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Abstract— This paper presents iterative methods for comput-
ing center and center-stable manifolds. The methods are based
on the contraction mapping theorem and compute flows on
the invariant manifolds. An important application includes the
design of optimal output regulators. It will be shown that the
center manifold algorithm solves the regulator equation and
the center-stable manifold algorithm computes controllers for
optimal output regulation.

I. INTRODUCTION

Invariant manifolds play important roles in analyzing dy-

namical systems and designing control systems. Center man-

ifold theory not only provides stability analysis of nonlinear

systems with purely imaginary eigenvalues, but also derives

conditions for the nonlinear output regulation problem [4],

[3]. Stable manifold theory, together with Hamiltonian me-

chanics or symplectic geometry, has been applied to the

theory of Hamilton-Jacobi equations such as optimal control

and H∞ control problems [12], [13], [10]. Despite its impor-

tance, computation methods for invariant manifolds are not

well-developed. For center manifolds, Taylor expansion had

been the only method for actual computation for many years.

Recently, Suzuki et. al. [11] proposed an iterative method

for center manifold computation. For stable manifolds, the

Taylor expansion method [8] has been used for years as well.

On the other hand, Krauskopf et. al. [6] review several recent

numerical approaches and Sakamoto and van der Schaft

[10] propose an iterative method based on the contraction

mapping theorem.

The output regulation problem is one of central problems

in control theory. It is also called servo mechanism and its

design is a fundamental technology in engineering. Isidori

and Byrnes [4] obtained a necessary and sufficient condi-

tion for the solvability of local nonlinear output regulation

problems, which consists of a set of a partial differential

equation and an algebraic equation (the regulator equation).

Also, it was shown that the nonlinear regulator equation is

closely related to a center manifold of an extended system

with exosystem that generates the signals to be tracked.

The crucial part of this problem is finding the zero-error

manifold, which is a manifold such that, provided that the

control is suitable (this is to be determined as well), it is

forward invariant and, moreover, the tracking error equals
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zero on the manifold. These conditions are described in

the regulator equation. In the linear case, its solution can

be found in terms of matrix equations while the solution

is a rather difficult problem in the nonlinear case. The

classical method described in [2] and other papers relies on

expansion of all the involved functions into Taylor series

and the approximation of the solution is sought in a form of

Taylor polynomials. This method uses only basic calculus

but requires rather laborious and difficult to algorithmize

the computations. Methods based on the finite-elements

were presented in [9]. These methods, unfortunately, require

specialized software for the solution of the finite-elements.

The method based on approximation of center manifolds is

proposed in [11]. It is an iterative method and if the plant and

the exosystem are described by polynomials, approximate

solutions of the regulator equation are produced without

solving any algebraic equations which is required in the

Taylor expansion approach. However, this method is limited

only to the case where zero dynamics are hyperbolic and

the computational load grows exponentially according to the

order of approximation.

In this paper, we propose iterative algorithms that compute

center and center-stable manifolds in a system of ordinary

differential equations. The algorithms are defined using time

flows approximately on the center or center-stable manifolds

and can be handled in both analytic and numerical ways. The

idea of algorithms is similar to those in [10], [11] which

is based on the contraction mapping theorem. The center

manifold algorithm in the paper is different form that in [11]

in that the new algorithm consists of flows on the center

manifold while polynomial functions of initial values (or,

parameters y0) are produced in [11]. Numerical treatment

of flows in the algorithms is known to be advantageous

from the viewpoints of computational load and larger do-

mains of validity [1]. It should be noted that Taylor series

solutions are valid, in general, in small domains in which

their convergence is guaranteed. We apply these computation

theories to the design problem of optimal output regulation.

We prove that the center manifold algorithm, when applied to

the Hamiltonian system associated with the optimal control

problem, approximately solves the regulator equation under

the mild assumption that relative degrees are well-defined.

We also prove that the optimal controller is computed from

the center-stable manifold of the Hamiltonian system and

that one does not need to solve the regulator equation. A

similar problem is addressed in [7], but, the results in the

present paper provide a constructive design procedure and

do not assume the solution of regulator equation.
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The paper is organized as follows: after this introduction

the section containing description of approximation theory

for center and center-stable manifolds is presented. The

third section describes its applications to optimal output

regulation. A numerical example is given in the fourth

section, after which concluding remarks follow.

