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Abstract— In the present paper the linear feedback equivalence
problem is addressed for time delay systems. It is shown that thanks
to the use of new mathematical tools recently introduced in the

literature for dealing with time delay systems, it is possible to define
necessary and sufficient conditions for the solvability of the problem.

I. INTRODUCTION

Geometric tools for addressing control problems have been

extensively used both in the linear and nonlinear context (recall

the pioneering works [24] and [13]). In the nonlinear context

one of the first topics addressed was the definition of the

conditions under which a given nonlinear accessible single input

system was diffeomorphic eventually up to a regular static state

feedback to a linear system. It was shown that the solution is

linked to the involutivity of a specific distribution defined by

the vector fields which characterize the dynamics of the given

system ((g, adfg, · · · adn−2
f g) for continuous–time systems and

(G0, AdF0
G0, · · ·Adn−2

F0
G0) for discrete–time systems). This

property in fact implies the existence of a function with relative

degree equal to n, thus defining both the change of coordinates

and the regular static state feedback (see for example [2], [14],

[11], [20], [16], [15], [6]).

In [22] a first attempt was pursued to introduce geometric tools

to deal with time–delay systems which are gaining more and

more attention due to their importance in several applications

such as those concerning the delay in the signal transmission

over communication networks (see for example [1], [9], [17],

[22], [21], [23]).

In the present paper we consider the accessibility submodules [3]

linked to the accessibility property of the system as well as an

operation over their elements, the extended Lie bracket operation

recently introduced in [5] to deal with time-delay systems. This

operation generalizes the delayed state bracket introduced in

[22]. We will show that the tools introduced can be efficacely

used to characterize if a NLTDS is equivalent or not, to a Linear

Time Delay System (LTDS) by bicausal change of coordinates

and bicausal static state feedback. With respect to ([9], [22]) we

will consider a more general class of systems where there is no

assumption on the delay of the input. For notational simplicity

we will assume that the maximal delays on the state and input

variables do coincide.
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The paper is organized as follows. Section II concerns recalls

and notations about time–delay systems and the geometric

framework. In Section III some geometric tools for dealing with

time–delay systems are introduced and discussed. In Section IV

the proposed approach is used to address the problem of the

equivalence under bicausal coordinates change and static state

feedback to a linear time delay system.

II. RECALLS AND NOTATIONS

The following notation and definitions, taken from [19], [25],

will be used: K denotes the field of meromorphic functions

of a finite number of variables in {x(t − i), u(t − i), u̇(t −
i), . . . , u(k)(t − i), i, k ∈ IN}; d is the standard differential

operator; δ represents the backward time-shift operator, that is,

given a(·), f(·) ∈ K:

δ(a(t) df(t)) = a(t − 1)δdf(t) = a(t − 1)df(t − 1);

deg(·) is the polynomial degree in δ of its argument; K(δ]
is the (left) ring of polynomials in δ with coefficients in K.

Every element of K(δ] may be written as α(δ] = α0(t) +
α1(t) δ + · · ·+ αrα(t) δrα , αi ∈ K, where rα = deg(α(δ]).

Addition and multiplication on this ring are defined by α(δ] +

β(δ] =
∑max{rα, rβ}

i=0 (αi(t) + βi(t))δ
i and α(δ]β(δ] =

∑rα

i=0

∑rβ

j=0 αi(t)βj(t − i)δi+j . Although this ring is non-

commutative, it is an Euclidean ring ([25], [19], [10]); R(δ] =
spanK(δ]{r1, . . . , rs}, is the right module spanned over K(δ] by

the column elements r1, . . . , rs ∈ Kn(δ]; a polynomial matrix

A ∈ Kn×n(δ] is unimodular if it has a polynomial inverse. If

deg(A) = s, then deg(A−1) ≤ (n − 1) s.

Example 1: Let f(t) = x(t)x(t − 2) ∈ K. Then

δf(t) = x(t − 1) x(t − 3)δ ∈ K(δ],

df(t) = x(t)dx(t − 2) + x(t − 2)dx(t)

= x(t)δ2dx + x(t − 2)dx,

δdf(t) = x(t − 1)δ3dx + x(t − 3)δdx.

Let us consider the nonlinear dynamics with delays

Σ : ẋ(t) = F (x[s]) +
s
∑

j=0

Gj(x[s])u(t − j) (1)

where x
T
[s] = (xT (t), · · ·xT (t − s)) with x ∈ IRn , u ∈ IR.

