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Abstract— We establish a model of a system with hystereses,
which allows for standard stability analysis of fixed points
and closed orbits. To this end, we represent a system with
hystereses as a piecewise-affine switched system that consists of
a family of dynamical systems defined on disjoint polyhedral
sets. The discrete transitions are realized by reset maps defined
on the facets of these polyhedral sets. We have shown that
the state space of a resulting switched system is a smooth
manifold, the Cartesian product of a torus with an Euclidean
space. Additionally, we construct the charts explicitly. Thereby,
the analysis of a system with hystereses can be seen as the
analysis of a dynamical system on a manifold. This dynamical
system in a chart corresponds to a differential equation with
discontinuous right hand side, which solution is shown to exist
and to be unique.

I. INTRODUCTION

Modeling of systems with hystereses were studied in [1],

[2], [3], [4]. In these works, scalar hysteresis operators,

including Preisach and Duhem operators, were examined.

Furthermore, existence and uniqueness of solutions of ordi-

nary and partial differential equations coupled with hysteresis

operators were investigated.

We study in this work systems with multiple hystereses,

seen as switched system. By a hysteresis, we understand a

binary mechanism that switches the dynamics whenever a

state reaches either its upper or lower limits.

As for the study of any phenomena in dynamical systems,

the very first challenge is to establish a convenient definition

of a state space and a notion of a trajectory such that existing

theories may be applied. For this purpose, we model a system

with hystereses as a switched system. A switched system is

a hybrid system which consists of several subsystems and

a rule that orchestrates the switching among them. In this

paper, the state space of a switched system is a disjointed

union of polyhedral sets. The discrete transitions are realized

by reset maps defined on the facets of the polyhedral sets.

The reset maps are regarded as generators of an equivalence

relation allowed by gluing the polyhedral sets together. The

resulting quotient state space is a quotient space. This idea

has been used before in [5], [6] and [7]; whereas, the original

contribution of this work is to show that the quotient state

space of a system with hystereses can be described as a

smooth manifold with system dynamics given by piecewise

smooth trajectories. If n is the number of states and m ≤ n is

the number of hystereses, then this manifold is the Cartesian

product of an m-torus and an (n−m)-dimensional Euclidean
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space. An advantage of the current approach is that this

construction allows for the application of standard methods

from analysis of differential equations with discontinuous

right hand side [8], [9] in the study of systems with multiple

hystereses.

Furthermore, we construct explicitly coordinate charts

on the studied manifold. In specific applications, this is a

valuable tool, as it allows for concrete analytical studies and

numerical computations. For example, stability analysis of

a critical point can be carried out by means of Lyapunov

stability [9], [10], [11]. Moreover, stability analysis and

control synthesis of periodic orbits can be conducted by

means of a Poincaré map [12], [13], [14], [15] and [16],

[17].

The article is organized as follows. Section II sets up

the notation and terminology. Section III is divided into

four parts. In the first two subsections, we establish the

foundations: a system with hystereses is modeled as a

switched system, and system trajectories are defined. The

next subsection contains the first main result stating that the

quotient state space of the resulting switched system is a

smooth manifold. The final subsection contains the second

main result, which shows that the dynamics of a system

with hystereses can be equivalently expressed as a dynamical

system on this manifold.

II. PRELIMINARIES

We write F � P to indicate that F is a face of a polyhedral

set P , and F ≺ P to indicate that F is a proper face of P
(F � P and F 6= P ). A map f : P → P ′ is said to

be polyhedral if it is a continuous injection, and if for any

F � P there is F ′ � P ′ with dim(F ) = dim(F ′) such that

f(F ) ⊆ F ′.

For a given subset U of a topological space X , by cl(U),
int(U) and bd(U) we denote the closure, the interior and

the boundary of U in X , respectively.

We denote by R+ the set of non-negative reals [0,∞[, by

Z+ the set of non-negative integers {0, 1, 2, . . .}, and by N

the set of natural numbers {1, 2, . . .}.

III. HYSTERESES AS SWITCHED SYSTEMS

We consider an n dimensional system with m hystereses

ẋ = ξ(x; δ1, . . . , δm) = ξδ(x). (1)

The value of each δi is either 0 or 1 and is determined by

m hystereses

δi =











1 if xi ≥ Xu
i

0 if xi ≤ X l
i

δi if X l
i < xi < Xu

i ,

(2)
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where Xu
i and X l

i are the predefined, respectively, upper

and lower limit for xi. By convention, δi = 0 for any initial

condition xi(t0) ∈]X
l
i , X

u
i [ for (1).

