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Abstract— This paper considers the problem of identifying
the topology of a sparsely interconnected network of dynamical
systems from experimental noisy data. Specifically, we assume
that the observed data was generated by an underlying, un-
known graph topology where each node corresponds to a given
time-series and each link to an unknown autoregressive model
that maps those time series. The goal is to recover the sparsest
(in the sense of having the fewest number of links) structure
compatible with some a-priori information and capable of
explaining the observed data. Contrary to related existing
work, our framework allows for (unmeasurable) exogenous
inputs, intended to model relatively infrequent events such as
environmental or set-point changes in the underlying processes.
The main result of the paper shows that both the network
topology and the unknown inputs can be identified by solving
a convex optimization problem, obtained by combining Group-
Lasso type arguments with a re-weighted heuristics. As shown
here, this combination leads to substantially sparser topologies
than using either group Lasso or orthogonal decomposition
based algorithms. These results are illustrated using both
academic examples and several non–trivial problems drawn
from multiple application domains that include finances, biology
and computer vision.

I. INTRODUCTION

The problem of identifying the interconnection structure

of a network of dynamical systems is ubiquitous in science

and engineering, arising in fields as diverse as neuroscience,

systems biology, chemistry and economics. The idea of

identifying causal relationships between time series dates

back to the pioneering work of Granger [1], introducing

the concept of “Granger Causality”, which formalized the

intuitive idea that if a time series {x} is “caused” by a second

one {y}, then knowledge of the past values of {y} should

lead to better prediction of future values of {x}. The idea

of Granger Causality, combined with graphical methods was

exploited in [2], [3] to identify the underlying structure of

a network where a set of time series are related through

Vector Auto Regressive (VAR) models. More recently, [4]

proposed an efficient algorithm for recovering a tree-like

network structure, based on the use of a metric between

nodes derived using Wiener filtering arguments.

In general, in the absence of additional a-priori informa-

tion, the problem of recovering a network structure solely

from output measurements is ill-posed, since typically, many

such descriptions are possible. Under these circumstances, it

is reasonable to impose additional criteria on the network
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structure, in order to regularize the problem. In particu-

lar, in many situations, it is of interest to identify the

sparsest network, in the sense of having the least number

of interconnections, that explains the observed data. This

scenario reflects the fact that when alternative models are

possible, often the most parsimonious is the correct one. The

resulting problem, network structure identification subject

to additional sparsity constraints, has been the subject of

intense research in the past few years, leading to a number

of approaches. Motivated by the problem of identifying

a sparse connectivity structure underlying brain functions,

[5] proposed a Lasso type algorithm to identify a sparse

network where each link corresponds to a first order VAR

process, an idea extended in [6] to higher order processes.

The main idea underlying these methods is to exploit the

fact that penalizing the ℓ1 norm of the vector of regression

coefficients tends to produce sparse solution (indeed, in

cases where the restricted isometry property holds [7], [8],

this method will recover the sparsest solution). The use of

an ℓ1 type penalty has also been proposed to identify the

structure of reaction [9] and genetic networks [10], where

the goal, is, in both cases, to identify a sparse (static) matrix

related to the network connectivity or its dynamics. The

main difficulty with Lasso based approaches stems from the

fact that enforcing sparsity of the entire vector of regressor

coefficients does not necessarily result in a sparse network

structure, since the resulting solution can consist of many

links, each with a few coefficients. This difficulty can be

circumvented by resorting to group Lasso type approaches

[11], which seek to enforce block sparsity by using a combi-

nation of ℓ1 and ℓ2 norm constraints on the coefficients of the

regressor. While this approach was shown to work well with

artificial data in [12], there is no guarantee that it will indeed

produce the sparsest network topology, due to its heuristic

nature. Finally, a different approach was pursued in in [13],

based on the use of a modified Orthogonal Least Squares

algorithm, Cyclic Orthogonal Least Squares (COLS). As

before, while the approach was shown to perform well in

several examples, there is no guarantee that it will yield

the sparsest solution, due to its greedy nature. In addition,

this approach requires enforcing an a-priori limit on the

number of links allowed to point to a single node, and

such information may not be readily available, specially

in cases where this number has high variability amongst

nodes. It is also worth emphasizing that the approaches

outlined above only consider exogenous inputs in the form

of (typically gaussian) noise. However, many situations of

practical interest also necessitate considering other types of

inputs to take into account for instance environmental or
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set-point changes in the underlying processes. An additional

difficulty stems from the fact that these inputs are typically

unmeasurable and must be inferred only from the actions on

the observable system outputs.

