.4).

Lemma IV.6. The solution map Ψuσ : SN ⇒ B1 is closed
at any x0 ∈ SN .

Proof: In this case, the requirements for closedness of
a set-valued map by Definition II.5(a) are verified directly.

Consider any two sequences {xt}t∈N ⊂ SN and
{αt}t∈N ⊂ B1 such that xt → x0 and αt → α0 as t → ∞
and αt ∈ Ψuσ (xt) for all t ∈ N. It must be proven that
α0 ∈ Ψuσ (x0).

Notice first that α0 is feasible, because αt ∈ Ξuσ (xt) for
all t ∈ N and therefore α0 ∈ Ξuσ (x0) because Ξuσ is closed
(Corollary IV.5). It remains to be shown that α0 minimizes
the cost (6a). Suppose there exists α⋆ ̸= α0 inducing a lower
value in the cost function JN , i.e.

JN (x0, α0s(x0) + (1− α0)uσ)

− JN (x0, α
⋆s(x0) + (1− α⋆)uσ) = ε > 0 .

As will be proven, this contradicts the optimality of some
combination (xt, αt) that is sufficiently close to (x0, α0).

Since JN and s are continuous, and x0 ∈ SN and α ∈ B1

are contained in compact sets, there exists δα > 0 such that

|α− α̃| < δα =⇒
∣∣JN (x, αs(x) + (1− α)uσ)

− JN (x, α̃s(x) + (1− α̃)uσ)
∣∣ ≤ ε

6

for any x ∈ SN ; and some δx > 0 such that

∥x− x0∥ < δx =⇒
∣∣JN (x, αs(x) + (1− α)uσ)

− JN (x0, αs(x0) + (1− α)uσ)
∣∣ ≤ ε

6

for any α ∈ B1. Note that there is no mention of feasibility
here. The H-l.s.c. of Π (Corollary IV.4), however, guarantees
existence of some δπ > 0 such that

Ξuσ (x0) ⊂ UδαΞuσ (x) ∀ x ∈ Uδπ{x0} . (10)

Pick t large enough such that ∥xt − x0∥ < min{δx, δπ} and
also ∥αt − α0∥ < δα. Then clearly∣∣JN (xt, αts(xt) + (1− αt)uσ)

− JN (x0, α0s(x0) + (1− α0)uσ)
∣∣ ≤ ε

3
.

Moreover, equation (10) implies the existence of some feasi-
ble α̃⋆ for xt which is δα-close to α⋆ ∈ Ξuσ (x0). Therefore∣∣JN (xt, α̃

⋆s(xt) + (1− α̃⋆)uσ)

− JN (x0, α
⋆s(x0) + (1− α⋆)uσ)

∣∣ ≤ ε

3
,

establishing the contradiction.
This completes the proof of Theorem IV.1.

B. Input-to-State Stability

Let Γs ⊂ SN be the set of all initial conditions for
which the proposed parameterized controller κsN is robustly
recursively feasible, i.e. for which the closed-loop trajectory
does not leave SN for any disturbance sequence {wk}k∈N ∈
WN. The next theorem (in conjunction with Theorem II.9)
proves ISS of the origin on Γs, for system (1) under κsN .
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Theorem IV.7. Let {uk}k∈N be any sequence of feasible
input vectors for {xk}k∈N resulting from (6). The opti-
mal cost function ψσuk−1

, parameterized by the sequence
{σuk−1}k∈N, is a parameterized ISS Lyapunov function for
system (1) under κsN on Γs.

Proof: The parameter sequence σuk−1 is contained in
the compact set UN . With αl(·) from Assumption III.1 and
αu(r) := sup∥ξ∥≤r J(ξ, s(ξ)), ψσuk−1

is lower and upper
bounded by two K∞-functions:

αl(∥ξ∥) ≤ ψσuk−1
(ξ) ≤ αu (∥ξ∥) ,

for all ξ ∈ Γs and σuk−1 ∈ UN .
Because x0 ∈ Γs, xk ∈ SN for all k ∈ N. For any xk ∈

SN , let σuk−1 ∈ UN be the shifted input vector resulting
from (6). It must be shown that the nominal cost decrease is
lower bounded by a K∞-function αl,

ψσuk
(Axk +Buk|k)− ψσuk−1

(xk) ≤ −αl(∥xk∥) ,

and an additional cost caused by wk is upper bounded by
some K-function σ,

ψσuk

(
Axk +Buk|k + wk

)
− ψσuk−1

(xk) ≤
− αl(∥xk∥) + σ(∥wk∥) .

The former statement is equivalent to AS in [14]: as σuk

is feasible for [Axk +Buk|k] (Remark III.7(b)), the optimal
input provided by (6) decreases by at least one stage cost.

