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Abstract— In this paper, inverse optimal control problem for
an inverted pendulum with horizontal and vertical movements
is considered. This inverted pendulum can be transformed into
a bilinear system by using input transformation and coordinate
transformation focused on the center of percussion of the
pendulum. For bilinear systems, an optimal control algorithm
which minimizes a new quadratic cost function was proposed.
However, there are no experiments by using this controller. Thus
this control algorithm may not be able to be applied to real
examples. And so, in this paper, this control algorithm is applied
to the bilinear system of the inverted pendulum. Furthermore,
the effectiveness of this controller is shown by experiments.

I. INTRODUCTION

An inverted pendulum has been a well-known example of
nonlinear mechanical systems. Many control researchers has
treated this system as benchmark for control algorithms.

The well-known inverted pendulum system is constructed
by a cart and a pendulum. The cart move only horizontally,
and the pendulum is attached to the cart by a rotational
joint. The major control problem is that stabilization of an
inverted pendulum can be realized only by moving the cart
horizontally. However, when humans try to balance a rod
on their palms intuitively, they probably move their hands
not only in the horizontal direction but also in the vertical
direction (Fig. 1) It can be seen that they probably move their
hands in the horizontal direction when the rod is nearly at the
upright position; in contrast, they probably move their hands
in the vertical direction when the angle of the rod is large.
From this viewpoint, there may be possibility to increase
control performance of stabilizing the inverted pendulum
by using redundant movement in the vertical direction. In
addition, there is no doubt that humans properly use both
the horizontal movement and the vertical movement based
on their optimal performance indices. Hence, the objective
of this paper is to derive an optimal controller for the inverted
pendulum with horizontal and vertical movements.

In this paper, we regard the inverted pendulum with
horizontal and vertical movements as a bilinear system.
The inverted pendulum system can be transformed into
a bilinear system by input transformation and coordinate
transformation focused on the Center of Percussion (COP) of
the pendulum. Optimal control problems for bilinear systems
have been studied by numerous authors [2],[7]. However, no
explicit expression for optimal feedback control of bilinear
systems has been reported because the solution of the bilinear
optimal control problem is characterized by Hamilton-Jacobi

Fig. 1. image of the inverted pendulum with horizontal and vertical
movements

Bellman equation (HJBE) which has no analytical solution
at present.

And so, we proposed the optimal control algorithm for
bilinear systems by using the inverse optimal design [8]. This
algorithm minimizes a new quadratic cost function. However,
in real world, the usability of this controller has not been
confirmed because no one has made an experiment using
this algorithm.

In this paper, we apply this optimal feedback controller
to the system of the inverted pendulum. And we carry
out experiments of this control system and confirm the
effectiveness of this control algorithm.

This paper is organized as follows. In Section II, the
model of the inverted pendulum with horizontal and vertical
movement is introduced. It is also shown that the system of
the pendulum can be transformed into the bilinear system. In
Section III, the inverse optimal design for the bilinear system
of the inverted pendulum is presented and the meanings of
the cost function are discussed. In Section IV, in order to con-
firm the effectiveness of this control algorithm experiments
of this system are carried out. Finally, Section V concludes
this paper.

II. MATHEMATICAL MODEL

In this section, the mathematical model of the inverted
pendulum with horizontal and vertical inputs is built. This
pendulum can be consider as a cart pendulum with additional
vertical force input. So, in this paper, we consider this pen-
dulum system shown in Fig. 2. The horizontal and vertical
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force inputs effect to a base which connect a pendulum by
a passive joint.

Fig. 2. model of the inverted pendulum with horizontal and vertical inputs

TABLE I
VARIABLES OF SIMPLIFIED MODEL

xh : horizontal position of the base
xv : vertical position of the base
θ : angular between vertical line and the pendulum

Fh : horizontal force input
Fv : vertical force input

Next, let us define notations of physical parameters. Let M
be the mass of the base, m be the mass of the pendulum, lg
be the distance between the base and the center of gravity of
the pendulum, Jg be the moment of inertia with respect to the
center of gravity of the pendulum, and g be the acceleration
of gravity.

In this notations, equations of motion can be written as

M(q)q̈ + C(q, q̇) +G(q) = F , (1)

where

q =
[
xh xv θ

]T
, F =

[
Fh Fv 0

]T
,

M(q) =

 M +m 0 mlg cos θ
0 M +m −mlg sin θ

mlg cos θ −mlg sin θ ml2g + Jg

 ,

C(q, q̇) =

−mlg θ̇
2 sin θ

−mlg θ̇
2 cos θ
0

 , G(q) =

 0
(M +m)g
−mglg sin θ

 .