II. CENTER AND CENTER-STABLE MANIFOLDS

Consider the system of ordinary differential equations of

the form

ẋ = Ax+X(x, y, z) (1a)

ẏ = By + Y (x, y, z) (1b)

ż = Cz + Z(x, y, z). (1c)

It is assumed A ∈ R
nx×nx has eigenvalues with negative real

part, B ∈ R
ny×ny has eigenvalues with zero real part and

C ∈ R
nz×nz has eigenvalues with positive real parts. The

functions X,Y, Z are smooth and their values as well as the

values of their first derivatives at the origin equal zero. It is

well-known (see, e.g., [5]) that there exist center and center-

stable manifolds in (1a)-(1c). These invariant manifolds can

be reformulated into the form of integral equations. The

equations describing the center manifold are as follows:

x(t) =

∫ t

−∞

eA(t−s)X(x(s), y(s), z(s))ds (2a)

y(t) =eBty0 +

∫ t

0

eB(t−s)Y (x(s), y(s), z(s))ds (2b)

z(t) =−

∫

∞

t

eC(t−s)Z(x(s), y(s), z(s))ds (2c)

In the case of the center-stable manifold, the equations to be

solved are:

x(t) =eAtx0 +

∫ t

0

eA(t−s)X(x(s), y(s), z(s))ds (3a)

y(t) =eBty0 +

∫ t

0

eB(t−s)Y (x(s), y(s), z(s))ds (3b)

z(t) =−

∫

∞

t

eC(t−s)Z(x(s), y(s), z(s))ds (3c)

In [5], the existence of center and center-stable manifolds

is proven by showing that certain operators on a functional

space are contraction and use the contraction mapping

theorem. However, this approach is not constructive and

computational methods are limited to the one that uses

Taylor expansion for equivalent partial differential equations

describing center and center-stable manifolds. In this paper,

we employ different operators and propose a constructive

and iterative method to obtain those invariant manifolds.

First, we note that, from the smoothness of the system,

there exists a nonnegative function η : [0,+∞) → [0,+∞)
such that for all xi ∈ R

nx , yi ∈ R
ny , zi ∈ R

nz , i = 1, 2, if

|(x1, y1, z1)− (x2, y2, z2)| ≤ δ holds, then, it also holds that

|X(x1, y1, z1)−X(x2, y2, z2)|
≤ η(δ)|(x1, y1, z1)− (x2, y2, z2)|,

|Y (x1, y1, z1)− Y (x2, y2, z2)|
≤ η(δ)|(x1, y1, z1)− (x2, y2, z2)|,

|Z(x1, y1, z1)− Z(x2, y2, z2)|
≤ η(δ)|(x1, y1, z1)− (x2, y2, z2)|.

(4)

We assume there exist positive constants a,K such that

‖eAt‖ ≤ Ke−at, eBt ≤ K, ‖eCt‖ ≤ Keat for all t > 0.

Here, (C∞(R+))
nx+ny+nz is a set of smooth functions

defined on [0,∞).
We define the sequences (xk(t), yk(t), zk(t)) as

(x1(t) = 0, y1(t) = eBty0, z1(t) = 0





xk+1

yk+1

zk+1



 (t) =







∫ t

−∞
eA(t−s)X(xk(s), yk(s), zk(s)) ds

eBty0 +
∫ t

0
eB(t−s)Y (xk(s), yk(s), zk(s)) ds

−
∫

∞

t
eC(t−s)Z(xk(s), yk(s), zk(s)) ds







with y0 ∈ R
ny being initial condition in the case if the center

manifold is sought or

(x1(t) = eAtx0, y1(t) = eBty0, z1(t) = 0





xk+1(t)
yk+1(t)
zk+1(t)



 (t)

=





eAtx0 +
∫ t

0
eA(t−s)X(xk(s), yk(s), zk(s)) ds

eBty0 +
∫ t

0
eB(t−s)Y (xk(s), yk(s), zk(s)) ds

−
∫

∞

t
eC(t−s)Z(xk(s), yk(s), zk(s)) ds





with x0 ∈ R
nx , y0 ∈ R

ny taken as initial condition in

the case if the center-stable manifold is to be found. This

initial condition is regarded as a parameter. For the sake of

simplicity this dependence is not reflected in the notation.

The fixed point whose existence will be shown then solves

the equations (2), resp. (3).

