
Adaptive Consensus and Algebraic Connectivity Estimation in Sensor

Networks with Chebyshev Polynomials

Eduardo Montijano, Juan I. Montijano and Carlos Sagues

Abstract— In the recent years a lot of effort has been devoted
to the problem of finding distributed algorithms that achieve
a fast consensus. The distributed evaluation of polynomials
improves the convergence speed to the consensus keeping the
good properties of standard methods. The drawback about
using polynomials is that they usually require some knowledge
about the network in order to have good convergence prop-
erties. In this paper we consider the consensus method using
Chebyshev polynomials and present an algorithm to compute,
in a distributed way, the parameters that make the method get
the optimal convergence rate. One of the parameters coincides
with the second largest eigenvalue of the weight matrix, i.e.,
the algebraic connectivity, and we prove the convergence of
the algorithm to it. We also present three variants of the
algorithm to converge to this parameter in a faster way
and to consider changes in the communication topology. We
evaluate our algorithm in a simulated environment showing its
performance in a wide set of networks.

Index Terms - Adaptive distributed consensus, Chebyshev

polynomials, Algebraic Connectivity Estimation.

I. Introduction

Nowadays a lot of effort is being devoted to research

distributed algorithms because they are proving to be useful

tools in multi-agent systems and sensor networks. The con-

sensus problem consists in designing a distributed iteration

that makes all the nodes in a communication network reach

the same value considering only local interactions. Many

solutions based on the weighted adjacency matrix have

been proposed, see e.g., [1] and the references therein. The

appropriate selection of the weights is discussed in [2], but

still convergence to the consensus can be slow.

The distributed evaluation of polynomials has turned out

to be an easy way to speed up the consensus, also keeping

the good properties found in standard methods. The minimal

polynomial of the weight matrix is studied in [3], [4],

reaching the exact solution in a finite number of iterations.

The approach in [5] uses a polynomial of fixed degree

with coefficients computed assuming the network is known.

Second order recurrences with predictions are used in [6], [7]

and Chebyshev polynomials are studied in [8]. The drawback

of algorithms using polynomials is that they require some

This work was supported by the project DPI2009-08126 and grant
AP2007-03282 Ministerio de Educacion y Ciencia.

E. Montijano and C. Sagues are with Departamento de Informática
e Ingenierı́a de Sistemas - Instituto de Investigación en Ingenierı́a de
Aragón (I3A), Universidad de Zaragoza, Spain. emonti@unizar.es,
csagues@unizar.es

J.I. Montijano is with Departamento de Matemática Aplicada - Instituto
Universitario de Matemáticas y Aplicaciones (IUMA), Universidad de
Zaragoza, Spain. monti@unizar.es

knowledge about the network in order to provide the best

performance. This knowledge is usually related to the eigen-

values of the weight matrix of the network. For example,

computing the minimal polynomial is equivalent to know

all the eigenvalues of the weight matrix. In the case of

Chebyshev polynomials, which will be the focus of our study,

convergence speed depends on two input parameters. The

optimal convergence rate is achieved when these parameters

are equal to the second largest (algebraic connectivity) and

the smallest eigenvalue of the weight matrix.

Due to the importance the eigenvalues of the weight

matrix play in distributed algorithms, several works have

considered its distributed computation. In [3] they introduce

a distributed algorithm to compute the coefficients of the

minimal polynomial. The number and the size of the mes-

sages the nodes need to exchange grows linearly with the

size of the network, which implies that for large networks

a lot of communications will be required. The Fast Fourier

Transform (FFT) is used in [9] to estimate all the eigenvalues.

In this case the algorithm is also able to pick changes in the

communication topology. In order to compute the FFT, all the

values of the measured signal along time are required, so that

to get a good estimation, the nodes will need to store large

amount of data. Finally, the power method is used in [10]

to estimate the Fiedler eigenvector and in [6] to estimate the

algebraic connectivity. The convergence speed of the power

method is determined by the quotient between the two largest

eigenvalues of the matrix. When this quotient is close to the

unity, the number of iterations required to compute a good

estimation of the algebraic connectivity is excessive.