In the following, x[s](−p) := (xT (t − p), · · ·xT (t − s − p))T .

u[s],u[s](−p), z[s], and z[s](−p) are defined in a similar vein.

When no confusion is possible the subindex will be omitted so

that x will stand for x[s] and x(−p) will stand for x[s](−p).
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With such notation, ΣL, the differential form representation of

Σ, is given by

ΣL : dẋ = f(x[s],u[s], δ)dx + g(x[s], δ)du (2)

with

f(x[s], u[s], δ) =

s
∑

i=0

∂F (x[s], δ)

∂x(t − i)
δ

i

+
s
∑

j=0

u(t − j)
s
∑

i=0

∂Gj(x[s])

∂x(t − i)
δ

i

g(x[s], δ) =

s
∑

j=0

Gj(x[s])δ
j

Let us end this section by recalling the definition of a bicausal

change of coordinates given in [19].

Definition 1 (Bicausal change of coordinates): Consider the

dynamics Σ. z[0] = φ(x[s]), φ ∈ Kn is a bicausal change of

coordinates for Σ if there exist an integer ℓ ∈ IN and a function

φ−1(z[ℓ]) ∈ Kn such that x[0] = φ−1(z[ℓ]).

By definition a bicausal change of coordinates satisfies the

following properties:

P1) T [x, δ] =
s
∑

i=0

∂φ(x[s])
∂x(t − i)

δi =
s
∑

i=0

T i(x)δi is unimodular

P2) The inverse T−1[z, δ] of T [x, δ] is unimodular and given

by

T
−1[z, δ] =

ℓ
∑

i=0

∂φ−1(z[ℓ])

∂z(t − i)
δ

i =

ℓ
∑

i=0

T̄
i(z)δi

.

It follows that under the bicausal change of coordinates z[0] =
φ(x[α]) the differential form (2) is transformed into

dż(t) = f̃(z,u, δ)dz + g̃(z, δ)du (3)

with

f̃(z,u, δ)=
[(

T (x, δ)f(x,u, δ) + Ṫ (x, δ)
)

T
−1(x, δ)

]

φ−1(z)

g̃(z, δ)=(T (x, δ)g(x, δ))
φ−1(z)

III. THE GEOMETRY OF TIME–DELAY SYSTEMS

In this Section we recall the Extended Lie derivative and

Extended Lie bracket operators recently introduced in [5], [4]

to deal with time–delay systems. Their usefulness has already

been tested with respect to some basic control problems for time

delay systems such as the linear equivalence problem [3] or the

equivalence to the observer canonical form [4]. In fact it has been

shown in [5] that the Extended Lie bracket operator characterizes

the integrability conditions of one forms depending not only on

the state variables but also on their repeated delay.

Definition 2: Let rβ(x, u, δ) =
s
∑

j=0

rj
β(x,u)δj , with β =

1, 2. Then the Extended Lie bracket [rk
1 (·,u), rl

2(·,u)]Ei , on

IR(i+1)n , i ≥ 0, is defined as
[

rk
1 (·,u), rl

2(·,u)
]

Ei
=

(4)

k̄
∑

j=0

(

[rk−j
1 (·,u), rl−j

2 (·,u)]E0

)T

|(x(−j),u(−j))

∂
∂x(t−j) ,

with k̄ = min(k, l, i), and

[rk
1 (·), rl

2(·,u)]E0
=

k
∑

i=0

∂rl
2(x,u)

∂x(t − i)
rk−i
1 (x(−i),u(−i))+ (5)

−
l
∑

i=0

∂rk
1 (x, u)

∂x(t − i)
rl−i
2 (x(−i),u(−i)).

As in the delay–free case it is convenient to introduce an

Extended Lie derivative whose definition is given below and

is slightly different from the one given in [21].

Definition 3: Given the function λ(x[s]) and the submodule

element ri(x, δ) =
s̄
∑

j=0

rj
i (x)δj , the Extended Lie derivative

L
r

j
i
(x)

λ(x[s])

L
r

j
i
(x)

λ(x[s]) =

j
∑

l=0

∂λ(x[s])

∂x(t − l)
r

j−l
i (x(−l)) (6)

Accordingly setting k̄ = min(k, l, i)
[

rk
1 (·), rl

2(·)
]

Ei
=

k̄
∑

j=0

(

L
r

k−j
1

(x)
r

l−j
2 (x)−L

r
l−j
2

(x)
r

k−j
1 (x)

)T

(x(−j))

∂
∂x(t−j)

.

thus recovering the definitions of Lie derivative and Lie bracket

in the delay free case.