Theorem 2.1: Center manifold case: There exists δ0 > 0
such that, for each initial condition y0 such that |y0| < δ0 the

sequence (xk(t), yk(t), zk(t)) converges locally uniformly

in R to a limit function (x∗(t, y0), y
∗(t, y0), z

∗(t, y0))
which satisfies (2a-2c). Also, in the center-stable

manifold case, the sequence (xk(t), yk(t), zk(t))(t)
converges locally uniformly in R to a limit function

(x∗(t, x0, y0), y
∗(t, x0, y0), z

∗(t, x0, y0)) which satisfies

(3a-3c).

The proof is rather lengthy, therefore it is omitted.

Next, we demonstrate that the functions x∗, z∗ in the

center case and the function z∗ in the center-stable case are

tangent to the other axes.

Theorem 2.2: For sufficiently small |y0|,

|(x∗(0, y0), z
∗(0, y0)| ≤ C1|y0|

2, (5)
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or, for sufficiently small |(x0, y0)|,

|z∗(0, x0, y0)| ≤ C2|(x0, y0)|
2

with positive constants C1, C2.

Proof: The proof is done by induction using the

iterations above. Again, it is omitted.

III. OPTIMAL OUTPUT REGULATION

This section describes an application of the center, center-

stable manifold algorithms to nonlinear output regulation

theory with optimality. It will be shown that the center

manifold algorithm approximately solves the nonlinear reg-

ulator equation which is a necessary and sufficient condition

for output regulation. It will be also shown, however, that

solving the nonlinear regulator equation is not necessary for

the design of optimal output regulator and that center-stable

manifold of an associated Hamiltonian system provides the

controller. The formulation of optimal output regulation is

as follows.

System: ẋ = f(x) + g(x)u, x(t) ∈ R
n, f(0) = 0

Exosystem: ẇ = s(w), w(t) ∈ R
p, s(0) = 0

Error (output) equation: e = h(x,w)

Denote

A =
∂f

∂x
x(0), B = g(0), C =

∂h

∂x
(0, 0),

S =
∂s

∂w
(0), Q =

∂h

∂w
(0, 0).

Assumption 3.1: i) The exosystem is Lyapunov stable

at w = 0, Poisson stable around w = 0 and all

eigenvalues of S are purely imaginary.

ii) The pair (A, B) is stabilizable.

iii) The pair (C,A) is detectable.

iv) The system is square, that is, the number of inputs and

outputs are both r.

v) The system has relative degree 1, that is, Lgh(0, 0) is

nonsingular.

Assumptions 3.1-iv), 3.1-v) are for the sake of brevity in

notation and can be easily extended to the general cases

where systems have different numbers of inputs and outputs

and general relative degrees.

We look for the control such that

J =
1

2

∫

∞

0

|e|2 + |ė|2 dt

is minimized. J can be written as

J = 1
2

∫

∞

0
|h(x,w)|

2

+ |Lfh(x,w) + (Lgh(x,w))u+ Lsh(x,w)|
2
dt.

We first apply dynamic programming and derive a

Hamilton-Jacobi equation for this optimal control problem.

The Hamiltonian HD for dynamic programming is

HD = pTx (f + gu) + pTws(w) +
1

2
|h(x,w)|

2

+
1

2
|Lfh(x,w) + (Lgh(x,w))u+ Lsh(x,w)|

2
,

and the control vector ū that minimizes HD is

ū = −(Lgh)
−1

{

(Lgh)
−T g(x)T px + Lfh+ Lsh

}

.

Note that Lgh(x,w) is nonsingular around (0, 0) from

Assumption 1-v). Therefore, the Hamilton-Jacobi equation

for our optimal control problem is

pTx
{

f − g(Lgh)
−1(Lfh+ Lsh)

}

+ pTws(w)

−
1

2
pTx g(Lgh)

−1(Lgh)
−T gT px +

1

2
|h(x,w)|2. (6)

Noting that

Lgh(x,w) = CB +O(|x|+ |w|),

Lsh(x,w) = QSw +O((|x|+ |w|)2),

f − g(Lgh)
−1Lfh = (A−B(CB)−1CA)x

+O((|x|+ |w|)2),

g(Lgh)
−1Lsh = B(CB)−1QSw +O((|x|+ |w|)2),

· · · ,

the Hamiltonian system associated with (6) is


















































ẋ =(A−B(CB)−1CA)x−B(CB)−1QSw

−B(BTCTCB)
−1

BT px +N1(x,w, px)