These equations of motion can be transformed into a
bilinear system by utilising coordinate transformation and
input transformation. This transformation can be obtained
by modifying of transformation proposed by Imura [4].By
utilising next

Theorem 1: Transformation into the bilinear system
Let λ =

mlg
ml2g+Jg

. Then, 1
λ means the distance between the

base and the center of percussion (COP) of the pendulum.
Suppose that θ is confined −π

2 < θ < π
2 . And let u1 and

u2 be new inputs defined in Table II. By using coordinate
transformation (2) and input transformation (3)

z =

zvzθ
zh

 =

xv +
1
λ cos θ − 1

λ
tan θ

xh + 1
λ cos θ

 , (2)

[
Fh

Fv

]
=

 m2l2g cos θ sin θ

ml2g+Jg
g −mlg θ̇

2 sin θ

(M +m)g −mlg θ̇
2 cos θ − m2l2g sin2 θ

m2l2g+Jg
g


+

M +m− m2l2g cos2 θ

ml2g+Jg

m2l2g sin θ cos θ

ml2g+Jg

m2l2g sin θ cos θ

ml2g+Jg
M +m− m2l2g sin2 θ

ml2g+Jg


([

sin θ cos θ
cos θ − sin θ

] [
u1+g
cos θ + 1

λ θ̇
2

− 1
λ (u2 cos

2 θ − 2θ̇2 tan θ)

]
+

[
0
−g

])
,

(3)

the equations of motion (1) is transformed into the bilinear
system (4). z̈vz̈θ

z̈h

 =

 u1

u2

zθu1 + zθg

 (4)

Proof : Consider new inputs uh = ẍh, uv = ẍv and the
input transformation given by[

Fh

Fv

]
=

[
m2l2 cos θ sin θ

ml2+Jg
g −mlθ̇2 sin θ

(M +m)g −mlθ̇2 cos θ − m2l2 sin2 θ
ml2+Jg

g

]

+

[
M +m− m2l2 cos2 θ

(ml2+Jg)
m2l2 sin θ cos θ

ml2+Jg

m2l2 sin θ cos θ
ml2+Jg

M +m− m2l2 sin2 θ
ml2+Jg

] [
uh

uv

]
.

Then, we get the following system:ẍh

ẍv

θ̈

 =

 uh

uv

λ(g sin θ − uh cos θ + uv sin θ)

 .

In addition, by using the coordinate transformation focused
on the COP obtained byzhzv

θ

 =

 xh + 1
λ sin θ

xv +
1
λ cos θ − 1

λ
θ

 (5)

and the input transformation given by[
uh

uv

]
=

[
sin θ cos θ
cos θ − sin θ

] [
a1 +

1
λ θ̇

2

− 1
λa2

]
−
[
0
g

]
, (6)

we have z̈hz̈v
θ̈

 =

 a1 sin θ
a1 cos θ − g

a2

 . (7)

Finally, by using the coordinate transformation given byzvzθ
zh

 =

 zv
tan θ
zh

 (8)

and the input transformation given by[
a1
a2

]
=

[ g+u1

cos θ

u2 cos
2 θ − 2θ̇2 tan θ

]
, (9)
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we obtain z̈vz̈θ
z̈h

 =

 u1

u2

zθu1 + zθg

 . (10)

Fig. 3. bilinear model of the inverted pendulum

TABLE II
VARIABLES OF THE BILINEAR SYSTEM

zh : horizontal position of the COP
zv : vertical position of the COP with offset (−1/λ)
zθ : tangent of θ
u1 : vertical acceleration input for the COP
u2 : rotational acceleration input around the COP

This bilinear system looks like Fig. 3, then zh is the
horizontal position of the COP and zv is the vertical position
of the COP with offset − 1

λ . By this offset, when the
original coordinate [xh, xv, θ]

T = 0, the new coordinate
[zv, zθ, zh]

T = 0. The bilinear system (4) can be written
as state equations

ẋ = Ax+B(x)u, (11)

where

x :=


zv
żv
zθ
żθ
zh
żh

 , A :=

[
As1 0
0 As2

]
, B(x) :=


0 0
1 0
0 0
0 1
0 0
zθ 0

 ,

u :=

[
u1

u2

]
, As1 :=

[
0 1
0 0

]
, As2 :=


0 1 0 0
0 0 0 0
0 0 0 1
g 0 0 0

 .