From (1), consider now the module element

F(x, δ) =

ns
∑

j=0

F
j(x)δj =

ns
∑

j=0

F (x)δj
. (7)

Thus, the i–th derivative of λ(x) computed for u = 0, is given

by λ(i)(x, 0) = Li
F ns(x)λ(x), for any i. The definition of

relative degree can be then formulated as follows.

Definition 4: The function λ(x) has relative degree k > 0 if

Lgj L
i
F ns λ(x) = 0, ∀j ≥ 0,∀0 ≤ i < k − 1

and there exists an index j ≥ 0 such that

Lgj L
k−1
F ns λ(x) 6= 0.

It will have strong relative degree if (8) is satisfied for j = 0.

To deal with the integrability of one-forms, we need now

to recall the following definitions of an integrable submod-

ule ∆ = spanK(δ]{r1(x, δ), · · · , rj(x, δ)}, with rl(x, δ) =
∑s

t=0 rt
l (x)δt, l ∈ [1, j]. To this end, let x

0 =

(x0(t)T , · · · , x0(t − γ)T )T .
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Definition 5: ∆ is nonsingular locally around x
0 if

rank(∆(x)) = j, ∀x ∈ U0 an open and dense subset of

x
0 .

Definition 6: ∆ nonsingular locally around x
0 , is integrable if

there exist n− j independent functions λl(x(t), · · · , x(t− γ)),

l ∈ [1, n − j] such that rank ∂λ(x)
∂x(t)

= n − j and

γ
∑

p=0

∂λl(x)

∂x(t − p)
δ

p
s
∑

k=0

r
k
i (x)δk = 0, ∀l ∈ [1, n−j], ∀i ∈ [1, j].

Lemma 1: Let rβ(x,u, δ) =
s
∑

j=0

r
j
β(x, u)δj , β = 1, 2 and

assume under the bicausal change of coordinates z[0] = φ(x[α]),

with dz = T (x, δ)dx, the submodule element rβ(x,u, δ) is

transformed as

r̃β(z,u, δ) = [T (x, δ)rβ (x,u, δ)]|x=φ−1 (z) , β = 1, 2. (8)

Then

[r̃k
1 (z,u), r̃l

2(z,u)]Ei =
(

Γl,i(x)[rk
1 (x,u), rl

2(x,u)]El

)

|x=φ−1 (z)

where, setting T j = 0 for j > α,

Γl,i(x)=







T 0(x) · · · · · · · · · T l(x)

0
. . .

.

..

0 0 T 0(x(−i)) · · · T l−i(x(−i))






.

A. Integrability Conditions of one-forms

We will now recall the necessary and sufficient conditions given

in [5] under which some given one-forms are integrable. The

obtained results are based on the consideration that though when

dealing with delay systems one ends up on an infinite dimen-

sional system, the elements that one considers are characterized

by a finite number of components.

Consider Pj(x, δ) = [r1(x, δ), · · · , rj(x, δ)] =
s
∑

l=0

Pjl(x)δl

with Pj0(x) of dimension j and rk(x, δ) =
s
∑

l=0

rs
k(x)δs,

k ∈ [1, j]. Consider the distributions ∆i and ∆′
i, i ≥ 0

defined on IR(i+1)n and with vector fields parameterized by

x(t − i − 1), · · · , x(t − i − s), for i ≥ 0

∆i = spanK

{

γ
∑

l=0

(

r
γ−l
k (x(−l))

)T ∂

∂x(t − l)

k ∈ [1, j]

γ ∈ [0, i]

}

,

(9)

∆′
i = spanK







min(γ,i)
∑

l=0

(

r
γ−l
k (x(−l))

)T ∂

∂x(t − l)

k ∈ [1, j]

γ ∈ [0, i+s]







.