In this paper we propose an extension to the Chebyshev

polynomials consensus algorithm [8]. We design an algo-

rithm, to be run at the same time as the consensus one, that

adaptively selects the parameters that make the method in [8]

reach the fastest convergence rate. Therefore, our algorithm

can also be used as an estimator of the algebraic connectivity.

The advantage of our approach with respect to prior work

is that the estimation does not require big messages or

large amounts of memory, giving a good approximation in a

relatively small number of iterations. We also present three

variants of the algorithm, two of them are used to reach the

algebraic connectivity in a faster way and the last one detects

changes in the communication topology.

The structure of the paper is the following: In section II

we provide some background about the consensus algorithm

using Chebyshev polynomials. In section III we present our

adaptive consensus algorithm applying bisection techniques.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 4296

Section IV provides the variants of the method. Finally in

section VI the conclusions of the work are presented.

II. Consensus Using Chebyshev Polynomials

In the paper we consider a sensor network of N agents

labeled by i ∈ V = {1, . . . , N}. Communications between

the agents are defined according to an undirected graph G =
{V, E}, where E ⊂ V × V represents the edge set. We say

that agents i and j directly exchange messages if and only if

(i, j) ∈ E . The set of neighbors of agent i is denoted by Ni =
{j ∈ V | (i, j) ∈ E}. We assume that the communication

graph is fixed and connected, that is, there exists a path of

one or more links between any two agents in the network.

The standard discrete time distributed consensus algorithm

based on the weighted adjacency matrix associated to the

communication graph [1] is

x(n+ 1) = Ax(n), (1)

where x(n) = (x1(n), . . . , xN (n))T are the values of the

state of the different nodes in vectorial form at time step n
and A = [aij] ∈ R

N×N , is the weight matrix.

Assumption 2.1 (Doubly Stochastic Weights): A is sym-

metric, row stochastic and compatible with the underlying

graph, G, i.e., it is such that aii > 0, aij = 0 if (i, j) 6∈ E ,
aij > 0 only if (i, j) ∈ E , A1 = 1 and 1T A = 1T .
With this assumption, the eigenvalues of A, sorted in de-

creasing order, satisfy 1 = λ1 > λ2 ≥ . . . ≥ λN > −1 and

the execution of (1) will make all the nodes in the network

to asymptotically reach the average of the initial conditions

x(0). However, the convergence speed of this rule is, in

general, slow, which implies that many communications are

required in order to obtain a good estimation of the average.

Without loss of generality, we assume that the algebraic

connectivity of the network is characterized by λ2, i.e.,

|λ2| ≥ |λN |. In this paper we do not deal with the problem

of how to choose the weights in A and we refer the reader,

e.g., to [2], for a detailed discussion on this topic.

In [8] we propose a modification of the algorithm to

speed up convergence using Chebyshev polynomials. For

completeness of the paper we summarize it here. Chebyshev

polynomials of first kind [11] are defined with the recurrence:

T0(x) = 1, T1(x) = x
Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3,

(2)

The distributed consensus rule using Chebyshev polyno-

mials is defined by

x(1) =
1

T1(c− d)
(cA − dI)x(0),

x(n+ 1) = 2
Tn(c− d)

Tn+1(c− d)
(cA − dI)x(n)−

− Tn−1(c− d)

Tn+1(c− d)
x(n− 1).

(3)

The parameters c and d are

c =
2

λM − λm
, d =

λM + λm

λM − λm
, (4)

and 1 > λM > λm > −1 are two real coefficients that bring

the interval [λm, λM] to [−1, 1].
The convergence speed of the algorithm depends on the

selection of the parameters λm and λM . The optimal con-

vergence rate is found when λm = λN and λM = λ2.