A. System with Hystereses as a Switched System

To begin with, we consider the following scenario. Let

x(t0) ∈ ]X l
1, X

u
1 [× . . .×]X l

m, X
u
m[×R

n−m;

hence, by convention δ = 0. Suppose now that at time t,
xi reaches the upper limit Xu

i , then δi = 1. This scenario

indicates that the system with m hystereses comprises 2m

dynamical systems

ẋ = ξδ(x), δ ∈ 2
m, (3)

with 2 = {0, 1} and ξδ(x) = ξ(x; δ), defined on the

polyhedral set

Q = [X l
1, X

u
1 ]× . . .× [X l

m, X
u
m]× R

n−m. (4)

A discrete transition between these systems takes place

whenever a trajectory reaches the boundary of Q. This

description goes with the concept of a switched system.

Definition 1 (Switched System): A switched system (of

dimension n) is a triple (P,S,R) where

• P = PD is a finite family of polyhedral sets

P = {Pδ ⊂ R
n | Pδ a polyhedral set, dim(Pδ) =

n, δ ∈ D}, and D is a finite index set.

• S is a finite family of smooth vector fields

S = {ξδ : Pδ → R
n | Pδ ∈ P, δ ∈ D}.

• R = RJ is a finite family of polyhedral maps, called

reset maps,

R = {Rj : F → F ′ | F ≺ P ∈ P, F ′ ≺ P ′ ∈
P, dim(F ) = dim(F ′) = n − 1, j ∈ J}, and J is a

finite index set.

Next, we demonstrate that a system with m hystereses is a

switched system (P,S,R). The set P consists of 2m copies

of the polyhedral set Q in (4)

P = {Pδ = Q× {δ}| δ ∈ 2
m}. (5)

Formally, in (5), we have separated (made disjoint) each of

the copies of Q.

Let δ0[a, b] = {a}, and δ1[a, b] = {b}. For a system with

m hystereses, the facets on the polyhedral set

Q = [X l
1, X

u
1 ]× . . .× [X l

i , X
u
i ]× . . .× [X l

m, X
u
m]×R

n−m

(6)

are

Fαi = Fαi (Q) = [X l
1, X

u
1 ]× . . .× δα[X l

i , X
u
i ]× . . .

. . .× [X l
m, X

u
m]× R

n−m (7)

for i ∈ {1, . . . ,m} and α ∈ 2. The facet operators commute

in the following sense

Fαi ◦ F βj (Q) = F βj−1 ◦ F
α
i (Q), i < j, α, β ∈ 2.

Example 1: For a three dimensional system with two

hystereses, the polyhedral set Q has four facets (α ∈ 2)

Fα1 = Fα1 (Q) = δα[X l
1, X

u
1 ]× [X l

2, X
u
2 ]× R

Fα2 = Fα2 (Q) = [X l
1, X

u
1 ]× δα[X l

2, X
u
2 ]× R

This particular case will be used to exemplify the concepts

introduced throughout the paper.

The set S consists of 2m systems given by (3). Whereas,

the set R of reset maps is

R = {Ri(δ)| (i, δ) ∈ {1, . . . ,m} × 2
m}.

To define the maps Ri(δ), let a map l : {1, . . . ,m}×2
m →

2
m be given by

l(i, δ) = (δ1, . . . , δi−1, δi + 1, δi+1, . . . , δm),

where the results of the summation are computed modulo 2.

Intuitively, the map l takes a polyhedral set enumerated by δ
to the future polyhedral set. Notice that only ith coordinate of

δ is changed, which indicates that the switching takes place

as a result of xi having reached its upper or lower boundary.

The reset map

Ri(δ) : F
li(i,δ)
i × {δ} → F

li(i,δ)
i × {l(i, δ)}

is subsequently defined by

Ri(δ) (x, δ) = (x, l(i, δ)).

Example 2: To characterize the set R of a three dimen-

sional system with two hystereses, the map l is given by

l(i, δ) = (l1(i, δ), l2(i, δ)) =

{

(δ1 + 1, δ2) if i = 1
(δ1, δ2 + 1) if i = 2.