By construction ∆i ⊆ ∆′
i. Let locally around x

0 , ρi =
rank(∆′

i), then ∆′
i = span{τl(x), l ∈ [1, ρi]} ⊂ IR(i+1)n

while its elements depend on the variables x[i+s]. Let us

thus consider the series development of τl with respect to the

parameters x(−i − 1) locally around x
0(−i−1) which without

loss of generality can be assumed to be the origin, that is

τl(x) = τl0(x[i]) +

s
∑

j=1

n
∑

α=1

αj τl1(x[i])xα(−i − j)

+
1

2

n
∑

α,β=1

s
∑

j,k=1

αj βk
τl2(x[i])xα(−i − j)xβ(−i − k) + · · ·

and consider the possibly infinite set of distributions

∆′
i0 = span{τl0, l ∈ [1, k]}

∆′
i1 = span{αj τl1, l ∈ [1, k], j ∈ [1, s], α ∈ [1, n]}

.

.

. (10)

Set ρi0 = rank (
∑

k≥0 ∆′
ik). We can now recall the main result

concerning integrability.

Theorem 1: [5] Consider the submodule ∆ =
spanK(δ] {r1(x, δ), · · · , rj(x, δ)} with ri(x, δ) =

s
∑

l=0

rl
i(x)δl, and such that the matrices Pj(x, δ) =

(r1(x, δ), · · · , rj(x, δ)) =
s
∑

l=0

Pjl(x)δl and Pj0(x)

are of dimension j. Let ∆′
i and (

∑

k≥0 ∆′
ik) be the

associated set of distributions defined respectively by (9)

and (10) which are assumed to be locally non singular on

x
0 = (x0(t)T , · · ·x0(t − i)T )T with ρi = rank ∆′

i and

ρi0 = rank (
∑

k≥0 ∆′
ik) (with ρ−1 = ρ−1,0 = 0). Then ∆ is

integrable iff there exists an index γ such that the following

conditions are satisfied

a) ∀l, k ∈ [1, j] and t ≤ p ≤ i + s, [rt
l (·), r

p
k(·)]Ei ∈

∆′
i, i ∈ [0, γ]

b) ργ − ργ−1 = j

c) ργ0 − ργ−1,0 = j

Example 2: Consider the submodule ∆ =

spanK(δ]

{

x2(t − 1)x1(t − 1)δ ∂
∂x1(t)

+ x1(t)
∂

∂x2(t)

}

.

According to Theorem 1, to check if there exists a one-

form which lies in the left kernel of the given submodule, we

must consider

∆′
0 = spanK

{

x1(t)
∂

∂x2(t)
, x2(t − 1)x1(t − 1)

∂

∂x1(t)

}

,

∆′
1 = spanK

{

x1(t)
∂

∂x2(t)

}

+spanK

{

x1(t − 1)x2(t − 1)
∂

∂x1(t)
+x1(t − 1)

∂

∂x2(t − 1)

}

+spanK

{

x2(t − 2)x1(t − 2)
∂

∂x1(t − 1)

}

,

.

..

Since ρ0 = ρ00 = rank (∆′
0) = 2 locally around x0 6= 0,

then condition a) of Theorem 1 holds true for ∆′
0 . As for ∆′

1 ,

it is readily seen that it is independent of x(t − i) i ≥ 2 and

is involutive, so that condition a) is satisfied for ∆′
1; moreover

ρ1 = ρ1,0 = rank (∆′
1) = 3 so that also condition b) and

c) are satisfied being ρ1 − ρ0 = ρ10 − ρ00 = 1. Thus there
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exists one integrable one–form in the left kernel of ∆ given by

ω2(x, δ)dx = dx1 − x2(t − 1)δdx2 = x1(t) −
1
2
[x2(t − 1)]2.

IV. LINEAR FEEDBACK EQUIVALENCE OF ACCESSIBLE TIME

DELAY SYSTEMS

We will now show how the results proposed in the previous

section can be efficacely used to address the problem of linear

feedback equivalence for accessible time delays. To this end,

some preliminary definitions related to the accessibility proper-

ties of a NLTDS are in order.

A. Accessibility submodules

Let g1(x[s], δ) := g(x[s], δ). The module generators gk are

recursively defined for k ≥ 2 as

gk(x[s],u[s], δ) =

f(x[s],u[s], δ)gk−1(x[s],u[s], δ) − ġk−1(x[s],u[s], δ).

Definition 7: The accessibility submodules Ri of system Σ, are

defined as

Ri = spanK(δ]{g1(x, δ) · · · gi(x,u, δ)}, i ≥ 1.

The following results hold true [3].

Proposition 1: If gi+1(x, u, δ) ∈ Ri then ∀j ≥ 1,

gi+j(x, u, δ) ∈ Ri.