III. Adaptive Consensus and Algebraic Connectivity

Estimation

In this section we present the adaptive consensus algorithm

using the Chebyshev Polynomials that leads to the estimation

of the algebraic connectivity. The proposed algorithm is

based on the bisection method. We describe the process

considering a symmetric choice of the parameters, −λm =
λM = λ, and therefore, c = 1/λ and d = 0. The algorithm

uses control data to adapt the parameter. For simplicity we

explain the algorithm assuming that x(0) are exactly these

control data. The execution of the algorithm with regular

initial conditions can be executed in parallel. Each node

randomly initializes xi(0) ∈ {0, 1}. We require the following

assumption:

Assumption 3.1 (Non-null Fiedler eigenvector): The ini-

tial conditions x(0) expressed as a sum of eigenvectors of

A, x(0) =
∑

i=1,...,N vi, satisfy v2 6= 0.

Let us suppose we run the algorithm (3) for a fixed

number, n, of iterations choosing c = 1/λ, with λ ∈ (0, 1).
Let us define

κn(c) = Tn(c)
‖x(n)− v1‖∞
‖x(0)− v1‖∞

(5)

as an indicator of the position of the eigenvalues with

respect to the parameter c. The vector v1 is the eigenvector

associated to λ1, i.e., the average of the initial values and

‖x(0)− v1‖∞ and ‖x(n)− v1‖∞ are the initial and current

error in the averaging process. The distributed computation

of these data is explained later in the text.

Proposition 3.1 (Eigenvalues position indicator): Given

λ and c = 1/λ as the parameter for the iteration (3), if

λi ∈ [−λ, λ], ∀i = 2, . . . , N, then κn(c) is bounded by

κn(c) ≤
∑N

i=2
‖vi‖∞

‖∑N
i=2

vi‖∞
, ∀n. (6)

Otherwise, at least λ2 6∈ [−λ, λ] and limn→∞ κn(c) = ∞.
Proof. The initial error is

‖x(0)− v1‖∞ = ‖
N
∑

i=2

vi‖∞. (7)

The error after n iterations [8] is equal to

‖x(n)− v1‖∞ = ‖
N
∑

i=2

Tn(cλi)

Tn(c)
vi‖∞ (8)

Using these two expressions we get

κn(c) = Tn(c)
‖x(n)− v1‖∞
‖x(0)− v1‖∞

=
‖
∑

N

i=2
Tn(cλi)vi‖∞

‖
∑

N

i=2
vi‖∞

(9)

If λi ∈ [−λ, λ], it means that cλi ≤ 1. Using the explicit

representation of the Chebyshev polynomial, Tn(cλi) =

4297

cos(n arccos(cλi)), which is upper-bounded (in norm) by

1, we get,

κn(c) =
‖
∑

N

i=2
Tn(cλi)vi‖∞

‖
∑

N

i=2
vi‖∞

≤

∑
N

i=2
‖vi‖∞

‖
∑

N

i=2
vi‖∞

, ∀n. (10)

On the other hand, when cλi > 1, for some λi, Tn(cλi)
goes to infinity as n grows and

lim
n→∞

κn(c) = lim
n→∞

‖
∑

N

i=2
Tn(cλi)vi‖∞

‖
∑

N

i=2
vi‖∞

= ∞ (11)

Taking this into account, for a sufficiently large n we are

able to discern when all the eigenvalues of A are contained

in the interval [−λ, λ] and when they are not.

We can now propose the adaptive algorithm to iteratively

choose λ and c using κn(c) and a bisection method. The

algorithm starts with an interval defined by the two extremes,

λmin and λmax, such that

λi ∈ [−λmax, λmax], ∀i = 2, . . . , N,

at least λ2 6∈ [−λmin, λmin].
(12)

If there is no knowledge about the network, the initial values

of these parameters can be λmin = 0 and λmax = 1.
Following the bisection approach, the first parameter to run

the consensus algorithm (3) is λ = (λmin + λmax)/2 =
0.5, c = 1/λ.