The latter statement follows as ψσuk
is continuous (by

Theorem IV.1) on the compact set SN for any σuk ∈ UN ,
hence it is bounded. Thus the definition

σ(ω) := sup
υ∈UN

(
sup

∥w∥≤ω

{
ψυ(ξ+w)−ψυ(ξ)

∣∣ξ, (ξ+w) ∈ SN

})
yields a desired upper-bounding K-function.

V. NUMERICAL EXAMPLE

Consider a single mass oscillator with mass m = 1,
stiffness k = 5, damping d = 0.01, and controlled by a force
u(t); the sampling time is ∆t = 0.2. Let xk := [vk, pk]

⊤

denote its velocity and position at step k; then the dynamics
are described by

xk+1 =

[
0.900 −0.966
0.193 0.902

]
xk +

[
0.193
0.020

]
uk + wk . (11)

The disturbance support set is chosen as

[−0.400,−0.004]⊤ ≤ wk ≤ [0.400, 0.004]⊤ ,

and the input and the state constraint sets as

−5.000 ≤ uk ≤ 5.000 , (12a)

[−10,−5]⊤ ≤ [vk, pk]
⊤ ≤ [10, 5]⊤ . (12b)

For a quadratic cost function with N = 20, Q = diag[1, 10],
and R = 2, cost function and constraints can be written as

JN (xk,uk) =
1

2
u⊤
k Huk + x⊤k F

⊤uk , (13)

Guk ≤ e+ Exk , (14)

for appropriate H ≻ 0, F , G, e, and E (e.g. [2]).
In this particular case the Affine Combination Problem has

an analytic solution, obtained by substituting αuσ+(1−α)uπ

into (13). This yields a scalar quadratic equation in α with

α⋆
k =

−
[
u⊤
πH + x⊤k F

]
[uσ − uπ]

[uσ − uπ]
⊤
H [uσ − uπ]

as its unconstrained minimizer. Substitution of αuσ + (1 −
α)uπ into the constraints (14) gives a vector of scalar
inequalities for α (in addition to |α| ≤ 1)

[G(uσ − uπ)]α ≤ e+ Exk −Guπ ,

defining a (non-empty) closed interval for αk ∈ [α, α].
Depending on α⋆

k, the optimal solution to (6) is α, α⋆
k, or α.

In this example, a terminal set with the state feedback
of a linear quadratic regulator is employed (e.g. [2]). The
constraints are tightened by δ = 0.1. The sub-optimal
controller s(x) is provided by interpolation of the optimal
solution stored at triangulated sampling points, which are
selected as the union of the extreme points of S20 together
with 5 randomly placed points in S20 \ Xf .

By the results of this paper, system (11) is input-to-state
stable under κs20 on some Γs ⊂ S20. Whereas for most
practical systems it is prohibitively expensive to compute
RPI sets, the set Γs can be approximated by simple forward
simulation, as illustrated in Figure 1.
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Fig. 1. Initial Conditions Remaining in SN

Figure 1 displays initial conditions on a grid in S20,
marked by a grey cross if all trajectories remained inside S20

within 5 simulated steps, as tested for all possible disturbance
combinations from the extreme points of W; and by a black
circle otherwise. This approximation proved to be highly
reliable in all further simulations.

Figure 2 compares the closed-loop trajectories of the
optimal MPC controller (grey lines) with those of the sub-
optimal controller (black lines) for some initial conditions in
S20. Both trajectories are subjected to the same disturbance
sequence, selected according to a uniform distribution on W.
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The results of a cost analysis are illustrated in Figure 3. It
compares the closed-loop costs Js

20 incurred by κs20 as excess
percentage over the closed-loop costs Jo

20 of κo20. The first
case (light grey bars, referred to as the ‘nominal case’) is
for {wk}k∈N = 0, while in the second case (dark grey bars,
referred to as the ‘robust case’) the trajectories are subjected
to a uniformly distributed disturbance sequence in W. In
total, 100 random initial conditions are selected for each of
50 different placements of the 5 sampling points, and the
simulation was performed for 50 steps.
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Fig. 3. Sub-optimal vs. Optimal Closed-Loop Cost

In some instances, the sub-optimal controller produced
lower costs than the optimal controller, while on average
the former was outperformed by the latter. The deviations in
the robust case were generally larger, reaching up to 25%,
than in the nominal case, for which 10% was never exceeded.

Figure 4 depicts the corresponding frequency distribution
of the optimal parameter value α. In the nominal case
the shifted input vector (corresponding to α = 1) was
used extensively, and only little of the stored input vector
(corresponding to α = 0) got mixed into the actually applied
input. The opposite holds for the robust case, where the
controller had to rely more on the stored input vector as a
result of the shifted input vector becoming less advantageous
or infeasible.
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