To address these difficulties, in this paper we propose

a convex optimization based approach to the problem of

identifying sparse networks structures from observed noisy

data, in the presence of unmeasurable (but infrequently

changing) inputs. The proposed method is closest in spirit

to that in [12], in the sense that it is also based on a group

Lasso type argument. The main differences consist in the

ability to handle unknown inputs, and in a reformulation of

the problem, that allows for using a re-weighted iterative type

algorithm. As illustrated in the paper with both synthetic data

and several non–trivial real examples, the resulting algorithm

substantially outperforms both group-Lasso and orthogonal

least squares based ones.

II. STATEMENT OF THE PROBLEM

Next, we formalize the problem under consideration. We

will consider data generated by an underlying directed graph

G = {V,E} structure, where each node V corresponds

to a given time series, and the edges E connecting these

nodes represent unknown linear time invariant systems, with

a known bound on their order, and subject to unmeasurable,

but rare exogenous disturbances. We will further assume that

there are no self-loops, that is the measurements at the ith

node, xi(t), do not depend on its past values, xi(t − k),
leading to an overall model of the form:

xi(t) =

P
∑

j=1,j 6=i

N
∑

n=k

(aji(n)xj(t − n)) + ui(t) + ηi(t) (1)

Here aij are unknown coefficients, ηi(t), ‖ηi‖∞ ≤ ǫ
models the combined effects of noise and model uncertainty,

and ui(t) represents an external, piecewise constant bias

input that changes infrequently and is intended to account

for relatively rare external events. An example of such a

situation is a setpoint change due a change in environmental

conditions (e.g. a source of nutrients being exhausted, ne-

cessitating the use of a different one). This situation will

be modeled by assuming that the derivative of ui(t) is

sparse. In this context, the problem of identifying the network

structure can be precisely stated as, given a priori bounds

ǫ on ‖ηt‖∞ and nr on the order of the regressors, find a

set of coefficients aij and exogenous inputs ui such that the

resulting model explains the observed data. As mentioned

early, in the absence of other priors this problem is ill posed

and admits multiple solutions. Thus, in order to regularize

the problem, we will seek the sparsest one, in the sense of the

corresponding graph having the minimum number of edges.

An example of this situation is illustrated in figure 1, showing

a graph that has only 7 edges, out of a possible total of

2
(

5

2

)

= 20 interconnections.

Rewriting (1) in matrix form yields:

xi = [Xi, I]
[

ai
t
ui

t
]t

+ ηi (2)
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Fig. 1. Sparse Network Topology, for P=5

where

xi = [xi(t), xi(t − 1), xi(t − 2), · · · , x(N + 1)]
t

ui = [ui(t), ui(t − 1), ui(t − 2), · · · , u(N + 1)]
t

ηi = [ηi(t), ηi(t − 1), ηi(t − 2), · · · , η(N + 1)]
t

ai = [a1i, a2i, a3i, · · · , aPi]
t

(3)

I denotes the identity matrix of suitable size and where

Xi = [H1,H2, · · · ,HP] (4)

Here Hj denotes the Hankel matrix formed from the mea-

surements at the jth node, that is:

Hj =











xj(t − 1) xj(t − 2) · · · xj(t − N)
xj(t − 2) xj(t − 3) · · · xj(t − (N + 1))

...
...

...
...

xj(N) xj(N − 1) · · · xj(1)











It follows that the complete network structure can be de-

scribed written by a matrix equation of the form:

x = [X, I] [at
u

t]t + η (5)

where

x = [x1,x2,x3, · · · ,xP]
t

u = [u1,u2,u3, · · · ,uP]
t

η = [η1, η2, η3, · · · , ηP]
t

a = [a1,a2,a3, · · · ,aP]
t

(6)

and

X =











X1 0 · · · 0

0 X2 · · · 0

...
...

...
...