At each consensus round, eq. (3) is run for n iterations

using c. This number, n, must be chosen in such a way that

κn(c) has time to diverge when there is some eigenvalue

outside the range [−λ, λ]. The bound in eq. (6) is unknown

so an estimation, κ is used in the algorithm. If κn(c) ≤
κ, we know that all the eigenvalues are contained in the

interval [−λ, λ]. On the other hand, if κn(c) > κ, it means

that there is some eigenvalue outside the range. Once we

have detected which of the two situations is happening, the

bisection parameters are updated according to it,

λmax = λ, if κn(c) ≤ κ

λmin = λ, if κn(c) > κ.
(13)

After that the consensus process is repeated, computing at

each round a new estimation of the parameter λ = (λmin +
λmax)/2.

Proposition 3.2 (Convergence of the method): Assuming

n is large enough, the algorithm (13) is convergent to λ2,

that is (λmax + λmin)/2 → λ2.
Proof. By Proposition 3.1, we know that for a sufficiently

large n, κn(c) correctly discriminates if λi ∈ [λ, λ], ∀i =
2, . . . , N. The algorithm in (13) is based on bisection and

is convergent because of the use of κn(c). The value of

convergence is the border between the two limit situations,

and it is λ = (λmax + λmin)/2 → maxi 6=1 λi = λ2.
Therefore, the adaptive consensus algorithm updates the

parameter c of eq. (3) to optimize the convergence speed

of the method. Moreover, as new values of λ are computed,

a better estimation of the algebraic connectivity is available.

Remark 3.1: Once a good approximation of λ2 is avail-

able the same process can be applied to estimate λN . We

need to consider again the standard parametrization of (3)

with two parameters. The last estimation, λ, of λ2 such

that λ > λ2 is assigned to λM and the new parameter to

adaptively tune is λm. The iterative use of (13) to update

λm will eventually assign the value of λN to this parameter.

A. Computation of v1 and the errors

We have not discussed the problem of computing the

initial, ‖x(0) − v1‖∞, and final, ‖x(n) − v1‖∞, errors or

the exact value of v1 yet. It is also convenient to discuss the

selection of κ and n to have convergence guarantee.

The use of control data, composed by integers, allows

us to compute the exact average using an easy rounding

technique [12]. Let us recall that each node has initial value

of xi(0) ∈ {0, 1}. Therefore the average will be j/N, for

some j = 0, 1, . . . , N, and v1 = j/N1. Let us assume

the number of agents, N, is known by all the nodes. The

approximation

yi(n) =
1

N
[Nxi(n)] , (14)

with [·] a rounding operator to the closest integer, will

provide us the exact value of v1, for all n such that ‖x(n)−
v1‖∞ ≤ 1/N.

Since during the first iterations the exact value of v1 is not

available, the errors cannot be computed either. Nevertheless,

we can get a good approximation of the infinity norm by

‖x(n)− v1‖∞ ≃ max
i

{|xi(n)− yi(n)|+ |yi(n)− yi(n− 1)|},

‖x(0)− v1‖∞ ≃ max
i

{|xi(0)− yi(n)|+ |yi(n)− yi(n− 1)|},

which can be easily computed using a max consensus

algorithm [13] in a fixed number of iterations equal to the

diameter of G. Since |xi(n) − yi(n)| is upper bounded by

1/N for all n and i, during the first iterations it will not

provide a real estimation of the errors. For that reason the

term |yi(n) − yi(n − 1)| is introduced in the estimation.

Also note that, after a finite number of iterations, y(n) =
y(n− 1) = v1, and the above estimation of the error will be

exact whereas using |xi(n)− xi(n− 1)| it would never be.

The only parameter that cannot be exactly computed is κ,
but we can give some more accurate bounds of the value of

κn(c) that can be used by the algorithm as values of κ.
Lemma 3.1: When cλi < 1, κn(c) is bounded by

κn(c) ≤
√
N

Proof. The bound is obtained from the following inequality:

‖x(n)− v1‖∞ ≤ ‖x(n)− v1‖2 =

= ‖Tn(cA)/Tn(c)(x(0)− v1)‖2 ≤
≤ max

i 6=1
Tn(cλi)/Tn(c)‖x(0)− v1‖2 ≤

≤ max
i 6=1

Tn(cλi)/Tn(c)‖x(0)− v1‖∞
√
N.

