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Abstract— In this paper a network of vehicles moving in a two
dimensional plane, described by double integrator dynamics,
is stabilized by a novel distributed control methodology, to
maintain a formation. The distributed control architecture
employs static output feedback using an artificial delay. Delays
in communication of the relative information are exploited to
stabilize the network system using state output feedback of posi-
tion information only. The synthesis of the controller gains and
the level of artificial delay, is posed as an optimization problem
subject to the feasibility of a set of Linear Matrix Inequalities
based on a discretized Lyapunov-Krasovskii functional.

I. INTRODUCTION

A large number of studies based on consensus algorithms

consider either single or double integrator dynamics as poten-

tial representative models for a wide range of applications.

See [1]-[10] and the references therein for details. In this

paper, the focus is on the double integrator systems, which

can be a simple representative model for rendezvous [8],

mobile robots [12], single axis spacecraft rotation [13],

etc. The double integrator model is more representative in

comparison with a single integrator model which cannot for

example model motion in a plane in which acceleration is

the control input. Consensus algorithms for double integrator

models have been previously studied in [8]-[11]. In [8],

the rendezvous of vehicles described by double integrator

dynamics is studied using local speed feedback along with

information communicated from neighbours to analyze fixed

and switching topologies. In [9], necessary and sufficient

conditions on the network topologies to achieve consen-

sus are derived. In [10], consensus algorithms for double

integrator dynamics are analyzed with respect to bounds

on the control inputs, the absence of relative measurements

and the availability of reference states. In [11], a consensus

strategy based on exchange of delayed position and velocity

information for a network of double integrators has been

studied. Consensus algorithms for double integrator dynam-

ics have been extended to the problem of stabilization of

formations in [14]-[17]. In [14], behaviour based methods for

maneuvering mobile robots in a formation are presented. The

paper proposes a strategy based on relative information to
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maintain formation. In [15], the correlation between the sta-

bility of a network of dynamical systems and the Laplacian

eigenvalues is studied. In [16], it is shown that a necessary

and sufficient condition for decentralized linear stabilization

of formations, is the presence of a directed spanning tree

in the network topology. In [17], necessary and sufficient

conditions for formation and alignment in the presence of

saturation constraints are developed. Another related area of

study is flocking, since flocking problems are often modelled

as double integrator dynamics. See references [18]-[20] for

further details.

Delay effects on consensus strategies have been studied

in [15], [21]-[25]. In [21], stability criteria for consensus

in a network of agents are derived using a frequency based

approach and a Lyapunov-Krasovskii technique. The authors

conclude that the position of an equilibrium point depends

strongly on the value of a delay and the initial conditions. In

[22], a stability criteria for consensus in a network of double

integrator systems based on Lyapunov-Krasovskii techniques

is derived. In [23], a decentralized control algorithm is

developed for a network of vehicles, with second order

dynamics, with different position coupling gains at each

node. It is proved that for a connected topology, rendezvous

is achieved for sufficiently small coupling gains. In [24],

the effects of communication delays on consensus in large

scale multi-agent systems with nonlinearities is studied. In

[25], robustness of consensus in multi-agent systems is

investigated. It is shown that delays in communication which

only affect an agent’s neighbours are less restrictive than

delays which affect the agent along with its neighbours.

In many practical cases, the measurement of all the states

of a system is not viable. In such scenarios control by output

feedback is necessary. Although (static) output feedback

control is a well studied problem, no complete solution has

been found [26], [27]. Typically the problem must be posed

as an optimization and solved using numerical methods.

Furthermore it is well known that double integrator systems

cannot be asymptotically stabilized via static output feed-

back. One solution is to create a dynamical feedback control

law - possibly based on observers. In [28], it is shown that

some systems stabilize due to delays. Consequently it maybe

possible to stabilize a system, which cannot be stabilized

by static output feedback, by introducing terms based on

a delayed version of the output. This design methodology

has been considered by a few researchers in [29]-[33].

In [29], necessary and sufficient conditions for achieving

stability of systems which cannot be stabilized without delays
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are developed. In [30], issues related to robustness with

respect to parametric and delay uncertainty are considered.

In [31], necessary conditions for the existence of stabilizing

static output feedback controllers with multiple delays are

developed. In particular, stabilization of a double integrator

by using delays in output feedback terms is briefly described.