The set R = {Ri(δ)| (i, δ) ∈ {1, 2} × 2
2} consists of eight

reset maps. The switched system is illustrated in Fig. 1. Here,

each element of Q has been (orthogonally) projected onto the

(x1, x2)-space. Hence, the polyhedral sets Pδ are represented

by squares. The three squares P(0,1), P(1,0), P(1,1) have been

vertically and/or horizontally reflected. The stippled lines in

the drawing indicate the reset maps in R.

F0
2

F1
2

F0
1 F1

1

F1
1

F0
2

F0
1

F1
2

F1
1

F0
1

F0
2

F1
2

F1
2

F0
1

F1
2

F1
1

R2(0, 0)

5 5

5

5

5

P(0,0)

P(0,1)

P(1,0)

0

0

5

0

0

5

5

P(1,1)

Fig. 1. The x1x2-state space of a system with two hystereses, where for
clarity of illustration we assume (Xl

i , X
u
i ) = (0, 5). The reset maps are

indicated by the stippled lines. The last (n − m) coordinates have been
suppressed; thus, each Pδ = Q× {δ} is illustrated by a square. By abuse
of notation, the facets of Pδ are denoted by Fα

i (instead of Fα
i × {δ}).
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B. Trajectories of a System with Hystereses

A vital object for studying the behavior of any dynamical

system is its trajectory. In order to introduce the notion of a

trajectory of a switched system, we bring in a concept of a

time domain.

In the following, we denote sets of the form {a, . . . } with

a ∈ Z+ as {a, . . . ,∞}. Let k ∈ N ∪ {∞}; a subset Tk ⊂
R+ × Z+ will be called a time domain if there exists an

increasing sequence {ti}i∈{0,...,k} in R+ ∪ {∞} such that

Tk =
⋃

i∈{1,...,k}

(Ti × {i})

where Ti = [ti−1, ti] if i ∈ {1, . . . , k − 1}, and

Tk =

{

[tk−1, tk] if tk <∞

[tk−1,∞[ if tk = ∞.

Note that Ti = [ti−1, ti] for all i if k = ∞. We say that the

time domain is infinite if k = ∞ or tk = ∞. The sequence

{ti}i∈{0,...,k} corresponding to a time domain will be called

a switching sequence.

Definition 2 (Trajectory): A trajectory of the switched

system (PD,S,RJ ) is a pair (Tk, γ), where k ∈ N ∪ {∞}
is fixed, and

• Tk ⊂ R+ × Z+ is a time domain with corresponding

switching sequence {ti}i∈{0,...,k},

• γ : Tk → X =
⋃

δ∈D Pδ is continuous (X has the

disjoint union topology) and satisfies:

1) For each i ∈ {1, . . . , k−1}, there exist δ 6= δ′ ∈ D
such that γ(ti; i) ∈ bd(Pδ), and γ(ti; i + 1) ∈
bd(Pδ′).

2) For each i ∈ {1, . . . , k}, there exists δ ∈ D such

that the Cauchy problem

∂

∂t
γ(t; i) = γ̇(t; i) = ξδ(γ(t; i)), (8)

γ(ti−1; i) ∈ Pδ

has a solution on Ti ⊂ Tk.

3) For each i ∈ {1, . . . , k − 1}, there exists j ∈ J
such that Rj(γ(ti; i)) = γ(ti; i+ 1).

A trajectory at x is a trajectory (Tk, γ) with γ(t0; 1) = x.

C. State Space as a Manifold

To study any dynamical system, the starting point is a

convenient definition of the state space. It was suggested in

[6] and [7] to glue the state spaces of respective subsystems

of a switched system together on the subsets identified

by the reset maps. We adapt this concept in this article,

and additionally, we impose a differentiable structure on

the resulting space. This is essential for any analysis of

dynamical systems.

For a switched system (P,S,R), we define the state space

which is the union of polyhedral sets

X =
⋃

δ∈22

Pδ.

with disjoint union topology. Let ∼⊂ X × X be the

equivalence relation generated by the relations x ∼ R(x)
for all reset maps R ∈ R and all points x in the domain

of R. The quotient state space of the switched system is the

quotient space

X∗ = X/ ∼,

which we will refer to in the sequel simply as the state space.