Regrouping terms and considering that Tn(cλi) ≤ 1 yields

κn(c) ≤
√
N.

Therefore, assigning κ =
√
N will assure that the algorithm

will not overestimate the value of λ2. On the other hand,

by choosing a conservative value of κ we require to choose

4298

bigger values of n to make κn(c) diverge. In this way the

algorithm also has time to have a good estimation of yi(n),
and therefore of the errors.

The whole process is synthesized in Algorithm 1.

Algorithm 1 Adaptive consensus algorithm

Require: κ, n and x(0), s.t. xi(0) ∈ {0, 1}
1: Initialize λmin = 0, λmax = 1
2: while λmax − λmin > tolerance do

3: λ = (λmin + λmax)/2, c = 1/λ
4: for it= 1, . . . , n do

5: Compute x(it) using (3)

6: end for

7: Use max consensus to estimate the errors

8: Compute κn(c)
9: if κn(c) ≤ κ then λmin = λ

10: else λmax = λ
11: end if

12: end while

IV. Variants of the Algorithm

In this section we provide three different variants of the

basic algorithm that can be used to improve its behavior. The

first two variants can be used to improve the convergence rate

to the algebraic connectivity and the third one can be used

to detect changes in the communication topology, making

the algorithm to converge at each step to the current best

parameter.

A. Direct estimation of λ2

The first variant we present makes use of κn(c) to provide

a direct estimation of λ2 when cλ2 > 1. Let us recall

that in this situation, κn(c) → ∞ with speed determined

by Tn(cλ2). The direct expression of Tn(cλ2) is character-

ized [11] by

Tn(cλ2) =
1 + τ2n

2τn
, τ = cλ2 −

√

(cλ2)2 − 1. (15)

Therefore, the value of λ2 can be estimated as follows:

1) Compute κn(c) and assume κn(c) ≃ Tn(cλ2)
2) Using (15) compute the value of τ from the second

degree equation 2κn(c)τ
n = 1 + τ2n,

τ =
(

κn(c)−
√

κ2
n(c)− 1

)1/n

(16)

3) Finally, clear λ2 from (15) using (16)

λ2 ≃ λ
τ2 + 1

2τ
. (17)

Note that the value obtained is still an approximation of

the real value of λ2. Therefore, the bisection iteration still

needs to be executed. Whenever a direct estimation of λ2 is

available, the interval is updated by

λmax = λ2 +min(λmax − λ2, λ2 − λmin),

λmin = λ2 −min(λmax − λ2, λ2 − λmin),

λ = λ2,

(18)

where λ2 here is the estimation obtained in (17). In this

way the interval to look for the algebraic connectivity is

significantly reduced and so is the number of iterations and

consensus rounds.

In order to have a good direct estimation of λ2, it is

desirable to have Tn(cλi)vi/Tn(c) ≃ 0, i = 3, . . . , N, or

at least |Tn(cλ2)v2| ≫ |Tn(cλi)vi|. To make this happen, at

each new consensus round we update the initial conditions by

x(0) = x(n). With this update the average, v1, is preserved,

but the initial conditions are closer to it, which is the same as

to say that vi is closer to zero. In addition, the estimations of

the errors are also improved by the update because yi(n) will

be closer to the average. Therefore, we are also obtaining

a more exact value of κn(c), improving even more the

estimation.

However, we only do the update when cλ2 > 1. The

reason is that the convergence to zero is faster for the

eigenvalues contained within [−λ, λ] than for those outside

the interval. Since λ2 is not contained in the interval, v2 is not

reduced as much as the other eigenvectors and v2 ≫ vi. If

we update the initial conditions when cλ2 < 1, it is possible

that the component associated to v2 is reduced by a larger

factor than for other eigenvectors.