Let us divide the system into the subsystem Σs1 with
respect to the vertical movement and the subsystem Σs2

with respect to the horizontal and rotational movements. The
subsystems are given by

Σs1 : ẋs1 = As1xs1 + bs1u1, (12)
Σs2 : ẋs2 = As2xs2 + bs2u2 +Ns2(xs2)u1, (13)

where

xs1 :=

[
zv
żv

]
, bs1 =

[
0
1

]
,

xs2 :=


zθ
żθ
zh
żh

 , bs2 =


0
1
0
0

 , Ns2(xs2) =


0
0
0
zθ

 .

Now, we consider the effectiveness of the vertical accel-
eration input u1 in Σs2.

• When zθ ̸= 0, u1 affects the state xs2. So it is
possible to control horizontal and rotational movements
by utilising vertical acceleration input u1.

• When zθ = 0, that is, the pendulum is at the upright
position, any u1 does not affect the state. So, it is im-
possible to control horizontal and rotational movements
by using u1.

As zθ = 0, the bilinear system (4) is equivalent to the
linear approximation system of (4). Thus vertical input u1

can not be used effectively by the optimal control for the
linear approximation system. In the next section, we will
propose the new optimal control. This optimal control is
constructed for the bilinear system.

III. INVERSE OPTIMAL CONTROL FOR THE INVERTED
PENDULUM

A. Inverse Optimal Control Problem for Bilinear System of
the Inverted Pendulum

In this section, we consider the nonlinear optimal con-
trol for the bilinear system of the inverted pendulum with
horizontal and vertical inputs. The present evidence of the
nonlinear optimal feedback control is that the optimal con-
troller is based on the solution of the Hamiltom-Jacobi-
Bellman equation (HJBE). Nevertheless the HJBE for this
system cannot be solved analytically. Therefore we consider
the inverse optimal control design for the bilinear system of
this pendulum.

Theorem 2: Inverse optimal design for the pendulum
with horizontal and vertical inputs

Let Ps1 be the solution of the following algebraic Riccati
equation for the subsystem Σs1

AT
s1Ps1 + Ps1As1 − Ps1bs1r

−1
11 b

T
s1Ps1 +Qs1 = 0, (14)

and Ps2 be the solution of the following algebraic Riccati
equation for the linear approximation system of subsystem
Σs2

AT
s2Ps2 + Ps2As2 − Ps2bs2r

−1
22 b

T
s2Ps2 +Qs2 = 0, (15)

where Qs1, Qs2, r11, r22 are weighting factors for the states
and inputs. For the bilinear system (4), the control input

u∗ = −R−1B(x)TPx (16)

makes the following cost function minimized.

J =

∫ ∞

0

q(x) + uTRudt, (17)
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where

q(x) :=

 xs1

xs2

µ1(x)

T

Q

 xs1

xs2

µ1(x)

 ,

Q :=

 Qs1 0 Ps1bs1r
−1
11

0 Qs2 0
(Ps1bs1r

−1
11 )

T 0 r−1
11

 ,

R :=

[
r11 0
0 r22

]
, P :=

[
Ps1 0
0 Ps2

]
µ1(x) := Ns2(xs2)

TPs2xs2.

The proof of this theorem is based on the proof of
Theorem 2 in [8]

Proof : First, we show that the control input and the cost
function are satisfies with the HJBE.

Consider the nonlinear affine system

ẋ = f(x) + g(x)u, (18)

where f(0) = 0. The nonlinear regulation problem for (18)
is defined by the following cost function

J =

∫ ∞

0

α(x) + uTR(x)u dt (19)

where α(x) ≥ 0, R(x) > 0 for all x and the associated HJBE

(
∂V

∂x

)T

f − 1

4

(
∂V

∂x

)T

g(x)R(x)−1g(x)T
∂V

∂x
+ α(x) = 0.

(20)

Then the optimal feedback controller can be obtained as
following u∗ from the solution V (x) of (20)

u∗ = −1

2
R(x)−1g(x)T

∂V

∂x
(21)

Now, we consider this theorem applied to the bilinear
system (4). Define

f(x) := Ax, g(x) := B(x), α(x) := q(x), R(x) := R.
(22)

The HJBE is written by

(
∂V

∂x

)T

Ax− 1

4

(
∂V

∂x

)T

B(x)R−1B(x)T
∂V

∂x
+ q(x) = 0.