The equivalence class of x ∈ X is denoted by

[x] = {y ∈ X| ∃R1, . . . Rl ∈ R ∪R−1 such that

y = Rl · . . . ·R1(x)}

with R−1 = {R−1| R ∈ R}.

Example 3: In particular, for a three dimensional system

with two hystereses, let x ∈ X . If x ∈ int(Pδ) for

some δ ∈ 2
2, the equivalence class [x] = {(x; δ)}. If

x ∈ int(F 1
1 × {(0, 0)}), then [x] = {(x; 0, 0), (x; 1, 0)},

and if x ∈ (F 1
1 ∩ F 1

2 ) × {(0, 0)}, we have [x] =
{(x; 0, 0), (x; 1, 0), (x; 0, 1), (x; 1, 1)}. Furthermore, X∗ is

the product of a 2-torus with the reals, X∗ = T
2×R; Fig. 1

illustrates this situation.

Theorem 1: The state space X∗ of an n-dimension system

with m hystereses is the Cartesian product of an m-torus with

(n−m)-dimensional Euclidean space, X∗ = T
m × R

n−m.

Proof: We only give a sketch of proof since details

involve lengthy but straight forward combinatorics.

Let Ii(δ) denote the interval [X l
i , X

u
i ] in the definition of

Pδ in (6) and (5). Note that identifications take place between

elements of Ii(δ) and Ij(δ
′) iff i = j and δ 6= δ′. Therefore,

without loss of generality, we can restrict our attention to

Ii(δ), δ ∈ 2
m for fixed i ∈ {1, 2, . . . ,m}.

Consider an Ii(δ) with δi = 0. By means of the reset

maps Rj(δ), j 6= i, the whole interval Ii(δ) is identified

with m− 1 intervals Ii(δ
′) with δ′i = 0 and δ′j = δj except

for precisely one j. This procedure also applies for each of

the intervals Ii(δ
′). Continuing this way, we conclude that

the 2m−1 intervals corresponding to the deltas having values

0 at the i’th entry are all identified. The same conclusion

also holds for the 2m−1 intervals corresponding to deltas

having 1 at the i’th entry. Therefore, we are left with only

two intervals corresponding to δi = 0 and δi = 1. These are

identified at their endpoints, by reset maps Ri(δ), δ ∈ 2
m,

which gives rise to a one-sphere. This completes the proof.

In the following, we will explicitly construct a differ-

entiable structure on the state space X∗ of a system with

hystereses. At the outset, we define a set

Kl = {F � Pδ| Pδ ∈ P, dim(F ) = l},

and for S ⊂ Q with Q given in (4). For an arbitrary but

fixed δ′, let

Kl(S) = {F ∈ Kl| π−1 ◦ π(S × δ′) ∩ F = ∅}

with the map π : X → X∗ denoting the canonical pro-

jection π(x) = [x]. Hence, the set Kl(S) consists of all l-
dimensional faces in P that do not contain points identified,
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via ∼, with S × {δ′}, i.e., all l-dimensional faces F ∈ P
such that [F ] ∩ [S × {δ′}] = ∅.

Example 4: In particular, for n = 3 and m = 2,

K3 = P, {Fαi × {δ}| (α, i, δ) ∈ 2× {1, 2} × 2
2} ⊂ K2,

and

K2 (F σ1
1 ◦ F σ2

2 (Q)) , for σ ∈ 2
2

contains all the facets of polyhedral sets in P that do not

contain the line

F σ1
1 ◦ F σ2

2 (Q) = δσ1 [X l
1, X

u
1 ]× δσ2 [X l

2, X
u
2 ]× R

For σ ∈ 2
m, let

Uσ = X −Kn−1 (F σ1
1 ◦ . . . ◦ F σm

m (Q)) ,

and define ψσ : Uσ → R
n by ψσ(x; δ) = Jδ(x− rσ), where

Jδ is n by n diagonal matrix

(Jδ)ij =











0 for i 6= j

(−1)δi for i = j, i ≤ m

1 for i = j, i > m

and

(rσ)i =

{

Xu
i σi +X l

i(1− σi) for i ≤ m

0 for i > m.

Specifically, the new coordinates y = ψσ(x) for i ∈
{1, . . . ,m} are

yi = (−1)δi(xi −Xu
i σi −X l

i(1− σi)),

and thus yi ∈]X l
i − Xu

i , X
u
i − X l

i [. We refer to the pair

(Uσ, ψσ) defined above as a chart on X . Figure 2 illustrates

the image of ψσ for a system with two hystereses.