B. Speed up using k-section method

The bisection method has the property of reducing the

estimation error, |λ − λ2|, by a constant factor of 0.5. In

sensor networks, the cost of sending several small messages

is usually bigger than the cost of sending a unique message

with more information. Taking this into account our method

can execute several copies of the consensus algorithm in

parallel with different parameters. In this way, the bounds

of λ2 are delimited with more accuracy and the optimal

convergence rate is reached sooner. Specifically, given λmin

and λmax, the k-section method executes k−1 consensus in

parallel with parameters

λj = j(λmin+λmax)/k, cj = 1/λj , j = 1, . . . , k−1. (19)

Once all the different estimations of κn(cj) have been

computed, the interval to consider in the next consensus

iteration is defined by

λmin = max
j

λj s.t. κn(cj) ≤ κ,

λmax = min
j

λj s.t. κn(cj) > κ.
(20)

With this algorithm, the size of the messages exchanged by

the nodes will increase in k − 1 additional elements instead

of the one sent by the bisection method. However, the error

in the estimation of λ2 will be reduced by a factor of 1/k
after each update in the estimation.

C. Detecting changes in the communication topology

Since the evaluation of the Chebyshev polynomial re-

quires the topology to be fixed, we impose that during the

n iterations used to estimate κn(c) the topology remains

fixed. However, let us assume that within different consen-

sus rounds the communication topology can change. If we

4299

consider a network of mobile sensors, this situation could

appear, for example, making the sensors remain static during

the computation of x(n) and letting them move during the

computation of κn(c).
Whenever the eigenvalue λ2 is contained in the interval

[λmin, λmax], the standard method will converge to the right

value, even if it changes between estimations of κn(c).
However, as we approach to the algebraic connectivity, the

interval [λmin, λmax] will be small, and it will be very likely

that a change of the topology displaces λ2 outside of it. In

such case, the standard method will not converge to λ2.

Using a similar approach to the k-section method we can

detect when the eigenvalue we are looking for has left the

considered interval. Let us define cmin = 1/λmin and cmax =
1/λmax. If we run the consensus iteration in parallel for the

three parameters, cmin, c and cmax, and λ2 ∈ [λmin, λmax],
it must hold that κn(cmin) > κ and κn(cmax) ≤ κ. If one

of these conditions does not hold we will know that the

topology has changed and the algebraic connectivity has left

the interval.

In case κn(cmax) < κ that means that λ2 is above the

interval and we can use (17) to obtain a direct estimation

of it. If κn(cmin) ≥ κ then the value of the algebraic

connectivity is below the interval we are analyzing. In this

case we do not have any means to estimate an approximate

value. The policy we follow is to assign λmax = λmin and

λmin = 0. Although it is a conservative policy, it ensures

that the eigenvalue we are looking for is again within the

interval.

V. Simulations

We have analyzed our algorithm in a simulated environ-

ment using Monte Carlo methods. We have generated a set

of networks of different sizes. For each different number of

nodes, we have tried a hundred random networks. In each

network the nodes have been randomly positioned in a square

of 200× 200 meters. Two nodes communicate if they are at

a distance lower than 20 meters. The networks have also

been forced to be connected. Ten different random initial

values have been tested for each network, giving a total of

1000 trials for each number of nodes. In all the experiments

the matrix A has been computed using the “local degree

weights” [2].

The value of κ has been set to
√
N and we have used

the value of c in order to decide the number of iterations

n executed at each round. We have chosen the minimum n
such that Tn(c) > 100. In this way, the algorithm always

executes enough iterations to converge to the right value.
TABLE I: Results for the standard bisection method
N λ2 Diam Rounds Iter n λ