(23)

We will prove the optimality of the cost function (17) by
showing that there exists the solution V (x) which satisfies
(23). By using the solution P , let us define

V (x) := xTPx. (24)

Then, we have(
∂V

∂x

)T

Ax− 1

4

(
∂V

∂x

)T

B(x)R−1B(x)T
∂V

∂x
+ q(x)

=xT (ATP + PA− PB(x)R−1B(x)TP )x

+

 xs1

xs2

µ1(x)

T  Qs1 0 Ps1bs1r
−1
11

0 Qs2 0
(Ps1bs1r

−1
11 )

T 0 r−1
11

 xs1

xs2

µ1(x)


=xT (ATP + PA− PB(x)R−1B(x)TP )x

− xT
s1(A

T
s1Ps1 + Ps1As1 − Ps1bs1r

−1
11 b

T
s1Ps1)xs1

− xT
s2(A

T
s2Ps2 + Ps2As2 − Ps2bs2r

−1
22 b

T
s2Ps2)xs2

+ 2xT
s2Ps2Ns2(xs2)r

−1
11 b

T
s1Ps1xs1

+ xT
s2Ps2Ns2(xs2)r

−1
11 Ns2(xs2)

TPs2xs2

=0.

Therefore, the optimality of the cost function J given by
(17) is proved.

Next, we have to prove the origin of the closed-loop
system is asymptotically stable. The closed-loop system is

ẋ = Ax+B(x)u

= (A−B(x)R−1B(x)TP )x. (25)

The linear approximation system of this closed-loop system
is

ẋ = (A−B(0)R−1B(0)TP )x. (26)

The origin of (26) is exponentially stable. Therefore, the
origin of the closed-loop system (25) is asymptotically stable.
Because the origin of the nonlinear system is exponentially
stable if the origin of the linear approximation system is
exponentially stable[9]. The proof is completed.

In this theorem, the solutions Ps1, Ps2 of the Riccati
equations for the linear approximation system of the bilinear
system is used. If this goes on, the controller does not have
the optimality for the bilinear system. So the nonlinearity is
revived in (16). For this nonlinear controller, the quadratic
cost function for linear system is changed into (17).

Remark 1 : Since the proof of the optimality of this
controller is based on the satisfaction of the HJBE, the
optimality is satisfied only when the solution x∗(t) of (25)
stays in the following domain:

Xc := {x∗(t)|q(x∗(t)) ≥ 0}. (27)

B. The Meanings of the cost function J

In this section, the meanings of the cost function J
given by (17) is discussed. Fig. 4 shows the image of the
meanings of the cost function J . Because µ1(x) have the
second order term with respect to zθ, we have the following
approximations.

• ||x|| ≫ ||µ(x)|| ∼= 0 (in the neighborhood of zθ = 0)
• ||x|| ≪ ||µ(x)|| (in the area apart from zθ = 0)
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Fig. 4. The cost function J mainly depend on the quadratic term
xT
s1Qs1xs1 + xT

s2Qs2xs2 which means a cost function of a linear
approximation system, when |x| is small. While the fourth-order term
µ1(x)T r−1

11 µ1(x) dominate the cost function J when |x| is large.

Therefore, when x stays in the neighborhood of the zθ =
0, we have xs1

xs2

µ1(x)

T  Qs1 0 Ps1bs1r
−1
11

0 Qs2 0
(Ps1bs1r

−1
11 )

T 0 r−1
11

 xs1

xs2

µ1(x)


∼=

[
xs1

xs2

]T [
Qs1 0
0 Qs2

] [
xs1

xs2

]
. (28)

This means the second-order term with respect to x is
dominant in the neighborhood of zθ. It is clear that this is
the natural expansion of the case of the linear system.

On the other hand, when x stays in the area apart from
zθ = 0, we have xs1

xs2

µ1(x)

T  Qs1 0 Ps1bs1r
−1
11

0 Qs2 0
(Ps1bs1r

−1
11 )

T 0 r−1
11

 xs1

xs2

µ1(x)


∼= µ1(x)

T r−1
11 µ1(x). (29)

This means the fourth-order term is dominant in the area
apart from the origin and the weighting factor for µ1(x)
is r−1

11 . It is clear that the smaller r11 induces the smaller
∥µ1(x)∥ in the area apart from zθ = 0. This means ∥µ1(x)∥
is smaller when the vertical acceleration input ∥u1∥ is larger.

IV. EXPERIMENTS

In this section, experiments has been carried out for the
inverted pendulum with horizontal and vertical inputs. A
equipment of the experiments is shown in Fig. 5.