ẇ =Sw +N2(w)

ṗx =CTCx− CTQw

− (A−B(CB)−1CA)T px +N3(x,w, px)

ṗw =−QTCx−QTQw + STQT (BTCT )−1BT px

− ST pw +N4(x,w, px, pw).
(7)

The nonlinear terms N1, N2 and N3 are appropriately

calculated. For example,

N1 = f−g(Lgh)
−1(Lfh+Lsh)−g(Lgh)

−1(Lgh)
−T gT px

− (A−B(CB)−1CA)x+B(CB)−1QSw

+B(BTCTCB)
−1

BT px. (8)

Here, it will be important that N1, N2 and N3 do not depend

on pw.

Assumption 3.2: The linear regulator equation

ΠS = AΠ+BΣ, CΠ+Q = 0

has a solution Π ∈ R
n×p, Σ ∈ R

r×p.

Define the matrix describing the linear part in (7) as H .

Let also Ā = A−B(CB)−1CA. Then, using Assumptions

3.1-iv), 3.1-v), it follows that

T−1
1 HT1

=









Ā 0 −B(BTCTCB)−1BT 0
0 S 0 0

−CTC 0 −ĀT 0
0 0 0 −ST









,

where

T1 =









I Π 0 0
0 I 0 0
0 0 I 0
0 0 −ΠT I









.
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To see this, one uses −QS = CAΠ + CBΣ from As-

sumption 3.2. Assumptions 3.1-ii) and 3.1-iii) enable the

diagonalization:

U−1

(

A−B(CB)−1CA −B(BTCTCB)−1BT

−CTC −(A−B(CB)−1CA)T

)

U

=

(

Ac 0

0 −Ac
T

)

, U =

(

I V
P PV + I

)

where Ac = A−B(CB)−1CA−B(BTCTCB)−1BTP is a

stable matrix, P is a solution of a Riccati equation associated

with the Hamiltonian matrix in the left

PĀ+ ĀTP − PRBP + CTC = 0;

Ā = A−B(CB)−1CA, RB = B(BTCTCB)−1BT

and V is a solution of Lyapunov equation V Ac + AT
c V =

B(BTCTCB)−1BT . Thus, after the linear transformation

T1T2 with

T2 =









I 0 V 0
0 I 0 0
P 0 PV + I 0
0 0 0 I









,

the Hamiltonian system (7) has the form (1a)-(1c) in the

previous section in the new coordinates.

Remark 3.1: Linear optimal input is

ū =− (BTCTCB)−1{BTP (x−Πw) +BTCTCAx

+BTCTQSw}

=− (BTCTCB)−1BTP (x−Πw)

− (CB)−1CAx+ (CB)−1CAΠw +Σw

=− {(CB)−1CA+ (BTCTCB)−1BTP}(x−Πw) + Σw,

which corresponds to the standard form in the theory of

output regulation u = K(x− Πw) + Σw with a stabilizing

gain K.

In the new coordinates [x′T , w′T , p′x
T
, p′w

T
]T =

T−1
1 [xT , wT , px

T , pw
T ]T , the Hamiltonian system (7) is

written as


















ẋ′ = Āx′ −R−1
B p′x + Ñ1(x

′, w′, p′x)

ẇ′ = Sw′ + Ñ2(w
′)

ṗ′x = −CTCx′ − ĀT p′x + Ñ3(x
′, w′, p′x)

ṗ′w = −ST p′w + Ñ4(x
′, w′, p′x, p

′

w),

(9)

and, further by [x′′T , w′′T , p′′x
T
, p′′w

T
]T =

T−1
2 [x′T , w′T , p′x

T
, p′w

T
]T ,



















ẋ′′ = Acx
′′ + N̄1(x

′′, w′′, p′′x)

ẇ′′ = Sw′′ + N̄2(w
′′)

ṗ′′x = −AT
c p

′′

x + N̄3(x
′′, w′′, p′′x)

ṗ′′w = −ST p′′w + N̄4(x
′′, w′′, p′′x, p

′′

w).