10 0.910 4.68 6 118.08 90.00 0.917

50 0.982 10.52 6 170.56 107.45 0.978

100 0.985 13.62 6 198.67 116.95 0.982

250 0.992 18.64 6 240.84 129.00 0.993

500 0.992 43.00 6 376.40 150.20 0.994

The results obtained using the bisection method are in

Table I. The second column (λ2) shows the mean algebraic

connectivity of all the networks analyzed and the third col-

umn (Diam) shows the mean diameter. The column “Rounds”

represents the number of estimations of λ before satisfying

that λmax−λmin ≤ 10−2 Therefore, the method is expected

to have a tolerance of 10−2 in the estimation of λ2. Since the

error is reduced by the same factor at each round, using this

method the number of rounds is constant for any size of the

network. The total number of iterations (including the max

consensus to estimate the errors) is written in the column

“Iter” whereas next column (n) shows only the iterations

required for the consensus part. Finally, the last column

shows the mean of the estimations, λ.

Looking at the results, we can extract some interesting

conclusions. First of all, the large values of the mean λ2

indicate that consensus algorithms evaluated in these net-

works will require a large number of iterations to achieve

consensus. Although our method uses several consensus

rounds to estimate the algebraic connectivity, each one

of these rounds requires a considerably smaller number

of iterations than a standard consensus method. Since the

algorithm is intended to be executed at the same time as the

standard consensus with real data, we conclude that within

one consensus execution with real data we will have the

algebraic connectivity.

It is also remarkable how well the method escalates with

the size of the network. For large networks in less than N
iterations the algorithm reaches a good estimation of λ2.

Another thing to remark is that the number of iterations used

in the max consensus represents a large fraction of the total,

specially as N grows. This happens because the choice of

n does not depend on the size of the network but on the

connectivity. Therefore, for large networks, the bottleneck of

the algorithm, in terms of communications, is the diameter

of G.

Figure 1 depicts three executions of the adaptive consensus

in a network of 100 nodes using real initial conditions. The

three pictures consider the same initial conditions, the same

number of iterations and different input parameters, esti-

mated using bisection. It can be seen that as new estimations

of λ are computed, the consensus is reached faster.

TABLE II: Results with direct estimation of λ2

N λ2 Diam Rounds Iter n λ

10 0.910 4.68 4.40 86.62 66.20 0.915

50 0.982 10.52 4.02 118.68 76.60 0.979

100 0.985 13.62 4.45 155.02 94.36 0.982

250 0.992 18.64 5.23 215.66 118.31 0.994

500 0.991 43.00 5.10 322.00 129.72 0.994

In Table II we show the results for the same experiment but

using the direct estimation of λ2 presented in section IV-A.

In this case the number of rounds depends on the computed

values of λ2. Note that this number is smaller than the

number of rounds required by the standard bisection to obtain

the same tolerance error. As a consequence the number of

iterations is also reduced. Finally, it is worth noticing that

the estimation of λ2 is also very precise.

4300

0 5 10 15 20 25 30 35
−100

−50

0

50

100

Iterations

x
(n

)
Consensus using lambda = 0.500

0 5 10 15 20 25 30 35
−100

−50

0

50

100

Iterations

x
(n

)

Consensus using lambda = 0.875

0 5 10 15 20 25 30 35
−100

−50

0

50

100

Iterations

x
(n

)

Consensus using lambda = 0.984

(a) Round 1 (b) Round 3 (c) Round 6

Fig. 1: Adaptive consensus using real data. Evolution of x(n) using the same initial conditions and number of iterations but different parameters estimated
using pure bisection. The algebraic connectivity of the network is 0.987. As new estimations of λ are computed, the consensus is reached faster.

A. Estimation in switching topologies

In this subsection we show an experiment where we allow

the communication graph to change and how our method

tracks the algebraic connectivity using the k-section method.

We have considered a random network composed by 50
nodes. Since during the computation of x(n) the network

must be static, we have only modified the network during

the estimation of the errors. The evolution of the estima-

tions is depicted in Fig. 2. We can see that the algorithm

detects the changes in the topology and adjust the intervals

in consequence. If the topology remains fixed for enough

iterations, the method estimates the value of the algebraic

connectivity. When the algebraic connectivity is reduced,

instead of assigning λmin = 0 we have used λmin =
λmax − 0.1. Although sometimes, e.g., just before iteration

200, more than one consensus round is required to adapt the

interval, with this assignment, the convergence is in general

faster to the real value of λ2.