In [32], a new method for control synthesis, based on descrip-

tor discretized Lyapunov-Krasovskii functionals, which can

stabilize systems not stabilizable by static output feedback

has been developed. In [32], the method is illustrated on

double integrator dynamics. In [33], an artificial delay is

used to develop a static output feedback sliding mode control

law. It is stated by the authors that an advantage of such a

method is that it does not increase the order of the system,

and is computationally less complex compared to methods

involving the use of compensators.

The contribution of this paper is the development of a

distributed output feedback control law, making use of an

artificial fixed delay, to stabilize a formation of vehicles,

moving in a two dimensional plane, and described by double

integrator dynamics. Most literature on consensus algorithms

and formation control of double integrator systems, for

example [8], [9], [14], [16] (and many others), is based

on state feedback, whereas this paper is based on static

output feedback where the only measurements are position

information in a 2-dimensional plane. The network topology

is assumed to be fixed. The relative information communi-

cated by the neighbours of each vehicle is provided with

precalculated offsets such that the vehicles stabilize in a

formation. To find the controller gains and the artificial

delay simultaneously, an available numerical optimization

method (DIRECT) [38] is employed subject to the constraints

emanating from the feasibility of linear matrix inequalities

based on the discretized Lyapunov-Krasovskii functional

from [37].

II. PRELIMINARIES

Standard notation has been used in this paper. The set of

real numbers is denoted by IR. The expression IRm denotes

real valued vectors of length m and IRm×n denotes the set of

arbitrary real-valued m × n matrices. The expression Col(.)
denotes a column vector and Diag(.) denotes a diagonal

matrix. A symmetric positive definite (s.p.d) matrix will be

written as P = P T > 0 and In denotes an identity matrix of

dimension n×n. The symbol ⊗ denotes Kronecker product.

Standard concepts from graph theory are quoted in this

section. Please refer [36] for further reading on graph theory.

A graph G consists of a set of vertices denoted by V , and

a set of edges E ⊂ V2 where e = (α, β) ∈ V2, i.e, an

unordered pair, denotes an edge. A network G = (V , E),
represents a simple, finite graph consisting of N vertices

and k edges. The graphs are assumed to be undirected. It is

also assumed that the graph contains no multiple identical

edges between two nodes and no loops. For the graph G,

the adjacency matrix A(G) = [aij ], is defined by setting

aij = 1 if i and j are adjacent nodes of the graph, and

aij = 0 otherwise. This creates a symmetric matrix. The

symbol ∆(G) = [δij ] represents the degree matrix, and is

an N × N diagonal matrix, where δii is the degree of the

vertex i. The Laplacian of G, L, is defined as the difference

∆(G) − A(G). The Laplacian for an undirected graph is

symmetric. The smallest eigenvalue of L is exactly zero and

the corresponding eigenvector is given by 1 = Col(1, . . . 1).
The Laplacian L is always rank deficient and positive semi-

definite. Moreover, the rank of L is n − 1 if and only if G
is connected.

III. PROBLEM FORMULATION

Consider N identical vehicles moving in a 2-dimensional

plane with the dynamics of each dimension described by a

double integrator. The linear state space representation for

each vehicle is then given by

ξ̇i(t) = Aξi(t) + Bui(t) (1)

ϑi = Cξi (2)

where ξi = Col[xi, ẋi, yi, ẏi] and

A =









0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0









; B =









0 0
1 0
0 0
0 1









(3)

C =

(

1 0 0 0
0 0 1 0

)

(4)

This is equivalent to two decoupled double integrator sys-

tems. Here ϑi is the measured output i.e the position (xi, yi)
of the ith vehicle in the x−y plane. In [8], although only rel-

ative position information is communicated in the network,

local velocity information is considered for feedback. In this

paper, each vehicle is assumed to have access only to its

output information and delayed relative output information

from agents which it can interact with: i.e its neighbours.