0 0 · · · XP











Thus, in this context, the problem of interest can be

formalized as finding the block–sparsest solution to (5)1

III. IDENTIFICATION ALGORITHMS

In this section we present the main results of this paper,

two algorithms to search for block-sparse solutions to (5).

The first algorithm is global, in the sense that it considers

all the information available, and generates a complete set

of links (and associated regressor vectors) and exogenous

1Note that we are not interested in sparsifying the vector a. Rather, we
want to find solutions with the minimum number of non–zero block elements
ai.
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inputs. The second algorithm is distributed, in the sense

that, at a given step, only generates the edges linking a

single node to the rest of the graph. While suboptimal in

principle, nevertheless this algorithm is attractive for large

data sets, due to its better scaling properties and robustness

to perturbations.

A. Algorithm 1 (Global Optimization)

This algorithm searches for sparse solutions to (5) by

solving (iteratively) the following optimization problem (sug-

gested by the re-weighted heuristic proposed in [14] )

min
∑P

j=1

∑P

i=1
W1(j, i) ‖aji‖2

+ λ ‖W2∆u‖
1

subject to:
∥

∥

∥
[X I] [at

u
t]

t
− x

∥

∥

∥

∞
≤ ǫ

(7)

where ∆u represents the first order difference of the input

vector u, W1 and W2 are weighting matrices, and λ is a

Lagrange multiplier that plays the role of a tuning parameter

between network sparsity and event sensitivity. Next, we

briefly outline an heuristic to balance these values. The idea

is to consider the two extreme situations where, on one case

the data is explained without the need for external inputs,

and in the other, the data is solely explained by the inputs.

Define:

ã = argmin‖a‖2 subject to: ‖Xa − x‖∞ ≤ ǫ (8)

or

ã = argmina‖Xa − x‖∞

when (8) is infeasible. Next, define ∆ũ = ∆x, where ∆
denotes first differences. In terms of these values, we propose

to select λ according to:

λ =
‖ã‖2

‖ũ‖1

where the idea here is to give equal weights to the two

extreme cases. The complete algorithm is outlined below

1: procedure REWEIGHTEDSPARSIFICATION

2: Set W1 to all ones

3: Set W2 to identity matrix

4: Set δ to a small number

5: Set ǫ to a small number

6: Set currval
7: Set prevval
8: while |currval − prevval| ≤ ǫ do

9: Solve (7)

10: Set Minimizers and Minimum Value

11: Set prevval=currval
12: Set currval=Minimum Value

13: Set W1(j, i) = 1/(‖aji‖2
+ δ)

14: Set Normalize W1 = W1/mean(W1)
15: Set W2 = diag[1/(|∆u| + δ)]
16: Set Normalize W2 = W2/mean(W2)
17: end while

18: end procedure

where 1/ |∆u| denotes element wise division. It is worth

emphasizing that the normalization step above is required

to avoid W1 and W2 becoming arbitrarily large and “poi-

soning” the optimization problem with some arbitrarily large

numbers. For a graph with P nodes, the number of variables

in the optimization problem (7) is bounded by n = P (Pnr+
T ), where nr is a bound on the regressor order and T is

the number of elements of each data sequence. Since the

worst case computational complexity of general SDP solvers

is at least O(n8) [15], where n is the number of decision

variables, it follows that the worst case complexity of the

algorithm above is O(P 8(Pnr + T )8).

B. Algorithm 2 (Distributed Optimization)

In this section we propose an alternative to Algorithm 1,

based on a greedy, local optimization, where, at each step

a node is selected, the connections to all other nodes in the

graph are minimized and then the algorithm moves on to

the next node. While due to its greedy nature the algorithm

may fail to find the sparsest solution to the problem, it

is attractive for the case of large networks, since it has

lower computational complexity, In addition, the solutions

obtained (due to the local nature) are more robust to changes

in the network topology, since these changes affect only

a subset of nodes (and hence solutions). In this case, the

overall computational complexity is O(P (Pnr+T )8), which

increases at a much slower rate than that of Algorithm 1.