0 200 400 600 800 1000 1200
0.5

0.6

0.7

0.8

0.9

1

Iterations

V
a
lu

e
s
 o

f λ

Algebraic Connectivity Estimation with Switching Topology

λ
max

λ
min

λ

λ
2

Fig. 2: Estimation of the algebraic connectivity under a switching commu-
nication network. The algorithm detects the changes and adapts the interval
to estimate at each round the algebraic connectivity.

VI. Conclusions

We have presented a new distributed adaptive consensus

algorithm using the bisection method. The method is de-

signed to autonomously tune the input parameter of the con-

sensus algorithm using Chebyshev polynomials to reach the

optimal convergence rate. The obtained parameter coincides

with the algebraic connectivity, and therefore our algorithm

can also be used by other applications that make use of this

parameter. The proposed method uses simple control data,

for which an estimation of the exact average and the norm

of the error can be computed with consensus methods in

a finite number of iterations. We have also presented three

variants of the basic method to speed up the convergence

to the optimal input parameter, as well as to detect changes

in the communication topology, still achieving convergence

to the algebraic connectivity. We have evaluated our method

with an extensive set of simulations, showing the goodness

of our proposal.

REFERENCES

[1] F. Bullo, J. Cortés, and S. Martı́nez. Distributed Control of Robotic

Networks. Applied Mathematics Series. Princeton University Press,
2009. Electronically available at http://coordinationbook.info.

[2] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging.
Systems and Control Letters, 53:65–78, 2004.

[3] S. Sundaram and C. N. Hadjicostis. Finite-time distributed consen-
sus in graphs with time-invariant topologies. In American Control

Conference, pages 711–716, New York, 2007.
[4] Y. Yuan, G. Stan, L. Shi, and J. Gonçalves. Decentralised final value

theorem for discrete-time lti systems with application to minimal-
time distributed consensus. In IEEE Int. Conference on Decision and

Control, pages 2664–2669, 2009.
[5] E. Kokiopoulou and P. Frossard. Polynomial filtering for fast con-

vergence in distributed consensus. IEEE Transactions on Signal

Processing, 57(1):342354, 2009.
[6] B. Oreshkin, M. Coates, and M. Rabbat. Optimization and analysis

of distributed averaging with short node memory. IEEE Transactions

on Signal Processing, 58(5):2850–2865, May 2010.
[7] S. Muthukrishnan, B. Ghosh, and M. H. Schultz. First- and second-

order diffusive methods for rapid, coarse, distributed load balancing.
Theory of Computing Systems, 31(4):331–354, 1998.

[8] E. Montijano, J. I. Montijano, and C. Sagues. Fast distributed con-
sensus with chebyshev polynomials. In American Control Conference,
2011. to appear.

[9] M. Franceschelli, A. Gasparri, A. Giua, and C Seatzu. Decentralized
laplacian eigenvalues estimation for networked multi-agent systems.
In IEEE Int. Conference on Decision and Control, pages 2717–2722,
2009.

[10] P. Yang, R.A. Freeman, G.J. Gordon, K.M. Lynch, S.S. Srinivasa,
and R. Sukthankar. Decentralized estimation and control of graph
connectivity for mobile sensor networks. Automatica, 46(2):390–396,
Feb 2010.

[11] J.C. Mason and D. C. Handscomb. Chebyshev Polynomials. Chapman
and Hall, 2002.

[12] E. Montijano, S. Martı́nez, and C. Sagués. De-RANSAC: Robust con-
sensus for robot formations. In Network Science and Systems in Multi-

Robot Autonomy, Workshop at the IEEE International Conference on

Robotics and Automation 2010, May 2010.
[13] N. Lynch. Distributed Algorithms. Morgan Kaufmann publishers,

1997.

4301