Here bidirectional communication is assumed between an

agent and its neighbours. This interconnected system can

be represented by a graph with N vertices (nodes) each

representing a vehicle. The existence of relative sensing and

communication between two vehicles is represented by an

edge in the graph. The signals representing the exchange of

relative position information are assumed to have the form

zi(t) =
∑

j∈Ji

(ϑi(t) − ϑj(t)) (5)

for i = 1 . . .N . The nonempty set Ji ⊂ {1, 2, . . .N}/{i}
denotes the vehicles, for which the ith vehicle has infor-

mation. The signals zi(t) represent the sum of the external

output measurements relative to the other vehicles which the

ith vehicle can sense. At a network level, the system given

in (1) is represented by

Ẋ(t) = (IN ⊗ A)X(t) + (IN ⊗ B)U(t) (6)

where

X(t) = Col(ξ1(t), ...., ξN (t)) (7)

U(t) = Col(u1(t), ...., uN (t)) (8)
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At network level, (5) can be represented as

Z(t) = (L ⊗ C)X(t) (9)

where Z(t) = Col(z1(t), . . . , zN(t)). As in references [3],

[6], [15], [16] (and many others) an assumption is made that

each vehicle has information about at least one other vehicle

which ensures rank(L) = N − 1.

It is well known that the two decoupled double integrators

associated with (A, B, C) cannot be stabilized by static out-

put feedback (position information alone). To circumvent this

issue, this paper considers distributed static output feedback

control laws involving delay terms of the form

ui(t) = −K1ϑi(t)+K2ϑi(t−τ)+K2(βzi(t−τ)−di) (10)

where K1 = k1I2 and K2 = k2I2, and k1, k2 are non-zero

scalars. The scalar β > 0 represents a scalar weighting for

zi and τ is a fixed delay. In equation (10) zi(t − τ) is the

delayed relative position information given by

zi(t − τ) =
∑

j∈Ji

(ϑi(t − τ) − ϑj(t − τ)) (11)

The scalar di in (10) is the offset in the relative information

at each node so that each agent maintains a desired relative

distance from its neighbours. For a given β, the gains K1

and K2 together with τ must be chosen such that the closed

loop network system is stable.

Remark: Since it is assumed that each agent is described by

two decoupled double integrator systems, for motion in each

planar direction the gains can be chosen as K1 = k1I2 and

K2 = k2I2 where k1 and k2 are scalars.

Remark: In real engineering systems relative sensing and

communication of relative information will incur delays.

Here it is assumed that a minimum delay of τmin > 0
will be present in relative sensing and communication. Since

it is assumed that each node has access to its own output

information it is assumed, in addition, that it is possible to

store this information and use it in delayed feedback.

The control law (10) at a network level is given by

U(t) = −(IN ⊗ K1C)X(t) + (IN ⊗ K2C)X(t − τ)

+(βL ⊗ K2C)X(t − τ) + (IN ⊗ K2)D (12)

where D ∈ IR2N is the offset for the network such that

D = Col(d1, . . . , dN ). This can be represented as

U(t) = −(IN ⊗ K1C)X(t) + (IN ⊗ K2)D

+((IN + βL) ⊗ K2C)X(t − τ) (13)

Substituting (13) in (6), the closed loop system is given by

Ẋ(t) = Ā0X(t) + Ā1X(t − τ) + (IN ⊗ BK2)D (14)

where

Ā0 = IN ⊗ (A − BK1C) (15)

Ā1 = (IN + βL) ⊗ BK2C (16)

Since the system (A, B, C) is not stabilizable by static output

feedback, the system in (14) is not stable for τ = 0. The

problem which will be addressed in the sequel is to design

the control law in (10) with τ chosen to satisfy τ > τmin,

such that the closed loop system in (14) is stable. In other

words, for a given β > 0 find the triplet (k1, k2, τ) with

τ > τmin such that the system (14) is stable.

IV. CONTROL DESIGN PROCEDURE

First, introduce a linear coordinate transformation of the

form

X̄(t) = X(t) − Xf (17)

where Xf ∈ IR4N is the desired final state of the network.