The main idea is to solve (2) one node at a time, as outlined

below2:

1: procedure LOCALSPARSIFICATION

2: Set i = 1
3: while i ≤ P do:

4: solve

min

P
∑

j=1

W1(j, i) ‖aji‖2
+ λ ‖W2,iui‖1

subject to:
∥

∥

∥
[Xi I]

[

ai
t
ui

t
]t
− xi

∥

∥

∥

∞
≤ ǫ

using Procedure reWeightedSparsification

5: Set i = i + 1
6: end while

7: end procedure

IV. SYNTHETIC DATA EXPERIMENTS AND

PERFORMANCE CHARACTERIZATION

In this section we apply the proposed algorithms in several

examples involving artificially generated data corrupted by

noise. Our goal here is to provide a comprehensive per-

formance characterization and investigation of the effects

of noise in controlled scenarios where the ground truth is

available. In all cases comparisons are made both in terms

of the identified structure and the (percentage) fitting error

defined as:

PFE =
maxi,n(|xi(n) − x̂i(n)|)

maxi,n(|xi(n)|)

2Note that this optimization can be carried out in parallel.
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where x and x̂ denote the actual data and the value predicted

by the network using data from the other nodes, respectively.

Example 1: Distributed versus Centralized Identification.

This example compares the performance, both in terms

of the identification results and execution times for the

centralized and decentralized identification algorithms. The

underlying graph and a sample trajectory are shown in figures

3(a) and 2, respectively. Finally, figure 3 compares the results

obtained applying Algorithms 1 and 2 and the COLS method

[13]. As shown there, both methods correctly identify the

network structure, while COLS fails to do so, due to its

inability to account for the external driving signal u.
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Fig. 2. An example node output (blue solid line) and its input signal
(dashed red line)
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(a) Ground Truth for the syn-
thetic data experiment
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(b) Structure identified using
Algorithm 1 (fitting error 0%)
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(c) Structure identified using
Algorithm 2 (fitting error 0%)
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(d) Structure identified using
the COLS algorithm from [13]
(fitting error 29.8%)

Fig. 3. Comparison of the results obtained using different algorithms for
the noiseless synthetic data experiment

Finally, Table I compares the execution times of both

algorithms, averaged over 25 runs. As shown there, even

in a case like the present one, where the graph is small,

the distributed identification method is advantageous from a

computational stand point (here it is, on the average 14%

faster than the centralized algorithm).

Algorithm 1 Algorithm 2

Average Time 7.3secs 6.4secs

TABLE I

THE AVERAGE RUN TIME OF THE TWO SUGGESTED ALGORITHMS

Example 2: Effects of Data Noise. This example consists

of sparse graphs with the structure shown in Fig. 3(a),

where the links correspond to randomly generated second-

order autoregressive models. For each realization, trajectories

with 50 data points at each node were generated, starting

from random initial conditions, and then corrupted with 10%
additive Gaussian white noise. Figure 4 shows the network

identified from the noisy trajectories using Algorithm 2,

illustrating the ability of the method to recover the correct

structure in the presence of noise. Similar results, omitted

for space reasons, were obtained using Algorithm 1.
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Fig. 4. Network identification from noisy data. (PFE=0.85%)

Example 3: Effects of Graph Perturbations. This example

considers the case of a sparse graph perturbed by weak

connections, leading to the fully connected graph shown in

Figure 5. Specifically, the edges are partitioned into two sets:

W (weak connections) and S (strong connections) and the

connectivity level of the graph is defined by the following

ratio:

E =
maxj∈W (‖aj‖)

mink∈S(‖ak‖)
(9)

Intuitively, this index measures the ratio of the strongest

undesired connection to the weakest desired one. Figure 6

shows the results of applying Algorithm 2 to a graph with
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(b)

Fig. 5. A sparse graph perturbed with weak connections (indicated in red).
The quantitative strength of the connections is shown in the connectivity
matrix, where dark blue indicates no connection and dark red a full one.
The connectivity level for this example is 12%
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12% sparsity level. For comparison, we also show the results

of using a purely block-Lasso based algorithm, without the

reweighted heuristics. As shown there, while both methods

achieve a comparable value of the reconstruction error, the

use of the re-weighted heuristics leads to a substantially

sparser structure, effectively suppressing the weak connec-

tions.
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(b)

Fig. 6. Identifying a weakly perturbed graph. (a) Results obtained
applying Algorithm 2 (PFE=0.38%). (b) Results obtained using a block-
Lasso approach (PFE=0.38%)

V. EXPERIMENTS USING REAL DATA

In this section we illustrate the potential of the proposed

algorithm to identify the hidden structure underlying time

series drawn from different arenas, including finance, biology

and computer vision.