5

−5

−5

5

ψσ(Uσ ∩ P(1−σ1,σ2)) ψσ(Uσ ∩ P(σ1,σ2))

ψσ(Uσ ∩ P(σ1,1−σ2))ψσ(Uσ ∩ P(1−σ1,1−σ2))

Fig. 2. For (Xl
i , X

u
i ) = (0, 5), the set ψσ(Uσ) =] − 5, 5[×] − 5, 5[ is

projected to the y1y2-space. Each of the four the quadrants indicates where
ψσ maps the polyhedral set Uσ ∩ Pδ to.

Proposition 1: Let σ ∈ 2
m.

1) The sets Uσ and U∗
σ = π(Uσ) are open in X (with

disjoint union topology) and X∗ (with quotient topol-

ogy), respectively. Moreover, X∗ =
⋃

σ∈2m U∗
σ and

X =
⋃

σ∈2m Uσ.

2) For any x and x′ ∈ Uσ , ψσ(x) = ψσ(x
′) if and only

if x ∼ x′. Moreover, ψσ is a continuous.

3) For any P ∈ P , the restriction ψσ|Uσ∩P is a restriction

of an affine isomorphism R
n → R

n.

4) Let V = ψσ(Uσ). There is a homeomorphism ψ∗
σ

completing the diagram (ψσ = ψ∗
σ ◦ π)

Uσ

ψσ

��

πσ
// U∗
σ

ψ∗

σ}}

V

(9)

Proof: Properties 1), 2) and 3) follow immediately from

the definitions. Whereas, Property 4) follows from Corollary

22.3 in [18].

We make the following two observations based on Propo-

sition 1. For any σ, σ′ ∈ 2
m and any δ ∈ 2

m, the compo-

sition ψ∗
σ′ ◦ ψ∗

σ
−1

∣

∣

ψσ(Uσ∩Uσ′∩Pδ)
is an affine isomorphism.

Thus, ψ∗
σ′ ◦ ψ∗

σ
−1 is piecewise affine on ψσ(Uσ ∩ Uσ′).

Moreover, the family of (affine) charts {(U∗
σ , ψ

∗
σ)}σ∈2m

constitutes a differentiable structure on X∗.

Henceforth, we refer to a pair (U∗
σ , ψ

∗
σ) defined in diagram

(9) as an affine chart on X∗.

So far, we have described the state space for a system

with hystereses as a single smooth manifold with explicitly

given charts. Now, we are ready for the next step, which

is to formulate the dynamics of the system on the resulting

manifold.

D. Dynamics on the State Space Manifold

In the present case, the resulting manifold has a partition

induced by the polyhedral sets of the switched system.

In each cell of the partition, the dynamics is smooth but

discontinuous on the facets. This complicates the analysis via

local charts beyond the theory of smooth dynamical systems.

To resolve this problem, we employ the concept of a local

switched system, which is defined on the image of the local

chart. The next definition formalizes this notion.

Definition 3 (Local Switched System): A local switched

system (of dimension n) is a triple (W, C,F) where

• W is a polyhedral set of dimension n in R
n.

• C = {Qi| i ∈ I} is a family of polyhedral sets which

partition W .

• F is a family of smooth functions F = {fi : Qi →
R
n | i ∈ I}.

The dynamics of the local switched system (W, C,F) is

governed by the following differential inclusions

ẏ(t) ∈ F (y(t)) (almost everywhere) (10)

where the set valued map F is defined by

F : W → 2R
n

; y 7→ {v ∈ E| v = fi(y) if y ∈ Qi}

with 2R
n

the power set of Rn. Basic properties and stability

of local switched system were studied in the authors previous

work [20]. In the next proposition, we show that the system

with hystereses looks locally like a local switched system;

recall that the dynamics of the system is given by ξδ in (3).
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Proposition 2: Let (Uσ, ψσ) be a chart on X . For any

n-dimensional polyhedral set W ⊂ V = ψσ(Uσ), let

C ={Qδ| Qδ =W ∩ ψσ(Pδ ∩ Uσ), δ ∈ 2
m}

F ={fδ : Qδ → R
n | fδ = Dψδξδ ◦ (ψ

δ)−1,

ψδ = ψσ|ψ−1
σ (Qδ)

, δ ∈ 2
m}

then the triple (W, C,F) is a local switched system.