This will have the form

Xf = Col
(

xf
1 , 0, yf

1 , 0, . . . xf
N , 0, yf

N , 0
)

(18)

where xf
i and yf

i are the desired final steady state positions

for all i = 1, . . . , N . The system in (14) with the transfor-

mation in (17) is given by

˙̄X(t) = Ā0X̄(t) + Ā1X̄(t − τ) + (Ā0 + Ā1)Xf

+(IN ⊗ BK2)D (19)

Here the offsets in D are chosen to satisfy

(IN ⊗K2)D = (IN ⊗K1C)Xf − ((IN + βL)⊗K2C)Xf (20)

Then exploiting the fact that from (18) and (3)

(IN ⊗ A)Xf = 0, (21)

multiplying both sides of (20) on the left by (IN ⊗ B) and

adding (IN ⊗ A)Xf to the left hand side yields

(Ā0 + Ā1)Xf + (IN ⊗ BK2)D = 0 (22)

when exploiting the definitions of Ā0 and Ā1 from (15) and

(16). The system in (19) is then given by

˙̄X(t) = Ā0X̄(t) + Ā1X̄(t − τ) (23)

Since K2 = k2I2, from (20):

D =
1

k2
((IN ⊗ K1C) − ((IN + βL) ⊗ K2C))Xf (24)

Remark: Note that the offset D in (14) is chosen as in (24)

once the gains k1 and k2 are designed. The offset D also

depends on the desired formation encapsulated in Xf . Note

that the provision of di in (10) has a typical feedforward

signal architecture. Because L is symmetric positive semi-

definite, (IN + βL) is symmetric positive definite as β > 0.

Since (IN + βL) is symmetric positive definite, by spectral

decomposition (IN +βL) = V ΛV T where V ∈ IRN×N is an

orthogonal matrix formed from the eigenvectors of (IN+βL)
and Λ = Diag(λ1, . . . λN ) is the matrix of the eigenvalues

of (IN + βL). Note that all λi ≥ 1 for all i = 1, . . . , N and

that the smallest eigenvalue of (IN + βL) is λ1 = 1. As in

[36], consider an orthogonal transformation

X̄ 7→ (V T ⊗ I4)X̄ = X̃ (25)
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In the new coordinates equation (23) is given by

˙̃X(t) = Ã0X̃(t) + Ã1X̃(t − τ) (26)

where

Ã0 = (IN ⊗ (A − BK1C)) (27)

Ã1 = (Λ ⊗ BK2C) (28)

since V T (IN + βL)V = Λ because V is orthogonal.

Equation (26) can be represented at node level in transformed

coordinates as

˙̃
ξi(t) = A0ξ̃i(t) + Aiξ̃i(t − τ) (29)

where

A0 = (A − BK1C) (30)

Ai = λiBK2C (31)

for all i = 1, . . . , N . In order to ensure a level of per-

formance in the closed loop system, as suggested in [34]

consider the transformation

ξ̃iα(t) = eαtξ̃i(t) (32)

for i = 1, . . . , N where α > 0. Asymptotic convergence

of the ξ̃iα implies exponential convergence of ξ̃i at a decay

rate α. Further details appear in [33]- [35] and the references

therein. With this transformation, the system represented in

(29) becomes

˙̃
ξiα(t) = (A0 + αI4)ξ̃iα(t) + eατAiξ̃iα(t − τ) (33)

where A0 and Ai are as given in (30) and (31) for all

i = 1, . . . , N . The stability of system (33) will be ascertained

using Proposition 5.22 in [37]. In [37], Proposition 5.22

divides the delay interval [−τ, 0] into M partitions and

then employs a discretized Lyapunov functional to test for

stability. Formally: (for completeness)

Proposition 5.22 [37] The system with single time delay

τ described by (33) is asymptotically stable if there exist

matrices Pi, Spi, Rpqi ∈ IR4×4, Pi = PT
i ; Spi = ST

pi,

Rpqi = RT
qpi, p = 0, . . . , M , q = 0, . . . , M ; and such that

(

Pi Q̃i

∗ R̃i + S̃i

)

< 0 (34)





∆i −Ds
i −Da

i

∗ Rdi + Sdi 0
∗ ∗ 3Sdi



 < 0 (35)

where

Q̃i =
(

Q0i Q1i . . . QMi

)

(36)

R̃i =









R00i R01i . . . R0Mi

R10i R11i . . . R1Mi

. . . . . .
RM0i RM1i . . . RMMi









(37)

S̃i =
(

1
h
S0i

1
h
S1i . . . 1

h
SMi

)

(38)

∆i =

(

∆00i ∆01i

∗ ∆11i

)

(39)

∆00i = −Pi(A0 + αI4) − (A0 + αI4)
T Pi

−Q0i − QT
0i − S0i (40)