Proposition 2: Under the change of coordinates z[0] = φ(x[α]),

with dz = T (x, δ)dx the accessibility submodules elements

gj(·) are transformed as

g̃j(z,u, δ) = [T (x, δ)gj(x,u, δ)]
x=φ−1 (z) . (11)

An immediate consequence is the following.

Corollary 1: Under a bicausal change of coordinates z[0] =
φ(x[α])

Ri = spanK(δ]{g1(x, δ) · · · gi(x,u, δ)} ≡ R̃i

= spanK(δ]{g̃1(z, δ) · · · g̃i(z,u, δ)}.

Denote now for i ≥ 1 and k ≥ 0, and setting γ̄ = min(γ, k)

Ri(x, 0, δ) = span{g1(x, δ), · · · , gi(x, 0, δ)}

Rk
i (x) = span

{

γ
∑

l=0

g
γ−l
j (x(−l))

∂

∂x(t − l)
,

j ∈ [1, i],

γ ∈ [0, k]

}

Rk′

i (x) = span

{

γ̄
∑

l=0

g
γ−l
j (x(−l))

∂

∂x(t − l)
,

j ∈ [1, i],

γ ∈ [0, k + s̄]

}

.

Following the notation of (9),(10) and according to Theorem

1, set Rγ,0′

n−1,k =
∑

k≥0 R
γ′

n−1,k(x). Then the following result

holds true

Lemma 2: There exists a function λ(x) with relative degree n

if and only if

i) rankK(δ]Rn(x, 0, δ) = n

and there exists an index γ such that denoting by ργ =

rankRγ′

n−1(x, 0), ργ,0 = rankRγ,0′

n−1(x, 0), one has that

ii) for l, p ∈ [1, n−1], ∀j ≤ t ≤ k+ s̄, [gj
l (x, 0), gt

p(x, 0)]Ek
∈

Rk′

n−1(x), for k ∈ [0, γ].

iii) ργ − ργ−1 = ργ,0 − ργ−1,0 = 1

The proof, omitted for space reasons, can be easily carried out

using the definition of relative degree.

Proposition 3: Assume that the conditions of Lemma 2 are

satisfied, and let γ̄ be the smallest index which verifies condition

iii). Let λ(x) be a function whose differential lies in the kernel

of Rn−1(x, δ) computed starting from Rγ̄,0′

n−1, Then

i) there does not exist any function λ̄(x[γ̄−1]) whose differential

lies in the kernel of Rn−1(x, δ)

ii) γ̄ is the maximum delay in λ(x).

iii) given a solution dλ(x) ∈ (Rγ̄,0′

n−1)
⊥, any other solution

dλ̄(x) ∈ (Rγ̄,0′

n−1)
⊥, is given by λ̄(x) = ϕ(λ(x)), with

∂ϕ
∂λ

6= 0.

It is now possible to state the necessary and sufficient conditions

for linear feedback equivalence of time delay systems under

bicausal change of coordinates and bicausal static state feedback.

In fact while in the delay–free case the existence of a function

with relative degree equal to n is necessary and sufficient, for

delay systems, the existence of such a function is necessary

but not sufficient. This is due to two main problems: first

while the differentials of the functions λ(x), · · · , λ(n−1)(x), are

ensured to be independent, they may not define a bicausal change

of coordinates; secondly there may not exist a bicausal static

state which linearizes the input output behavior of the chosen

function. These two problems require some additional conditions

which are enlightened below.

Theorem 2: System (1) is equivalent, under bicausal static

state feedback and bicausal change of coordinates, to a lin-

ear weakly accessible delay system if and only if the con-

ditions of Lemma 2 are satisfied and additionally there exist

matrices Q1(δ) unimodular and lower triangular, Q2(δ) =
diag(1, c2(δ), · · · , c2(δ) · · · cn(δ)), T (x, δ) unimodular and

Φ1(x) lower triangular, such that denoting by λ(x) a function

with relative degree n and closed1 the following conditions are

satisfied

a)











dλ(x)

dλ̇(x)
..
.

dλ(n−1)(x)











= Φ1(x)−1
Q1(δ)Q2(δ)T (x, δ)dx

1that is it is characterized by the minimum possible delay[7],[18] and
any other function in the kernel of Rn−1(x, δ) can be generated from

it
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where

Φ1(x) =











ϕ1(λ) 0 · · · 0
ϕ̇1(λ) ϕ1(λ) · · · 0

.

.

.
.
.
.