This equipment is constructed by 2 links manipulator with
a pendulum. It have two rotation motors which can apply
torque inputs. The mathematical model of this equipment is
different from Fig. 2. However xh, xv in Fig. 2 is written by

xh = l1 cos(ϕ1 − ϕ1o) + l2 cos(ϕ1 + ϕ2 − ϕ1o − ϕ2o)

xv = l1 sin(ϕ1 − ϕ1o) + l2 sin(ϕ1 + ϕ2 − ϕ1o − ϕ2o)

where l1, l2 are the length of link 1 and link 2 respectively, ϕ1

is an absolute angle of link 1, ϕ2 is a relative angle between

Fig. 5. equipment of the experiments

link 1 and link 2, and (xh, xv) = (0, 0) when (ϕ1, ϕ2) =
(ϕ1o, ϕ2o).

So we can transform the torque inputs into the acceleration
inputs uh, uv in (5). Thus the mathematical model of this
equipment can be transformed into the same bilinear system
(4).

However, the domain of the horizontal and vertical move-
ments is limited because length of links is fixed and rotational
motors are used. The domain is shown in Fig. 6. So we have
to choose initial values and weighting matrices which the
trajectory of the case is contained in the domain.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

xv
[m

]

xh[m]

Fig. 6. domain of the movements

Let the weighting matrices Qs1, Qs2, R be diagonal.

Qs1 = diag(q11, q22)

Qs2 = diag(q33, q44, q55, q66)

R = diag(r11, r22)

The experiments has been carried out using initial values
shown in Table III. Designing parameters are shown in Table
IV. The results of the experiments are shown in Fig. 7

We will confirm whether the weighting matrices of the cost
function (17) acts as intended. First, the trajectories of the
position of COP are compared in Fig. 7(a) between Param 1
and Param 2. The vertical movement of Param 2 is larger than
that of Param 1. Thus the effectiveness that r11 , the weight
parameter for the vertical acceleration input , of Param 2 is
smaller than that of Param 2 is shown.
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TABLE III
INITIAL VALUES

xH -0.11 [m] zH -0.00444 [m]
ẋH 0.0 [m/s] żH -0.0370 [m/s]
θ 10.1 [deg] zθ 0.178 []

θ̇ 0.736 [rad/s] żθ 0.759 [1/s]
xV 0.0 [m] zV -0.0597 [m]
ẋV 0.0 [m/s] żV 0.208 [m/s]

TABLE IV
WEIGHT MATRICES FOR EXPERIMENTS OF THE BILINEAR SYSTEM

q11 q22 q33 q44 q55 q66 r11 r22
Param 1 1 1 1 1 10 1 0.5 0.05
Param 2 1 1 1 1 10 1 0.1 0.05
Param 3 1 1 1 1 10 1 0.1 0.01
Param 3’ 5 5 5 5 50 5 0.5 0.05

Second the trajectories of θ are compared in Fig. 7(b)
between Param 2 and Param 3. The peeks of the trajectory
of Param 2 are smaller than those of Param 3. Thus the
effectiveness that r22 , the weight parameter for the rotational
acceleration input, of Param 2 is smaller than that of Param
2 is shown.

Finally, the trajectories of the position of COP are com-
pared in Fig. 7(a) between Param 1 and Param 3. The
weighting factors of Param 3 can be multiplied by a scalar.
So the same movement can be obtained by Param 3’. Thus it
is considered that the weighting factors for state variables of
Param 3 is larger than those of Param 1. Hence the trajectory
of Param 3 is supposed to be closer to the origin than that
of Param 1. This is confirmed in Fig. 7(a).

Hence, the effectiveness of the weighting matrices is
confirmed.

V. CONCLUSION

The optimal control algorithm which minimizes the new
quadratic cost function[8] is very useful for many bilinear
systems, such as the system of the semi-active suspension
for automobiles[6]. However, this algorithm has not been
applied to a real system.

In this paper, we dealt with the inverted pendulum with
horizontal and vertical inputs as one of the example of
bilinear systems. The algorithm was applied to this pendulum
system and experiments were carried out. In the experiments,
it was shown that the smaller the weighting factor r11 was,
the larger the vertical movement was, and that the smaller the
weighting factor r22 was, the smaller the peaks of the angle θ
was. Thus the optimality of the cost function was confirmed.
Hence, we showed the effectiveness of this optimal control
algorithm in reality.

The results of this paper are important because they make
a possibility that this optimal controller is applied to other
bilinear systems which exist in reality.
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