(10)

The center manifold theory states that there exist center

manifolds x′′ = π̄1(w
′), p′′x = π̄2(w

′) for (10) around

w′′ = 0 and center-stable manifold p′′x = π3(x
′′, w′′). Here,

we note that the other center part corresponding to p′′w does

not affect the manifolds since x′′ and p′′x do not depend

on p′′w. In the coordinates [x′T , w′T , p′x
T
, p′w

T
]T , the center

manifold is

x′ = π1(w
′) := π̄1(w

′) + V π̄2(w
′)

p′x = π2(w
′) := P π̄1(w

′) + (PV + I)π̄2(w
′).

In the original coordinates, then,

x = π(w) = Πw + π1(w) = Πw + π̄1(w) + V π̄2(w),

px = π2(w) = P π̄1(w) + (PV + I)π̄2(w).

The next theorem asserts that the center manifold algorithm

in the previous section approximately solves the nonlinear

regulator equation

∂π

∂w
s(w) = f(π(w)) + g(π(w))σ(w), h(π(w)) = q(w).

(11)

Theorem 3.3: The solution of the regulator equation (11)

is given by

π(w) = Πw + π1(w),

σ(w) = −(Lgh(π(w), w))
−1

{

(Lgh(π(w), w))
−T g(π(w))T

×π2(w) + Lfh(π(w), w) + Lsh(π(w), w)} .
Proof: Considering the relations of (7), (9) and (10)

with T1, T2, it can be shown that x = π(w), px = π2(w)
is the center manifold in (7). The pde that describes its

invariance property is

∂π

∂w
s(w) = (A−B(CB)−1CA)π(w)−B(CB)−1QSw

−B(BTCTCB)−1BTπ2(w) +N1(π(w), w, π2(w)).

From (8), the right side is

f(π(w))− g(π(w))(Lgh(π(w), w))
−1

× {Lfh(π(w), w) + Lsh(π(w), w))

+(Lgh(π(w), w))
−T g(π(w))Tπ2(w)

}

,

from which one concludes that π(w) and σ(w) above are

the solution of the regulator equation. The proof that π, σ
satisfy the algebraic part of the regulator equation can be

done in the standard way using Assumption 3.1-i) (see, e.g.,

[3], [4]).

Remark 3.2: When the system and exosystem are all

linear, π(w) = Πw and σ(w) = Σw because the center

manifolds π1(w), π2(w) do not include first order terms

(Theorem 2.2) and

σ(w) = −B(BTCTCB)−1(BTCTCAΠ+BTCTQS)w

= −(CB)−1CAΠw − (CB)−1QSw

= −(CB)−1CAΠw + (CB)−1(CAΠ+ CBΣ)w

= Σw.

On the other hand, the center-stable manifold p′′x =
π3(x

′′, w′′) is, in the original coordinates, written as

−P (x−Πw) + px = π3((V P + I)(x−Πw)− V px, w).
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The implicit function theorem and Theorem 2.2 assure that

it can be re-written as

px = px(x,w)

around (x,w) = (0, 0).
Theorem 3.4: The optimal output regulation controller is

given by

u = −(Lgh)
−1

×
{

(Lgh)
−T g(x)T px(x,w) + Lfh(x,w) + Lsh(x,w)

}

,

where px(x,w) represents the center-stable manifold of (10)

around the origin.

Proof: We prove the theorem by showing that

px(x,w) = ∂V/∂xT with a solution V (x,w) of the

Hamilton-Jacobi equation (6). To do that, we show that there

is a Lagrangian submanifold L on which px = px(x,w) and

the canonical projection to (x,w) space is surjective.

First, we show that (10) is also a Hamiltonian system,

by showing that the coordinate transformation T1T2 is sym-

plectic transforms. From the expression of T1, T2, it follows

that

sTT
1 JT1 = J, TT

2 JT2 = J ; J =









0 0 In 0
0 0 0 Ip

−In 0 0 0
0 −Ip 0 0









.

The group property of symplectic transforms proves that

T1T2 is symplectic. We next prove that there exists an

(n + p)-dimensional Lagrangian submanifold L on which

px = px(x,w) holds. Using the fact that N̄1, N̄2 and N̄3

do not depend on p′′w and that N̄4(0, p
′′

x, w
′′, 0) = 0, it is

possible to find a function p′′w(w
′′) such that

{(x′′, p′′x, w
′′, p′′w) | p

′′

x = π3(x
′′, w′′), p′′w = p′′w(w

′′)}

is an invariant manifold of (10) of dimension (n+p) and that

the Hamiltonian flow on it converges to x′′ = 0, p′′w = 0.