Figure 3 illustrates Proposition 2 for a system with two

hystereses.

Proof: Since W ⊂ V and Uσ ⊂
⋃

δ∈2m Pδ we have

W =
⋃

δ∈2m Qδ . Hence, to complete the proof we need

to show that the Qδ’s are indeed polyhedral sets, but this

follows directly from Property 3) of Proposition 1.

5

−5

−5

5

Q(1−σ1,σ2)

Q(σ1,σ2)

Q(σ1,1−σ2)

Q(1−σ1,1−σ2)

Fig. 3. The figure illustrates the set W in Proposition 2. The set W ,
bounded by the thick line, is inside V = ψσ(Uσ), the square, in the
x1x2-space. Here, (Xl

i , X
u
i ) = (0, 5). The direction of the vector field fδ

satisfying Condition (14) in Proposition 4 is indicated by the dark shaded
triangles.

We shall call a triple (W, C,F) as in Proposition 2 a local

switched system generated by the chart (Uσ, ψσ).
We calculate the vector fields in F explicitly. The vector

fields fδ ∈ F are given by

fδ(y) = Jδξδ(x), where x = J−1
δ y + rσ.

and in coordinates

〈fδ(y), ei〉 =

{

(−1)δi〈ξδ(x), ei〉 for 1 ≤ i ≤ m

〈ξδ(x), ei〉 for m < i ≤ n,
(11)

where ei, i ∈ {1, . . . , n}, are canonical basis vectors in R
n,

e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1). In particular, ξδ is

transversal to a facet F of Pδ at x ∈ F if and only if fδ is

transversal to the facet ψσ(F ), provided x is in the domain

of ψσ .

In the next proposition, we characterize solutions of a local

switched system generated by a chart. A crucial question

is whether such a solution is the same as a solution of the

original switched system. Indeed, the next proposition shows

that in any chart, a trajectory of a system with hystereses is

exactly the solution of the local switched system generated

by this chart. Thus, the analysis of the system with hystereses

can be carried out in the charts covering the space X .

Proposition 3: Let (W, C,F) be a local switched system

generated by the chart (Uσ, ψσ) on X (of the switched sys-

tem (P,S,R)), and let (Tk, γ) be a trajectory of (P,S,R)
with γ(t0; 1) = x0 such that γ(t; i) ∈ ψ−1

σ (W ) for all

(t; i) ∈ Tk. Then

y(t) = ψσ(γ(t; i)) (12)

is a solution of the Cauchy problem

ẏ(t) ∈ F (y(t)) a.e., y(0) = ψσ(x0). (13)

Conversely, if y(t) is a solution of the Cauchy problem (13)

in W then there is a trajectory (Tk, γ) of the switched system

(P,S,R) such that (12) holds.

Proof: Let {ti}i∈{0,...,k} be the switching sequence

corresponding to Tk. For each i ∈ {1, ..., k} there exists

δ ∈ 2
m such that γ̇(t; i) = ξδ(γ(t; i)) for all t ∈ [ti−1, ti].

Recall that

ψδ = ψσ|ψ−1
σ (Qδ)

, δ ∈ 2
m.

The vector fields fδ ∈ F and ξδ ∈ S are ψδ-related, i.e.,

fδ = Dψδξδ ◦ (ψ
δ)−1.

Thus γ and the solution y of the Cauchy problem ẏ(t) =
fδ(y(t)), y(ti−1) = ψσ(γ(ti−1; i)) commute in the following

sense ψσ(γ(t; i)) = y(t) for t ∈ [ti−1, ti]. This completes the

first part of the proof since ψσ(γ(ti; i)) = ψσ(γ(ti; i + 1))
by Property 3) in Definition 2.

To prove the second statement, let y be the solution of the

Cauchy problem (13) on [0, T ] with 0 < T <∞, and define

δ̄ : [0, T ] → 2
m a.e. by

δ̄(t) = δ if and only if ẏ(t) = Dψδξδ ◦ (ψ
δ)−1(y(t)).

Let {ti}i∈{0,..,k} with k ∈ N+ ∪ {∞} be the increasing

sequence of points in [0, T ] where δ̄ is not well defined.