ϕ
(n−1)
1 (λ)

(

n−1
1

)

ϕ
(n−2)
1 (λ) · · · ϕ1(λ)











with ϕ1(λ) = ∂ϕ(λ)
∂λ

.

b) Setting dλ(n) = a(x, u, δ)dx + b(x, u, δ)du, one must have

b(x, u, δ) = b(x, 0, δ) = ϕ
−1
1 (λ)b̃(δ)β(x)

and

ϕ1(λ)a(x, 0, δ) + Φn+1(x)Φ1(x)−1Q1(δ)Q2(δ)T (x, δ) =

= (ã(δ) + b̃(δ)Γ(x, 0, δ))T (x, δ)

with

Φn+1(x) =
(

ϕ
(n)
1 (λ)

(

n
1

)

ϕ
(n−1)
1 (λ) · · ·

(

n
n−1

)

ϕ̇1(λ)
)

Proof: Necessity. Assume that the system is weakly acces-

sible and equivalent through bicausal change of coordinates z =
φ(x), and bicausal static state feedback u(t) = α(x)+β(x)v(t)
to a linear time delay system. Then in the new coordinates and

after the bicausal feedback law the differential of the system

reads

dż = A(δ)dz + B(δ)dv

Furthermore, the change of coordinates can be chosen in order

to get

A(δ) =











a11(δ) a12(δ) 0 · · · 0
.
..

an−1,1(δ) an−1,n(δ)
an,1(δ) an,n(δ)











B(δ) =
(

0 · · · 0 b1(δ)
)T

It follows that the function λ̃(x) = z1 satisfies







dλ̃(x)
.
..

dλ̃(n−1)(x)






= Q1(δ)Q2(δ)T (x, δ)dx

As enlightened in Proposition 3, starting from Rγ,0′

n−1(x) (γ

being the smallest index satisfying the conditions of Lemma

2), any other possible solution λ(x) = ϕ−1(λ̃(x)) so that

the generic function λ(x) satisfies a) which is invariant under

bicausal change of coordinates and bicausal static state feed-

back. Finally standard computations show that dλ̃n(x,u) =
ã(δ)T (x, δ)dx+ b̃(δ)dv, so that for any bicausal state feedback

v(t) = α̃(x) + β(x)u(t), to which corresponds the differential

dv = Γ̃(x, u, δ)dx+β(x)du = Γ(x, u, δ)T (x, δ)dx+β(x)du,

one gets

dλ̃
n(x,u) = (ã(δ) + b̃(δ)Γ(x, u, δ))T (x, δ)dx + b̃(δ)β(x)du.

Accordingly for the generic output λ(x) = ϕ−1(λ̃(x)) we get

that

dλ̃
(n)(x,u) =

n
∑

i=0

(

n

i

)

(
∂ϕ

∂λ
)(n−i)

dλ
(i)(x,u)

from which we immediately recover b).

Sufficiency. Assume that there exists a function λ(x) with

relative degree n which satisfies a) and b). Then consider

dz = T (x, δ)dx with T (x, δ) defined by a). Note that due to the

relations between the exact differentials dλ(x), · · · , dλn−1(x)
and T (x, δ), this last matrix certainly represents the differential

representation of z[0] = φ(x) which is bicausal being T (x, δ)
unimodular. Under such a change of coordinates and with respect

to the function λ̃(x) = ϕ(λ) defined by a), one gets that












dλ̃(z)

d
˙̃
λ(z)

.

..

dλ̃(n−1)(z)













= Q1(δ)Q2(δ)dz (12)

Furthermore according to b)

dλ̃
(n)(z,u) = (ã(δ) + b̃(δ)Γ(z,u, δ))dz + b̃(δ)β(z)du. (13)

Again due to the structure of dλ̃n(z,u), the existence of

a function α(z) such that Γ(z,u, δ)) =
∑s

i=0
∂α(z)

∂z(t−i)
δi +

v(t)
∑s

i=0
∂β(z)

∂z(t−i)
δi is guaranteed. As a consequence there

exists a bicausal static state feedback u = β−1(z)[−α(z)+v(t)]
such that dλ̃n(z,u) = ā(δ)dz + b̃(δ)dv.