Considering the symplectic 2-form in this coordinates and

its invariance along the Hamiltonian flow, one can show that

the symplectic 2-form vanishes on

L = {(x′′, p′′x, w
′′, p′′w) | p

′′

x = π3(x
′′, w′′), p′′w = p′′w(w

′′)} ,

which shows that L is a Lagrangian submanifold on which

p′′x = π3(x
′′, w′′). In the original coordinates, px = px(x,w)

holds on L. From linear analysis of (6), namely, solving

the approximating (n+p)-dimensional Riccati equation, one

knows that

V (x,w) = (x−Π)TP (x−Π)/2 +O((|x|+ |w|)2),

which guarantees that L is surjective to the base space (x,w)
around the origin. This proves that there exists a generating

function V (x,w) of L such that

∂V

∂x

T

= px(x,w),
∂V

∂x

T

= pw(x,w),

satisfying the Hamilton-Jacobi equation (6).

Remark 3.3: From Theorem 3.4, one sees that it is suffi-

cient to compute center-stable manifold to design nonlinear

optimal output regulators and it is not necessary to solve the

nonlinear regulator equation (11). The actual computation of

px(x,w) we carry out in this paper is as follows. Applying

the algorithm to (10), we have parameterized solutions

x′′(t) = x′′(t, x0), x′′(0) = x0

w′′(t) = w′′(t, w0), w′′(0) = w0

p′′x(t) = p′′x(t, x0, w0),

where parameters x0 and w0 are sufficiently small so that the

convergence of the algorithm is guaranteed. In the original

coordinates,

x(t) = x′′(t) + V p′′x(t) + Π(Px′′(t) + (PV + I)p′′x(t))

w(t) = w′′(t)

px(t) = Px′′(t) + (PV + I)p′′x(t)

give the parameterized center-stable manifold. The implicit

function theorem assures that px can be uniquely repre-

sented, on the center-stable manifold around the origin, as

a function of x, w. In the next section, we use polynomial

fitting to get the function.

IV. NUMERICAL EXAMPLE

Consider the example with unstable linearization
(

ẋ1

ẋ2

)

=

(

1 0.5
2 1.6

)(

x1

x2

)

+

(

x3
1

2x3
1 + x3

2

)

+

(

1
1

)

u

with exosystem

ẇ = 0.

The goal is to achieve x1 = w in the limit. To do this, as in

Sec.III, the cost functional is defined as

J =
1

2

∫ +∞

0

(x1 − w)2 + (ẋ1)
2dt.

Defining the matrix H as

H =

















0 0 0 −1 −1 0
2 1.1 0 −1 −1 0
0 0 0 0 0 0
−1 0 1 0 −2 0
0 0 0 0 −1.1 0
1 0 −1 0 0 0

















and using the approach described above, one infers the

equation (7) attains the form
















ẋ1

ẋ2

ẇ
ṗ1
ṗ2
ṗw

















= H

















x1

x2

w
p1
p2
pw

















+

















x3
1

x3
1 + x3

2

0
−3x2

1p2
−3x2

2p2
0

















.
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Fig. 1. The states of the system and the exosystem
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Fig. 2. The optimal control

The simulation results can be seen in the figures Fig. 1 and

2. Here, the initial conditions are x1(0) = −0.05, x2(0) = 0
and w(0) = 0.2 which is the value to be approached by the

state x1. Fig. 1 shows the states of the system and the state

of the exosystem. The state x1 is represented by the solid

line, the dotted line shows the second state x2 and, finally,

the state of the exosystem is demonstrated by the dashed

line. Fig. 2 shows the optimal control.

To compare the results with the standard LQ controller

the same system with the same initial conditions and cost

functional was used. The results are in Fig. 3, the meaning

of all lines is the same as in the Fig. 1. One can see that

the steady state error is much larger due to presence of

nonlinearities that cannot be taken into account in the process

of designing the LQ controller.

V. CONCLUDING REMARKS

In this paper, we proposed new iterative and constructive

methods to compute center and center-stable manifolds using

the contraction mapping theorem. The algorithms are written

in a suitable way for computer implementation. One of

the important applications of this approximation theory is

the design of optimal output regulators. It has been shown

that the center manifold algorithm approximately solves the

regulator equation and the center-stable manifold algorithm

computes the optimal output regulation controllers.
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Fig. 3. The states of the system under LQ control
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