Example 4: Correlations and Event Detection in Finan-

cial Data.

Name Currency

Australian Dollar AUD

Brazil Real BRL

Canadian Dollar CAD

Chinese Yuan CNY

Danish Krone DKK

Euro EUR

British Pound GBP

Hong Kong Dollar HKD

Indian Rupee INR

Japanese Yen JPY

South Korean Won KRW

Sri Lankan Rupee LKR

Mexican Peso MXN

Malaysian Ringgit MYR

Norwegian Krone NOK

New Zealand Dollar NZD

Swedish Krona SEK

Singapore Dollar SGD

Thailand Baht THB

Taiwanese Dollar TWD

American Dollar USD

South African Rand ZAR

TABLE II

THE CURRENCIES USED IN THE EXPERIMENTS

This example considers a dataset similar to the one de-

scribed in [13], consisting of exchange rate data for 22

different currencies, listed in Table II, for the period Jan.

01 to Dec. 31, 2007. This exchange rate data was down-

loaded from http://www.oanda.com/currency/historical-rates,

aud

brl

cad

cny

dkk

eurgbp

hkd

inr

jpy

krw

lkr

mxn

myr

nok

nzd

sek sgd

thb

twd

usd

zar

(a) Exchange rate interconnections identified
using Algorithm 2
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(b) Event detection using the exchange rate data

Fig. 7. Interconnections amongst world currencies and event detection

normalized to Swiss Franks and then used to calculate a

logarithmic rate of return (as in [13]), defined as:

r = log(
Vf

Vi

) (10)

where Vf and Vi are the final and initial investments

respectively. Figure 7(a) shows the graph structure identified

applying the decentralized identification algorithm to histor-

ical values of r calculated for each of the currencies listed

in Table II. While for this experiment the ground truth is

unavailable, the identified interconnection structure displays

features that support its validity. In particular:

1) A strong relationship was identified between the

Brazilian Real and Canadian Dollar, the 8th and 9th

largest world economies, respectively.

2) The strongest connection of the Australian Dollar is

with the New Zealand Dollar, as it would be expected

from geographical proximity.

3) One of the strongest connection of Chinese Yuan is

to the United States Dollar. This is expected since the

Yuan is indeed pegged to the US Dollar, rather than

floating freely.

An advantage of the proposed approach (when compared

for instance against that in [13]), is the additional information
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provided by the identified sparse input sequence, which

can be used to detect significant events. For instance, the

dates of the two jumps shown in figure 7(b), Sep. 10, 2007

and Oct. 3, 2007, match the two headlines reported by the

Google Insights Search Engine in 2007 for the “Brazil Real”

keywords:

1) “Brazil real gains beyond 1.9 per dollar on inflows”

by Reuters on Sep/13/2007

2) “Brazil Real Strengthens Beyond 1.80 Per Dollar, a

7-Year High” by Bloomberg Oct/11/2007

Example 5: A Yeast Synthetic Network. In this example we

apply our method to the problem of identifying the structure

underlying a synthetic network structure created in the yeast

Saccharomyces cerevisiae, [16]. The network, shown in 8(a),

is composed of five genes (CBF1, GAL4, SWI5, GAL80,

ASH1) regulating each other through a variety of regulatory

interactions, and the available data consists of measured

values of galactose and glucose, once steady-state is reached

after multiple perturbations. For simplicity, we only used the

galactose data (16 sample points). The results of applying

algorithm 2 (with and without the re-weighted heuristics) and

the COLS methods are shown in Fig. 8. Table III provides

a quantitative comparison of these results in terms of the

criteria defined in [16], Positive Predictive Value (PPV ) and

Sensitivity (Se), defined as follows:

PPV =
TP

(TP + FP )
; Se =

TP

(TP + FN)
(11)

where TP represents the true positives, FP represents the

false positives and FN represents the false negatives. Note

that randomly assigning edges between nodes leads to a value

of PPV = 0.7, for all Se values, so any value higher then

0.7 is significant. As shown in the figure and table, the pro-

posed method has substantially higher sensitivity and lower

reconstruction error than COLS. The table also highlights

the importance of using the re-weighted heuristics. Without

it, the value of PPV drops significantly and a spurious link

is added to the structure.