The last step consists in showing that in the new coordinates and

with the computed feedback the system is linear. In fact












d
˙̃
λ(z)

dλ̃(2)(z)
..
.

dλ̃(n)(z)













= Q1(δ)Q2(δ)dż

which due to (12-13) can be equivalently written as

Q2(δ)dż = Ā(δ)dz + B̄(δ)dv

that is

dż = A(δ)dz + B(δ)dv

Example 3: Consider the following nonlinear system

ẋ1 = x1(t)x2(t − 1) + (x2(t) + 1)v(t)

+ x1(t − 1)x2(t − 2) + (x2(t − 1) + 1)v(t − 1)

− 4x1(t − 1)x2(t − 1) − 2x2(t − 1)x2
2(t − 3)

− 4x2(t − 1)x2
2(t − 2) − 2x1(t − 2)x2(t − 1)

ẋ2(t) = 2x1(t) + x1(t − 1) + 2x
2
2(t − 1) + x

2
2(t − 2)

The associated differential representation is characterized by

f(x,u, δ) =

(

f11(x, u, δ) f12(x, u, δ)
2 + δ 4x2(t − 1)δ + 2x2(t − 2)δ2

)

g(x, δ) =

(

(x2(t) + 1) + (x2(t − 1) + 1)δ
0

)
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with f11(x, u, δ) = x2(t − 1)(1 − 4δ − 2δ2) + x2(t − 2)δ,

f12(x, u, δ) = x1(t)δ + v(t) + x1(t − 1)δ2 − 4x1(t − 1)δ +
v(t − 1)δ − 4x2

2(t − 2)δ − 8x2(t − 1)x2(t − 2)δ2 − 2x1(t −
2)δ − 2x2

2(t − 3)δ − 4x2(t − 1)x2(t − 3)δ3

The system is weakly accessible and Rn−1(x[0], δ) = g(x, δ) .

One thus computes

R
0′

n−1 =

{(

x2(t) + 1
0

)(

x2(t − 1) + 1
0

)}

from which we easily get that λ(x) = x2(t) has relative degree

r = 2. The first part of Theorem 2 is thus satisfied. We must

then verify conditions a) and b). To this end let us now compute
(

dλ(x)

dλ̇(x)

)

=

(

0 1
2 + δ 4x2(t − 1)δ + 2x2(t − 2)δ2

)

dx

=

(

1 0
0 2 + δ

)(

0 1
1 2x2(t − 1)δ

)

dx

from which Φ−1(x) = Id, Q1(δ) = Id, Q2(δ) = diag(1, 2+δ)

T (x, δ) =

(

0 1
1 2x2(t − 1)δ

)

(14)

which corresponds to the change of coordinates z1(t) = x2(t),

z2(t) = x1(t) + x2
2(t − 1).

dλ
(2)(x) = (2 + δ)[dẋ1 + 2ẋ2(t − 1)δdx2 + 2x2(t − 1)δdẋ2]

= (2 + δ)(δ + 1)x2(t − 1)dx1

+ (2 + δ)((1 + δ)x1(t)δ + 2x2(t − 1)δ2)dx2

+ (2 + δ)[(x2(t) + 1) + (x2(t − 1) + 1)δ]dv

that is

b(x, u, δ) = (2 + δ)(1 + δ)(x2(t) + 1)

while

a(x, 0, δ) = (2 + δ)(f11(x, 0, δ)dx1 + f12(x, 0, δ)dx2)

+(2 + δ)2ẋ2(t − 1)δ(2 + δ)(dx1 + 2x2(t − 1)δdx2)

= (2 + δ)(1 + δ)[x2(t − 1)dx1(t) + x1(t)δdx2(t)]

so that also b) is satisfied. Comparing the previous relations

one gets that the feedback law u(t) = β−1(x)[−α(x) + v(t)]
which linearizes the input output behavior is characterized by

β−1(x) = 1
x2(t)+1 and α(x) = x1(t)x2(t−1). In fact with such

a bicausal static state feedback and in the considered change of

coordinates the system reads

ż1(t) = 2z1(t) + z1(t − 1)

ż2(t) = v(t) + v(t − 1)

CONCLUSIONS

In the present paper we have applied the geometric framework

introduced in [3],[5] for dealing with nonlinear time–delay sys-

tems in order to solve the linear feedback equivalence problem.

It is shown that the existence of a function with relative degree

equal to n is a necessary condition but not anymore sufficient to

guarantee the existence of a bicausal change of coordinates and

a bicausal state feedback which linearizes the given dynamics.

Some additional conditions must thus be considered to deal with

the general case of delay systems.
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