Hence, δ̄ is constant on Ii+1 =]ti, ti+1[, and so it may be

(trivially) extended to a continuous map on cl(Ii). Now, for

each i ∈ {1, . . . , k}, we define the map γi on Ii by γi(t) =
(ψδ̄(t))−1(y(t)) and extend it to a continuous map on cl(Ii).
Hence, the time derivative of γi on Ii is

γ̇i(t) = ξδ̄(t)(γi(t)).

The trajectory (Tk; γ) is now defined by Tk =
⋃

i∈{1,...,k} cl(Ii) and γ(t; i) = (γi(t), δ̄(t)).
In the next proposition, we show that under the following

condition
{

〈ξ(x; δ), ei〉〈ξ(x; l(i, δ)), ei〉 < 0

∀i ∈ {1, . . . ,m}, ∀δ ∈ 2
m, ∀x ∈ F

li(i,δ)
i × {δ}

(14)

the solution of the Cauchy problem in (13) is unique.

Condition (14) means that at any interior point of each

facet of any polyhedral set Pδ , after gluing polyhedral sets

together, there is exactly one vector field pointing into and

one vector field pointing out of Pδ . We find this condition

natural for systems with hystereses as switching provoked by
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xi crossing the upper limit X l
i or the lower limit Xu

i should

change the direction of the flow to the opposite. Specifically,

if xi were increasing before the switching then it would

decrease after the switching, and vice versa.

Proposition 4: Suppose that Condition (14) holds. Let

(W, C,F) be a local switched system generated by the chart

(Uσ, ψσ). Then, for any y0 ∈ int(W ), there exists a unique

solution at y0. That is, there exist 0 < T <∞ and a unique

absolutely continuous function y : [0, T ] → W ; t 7→ y(t)
which solves the Cauchy problem

ẏ(t) ∈ F (y(t)) a.e., y(0) = y0.

Proof: If y0 ∈ int(Qδ) for some δ, then there is an open

neighborhood O of y0 such that F (y) is a singleton for any

y ∈ O thus the proposition follows from the Picard-Lindelöf

Theorem.

If y0 6∈ int(Qδ), for any δ, then y0 ∈ {(a, b) ∈ R
m ×

R
n−m | ∃i ∈ {1, . . . ,m} such that ai = 0}. Hence, from

Condition (14) and equation (11), we conclude that F (y0)∩
TQδ

(x0) = {fδ(y0)} for some δ, where, in generic notation,

TS(x) denotes the contingent cone to the convex set S at

z ∈ S. In other words, TS(x) is the closure of the cone

spanned by S \ {z}. This implies the existence of a unique

solution at y0.

We have the following corollary form the proof of Propo-

sition 4.

Corollary 1: If F in Proposition 4 is replaced by F c :
W → 2R

n

; y 7→ co(F (y)), where co(F (y)) is the convex

hull of F (y), then the statement of the proposition still

holds. Furthermore, the unique solutions of the two Cauchy

problems ẏ(t) ∈ F (y(t)) and ẏ(t) ∈ F c(y(t)) with y(0) =
y0 coincide.

By combining Proposition 4 with Proposition 3, we con-

clude under inherent assumptions that the trajectories of

a system with hystereses can be represented uniquely as

solutions of a local switched system generated by a chart.

This is formalized in the theorem below.

Theorem 2: Suppose that Condition (14) holds. Let

(W, C,F) be a local switched system generated by the chart

(Uσ, ψσ) on X . Then (Tk, γ) is a trajectory of (P,S,R) with

γ(t0; 1) = x0 such that γ(t; i) ∈ ψ−1
σ (W ) for all (t; i) ∈ Tk

if and only if

y(t) = ψσ(γ(t; i))

is the unique solution of the Cauchy problem

ẏ(t) ∈ F (y(t)) a.e., y(0) = ψσ(x0).

IV. CONCLUSION

We have shown that the state space of an n-dimensional

system with m hystereses can be modeled as a smooth

manifold, the Cartesian product of an m-torus and an

(n−m)-dimensional Euclidean space. The charts have been

constructed explicitly, making the results of this work ready

for use in concrete applications. Moreover, the dynamics of

the system with hystereses have been shown to be equivalent

to a dynamical system defined in a chart by means of a

differential inclusion.
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