PPV Se

Algorithm 2 1 0.72

Group Lasso (No reweighted heuristic) 0.83 0.72

COLS 1 0.43

TABLE III

PPV AND Se FOR THE YEAST EXAMPLE

Example 6: Gene promoter activity in E-Coli. This

example considers data involving gene promoter activ-

ity in a diauxic shift experiment using Escherichia coli

[17]. In particular, from all the genes involved we se-

lected 8, (gmk,pyrG,amn,purM,wrbA,cspD,dps,cbpA), four of

which {gmk, pyrG, amn, purM} are nucleotide biosynthe-

sis genes, and the rest {wrbA, cspD, dps, cbpA} are station-

ary phase genes. A comparison of the identification results

using different algorithms is shown in figure 9. As illustrated

there, all methods are capable of segmenting the network

into two disjoint components. However, Algorithm 2 leads

CBF1

GAL4

SWI5

GAL80

ASH1

(a) Yeast Example Ground
Truth

CBF1

GAL4

SWI5

GAL80

ASH1

(b) Network identified by
COLS (PFE=44.1%)

CBF1

GAL4

SWI5

GAL80

ASH1

(c) Network identified using
Algorithm 2 (PFE=2.7%)

CBF1

GAL4

SWI5

GAL80

ASH1

(d) Network identified
using Algorithm 2 without
the reweighted heuristics.
(PFE=2.7%)

Fig. 8. Identifying the structure of an artificial yeast network

to the sparsest structure capable of explaining the available

data with low reconstruction error, while COLS entails a

50% reconstruction error. It is also worth noting that, once

again, the use of the re-weighted heuristics leads to a sparser

network, when compared to the results of a pure block-Lasso

approach.

Example 7: Identifying causality in video sequences.

This example illustrates the ability of the proposed method

to solve a non-trivial computer vision problem: identifying

causality from video data. The data consists of 230 frames of

a video clip from the Australian Open Tennis Doubles Final

games. The goal here is to identify causality relationships

between the different players. This can be accomplished

using our formalism by modeling this scenario with a 4

node graph (each corresponding to a player), connected by

autoregressive models. By restricting these models to be

strictly causal, the expectation is that the network structure

will strongly favor connections between members of opposite

teams. Figure 10 shows sample processed frames, with the

results obtained using our method and COLS super-imposed.

As illustrated there, the proposed method correctly segments

the teams while COLS fails to do so.

VI. CONCLUSIONS

In this paper we proposed a new method for jointly

identifying the structure of an unknown network of dynam-

ical systems and a driving input from noisy measurements.

Since this problem is generically ill–posed, we propose to

regularize it by searching for the sparsest structure, both in

terms of links and changes in the exogenous input, capable

of explaining the observed data within a given noise level. As

shown in the paper, this can be accomplished by recasting the
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Fig. 10. Causality from video data. Left: COLS fails to segment the teams. Right, the proposed algorithm correctly segments the teams
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Fig. 9. Identifying the gene promoter activation structure in an E. Coli.
diauxic shift experiment. (a) Ground truth. (b) Identification via COLS
(PFE=50.9%). (c)Identification using Algorithm 2 (PFE=4%). (d) Identi-
fication using Algorithm 2 without the re-weighted heuristics (PFE=4%)

problem into that of looking for block-sparse solutions to a

system of linear equations, a task that we propose to solve by

combining block-Lasso type arguments with an iterative re-

weighted algorithm. As illustrated in the paper, the use of this

re-weighted iteration leads to substantially sparser solutions

than block-Lasso. In addition, the proposed algorithm also

outperforms a recently proposed one, based on the use

of Cyclic Orthogonal Least Squares, both in terms of the

sparsity of the resulting network and the reconstruction error.

These results were illustrated with both synthetic examples,

highlighting the ability of the proposed method to handle

noise and perturbations in the graph structure, and with

several non-trivial examples drawn from applications arenas

as diverse as finances, biology and computer vision.
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