∆01i = QMi − P (eατAi) (41)

∆11i = SMi (42)

Sdi = Diag
(

Sd1i Sd2i . . . SdMi

)

(43)

Sdpi = S(p−1)i − Spi (44)

Rdi =









Rd11i Rd12i . . . Rd1Mi

Rd21i Rd22i . . . Rd2Mi

. . . . . .
RdM1i RdM2i . . . RdMMi









(45)

Rdpqi = h(R(p−1,q−1)i − Rpqi) (46)

Ds
i =

(

Ds
1i Ds

2i . . . Ds
Mi

)

(47)

Ds
pi =

(

Ds
0pi

Ds
1pi

)

(48)

Ds
0pi =

h

2
(A0 + αI4)

T (Q(p−1)i + Qpi)

+
h

2
(R(0,p−1)i + R0pi) − (Q(p−1)i − Qpi) (49)

Ds
1pi =

h

2
(eατAi)

T (Q(p−1)i + Qpi)

−
h

2
(R(M,p−1)i + RMpi) (50)

Da
i =

(

Da
1i Da

2i . . . Da
Mi

)

(51)

Da
pi =

(

Da
0pi

Da
1pi

)

(52)

Da
0pi = −

h

2
(A0 + αI4)

T (Q(p−1)i − Qpi)

−
h

2
(R(0,p−1)i − R0pi) (53)

Da
1pi = −

h

2
(eατAi)

T (Q(p−1)i + Qpi)

+
h

2
(R(M,p−1)i − RMpi) (54)

and

h = τ/M

for all i = 1, . . . , N Q.E.D

In order to have a convex representation in (34) and (35),

the matrices A0 and Ai in (30) and (31) must be fixed.

Since the gains K1 and K2 are not known a-priori, the

matrices A0 and Ai in (30) and (31) are dependent on the

feedback gains. However, if the gains K1 and K2 are fixed,
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Proposition 5.22 stated above, provides a feasibility check

for stability for a fixed known delay value τ . The design

problem associated here is to identify minimum gain values

for K1 and K2 and an associated minimum possible delay τ
such that Proposition 5.22 is satisfied. The solution to such

a problem is not straightforward, and often depends on fine

gridding of the search space (or similar technique). However,

there is no guarantee of finding the optimal solution, or even

a sub-optimal one depending on the type of non-convex

surface. In this paper a solution is sought by making use

of a deterministic global optimization algorithm, Dividing

Rectangles (DIRECT). The method does not require any

derivative information to be supplied, and uses a center point

sampling strategy. The method was originally developed

in [38] as a modification of the classical one dimensional

Lipschitzian optimization algorithm known as the Shubert al-

gorithm. The search space is an n-dimensional hypercube or

box, defined as H = {x ∈ Rn : 0 ≤ xi ≤ 1}. The algorithm

works in the normalized parametric space, transforming to

the actual search space as and when the cost function has to

be evaluated. The principle idea can be summarized as: while

the algorithm proceeds, the search space is partitioned into

smaller hypercubes or boxes and each hypercube is sampled

at the center point of the interval. Over many iterations, the

algorithm tries to find all the ‘potentially optimal’ hypercubes

or boxes in the search space and then partitions them, (see

[38] for details on the definition of the potentially optimal

hypercubes and the division strategies) thereby eventually

obtaining the global solution. The algorithm has asymptotic

convergence property, and details of the proof are available

in [39].

Since there are multiple minimization objectives, a collec-

tive optimization objective function is defined with appropri-

ate scaling as follows:

J(k1, k2, τ) := W1|k1| + W2|k2| + W3|τ | (55)

subject to feasibility of (34) and (35) and the side constraints

on the optimization variables k1min
≤ k1 ≤ k1max

, k2min
≤

k2 ≤ k2max
and τmin ≤ τ ≤ τmin. In (55) the scalars Wi

for i = 1, 2, 3 are the weights of the optimization variables

k1, k2 and τ . Initially the bounds for the variables are

chosen arbitrarily large and the bounds will be normalized

to be in the range [0, 1] since it is a requirement for the

performance of the DIRECT optimization algorithm. The

underlying rationale behind this objective function is to

obtain the gain set that provides minimum control effort at a

minimum possible level of delay. When the feasibility of the

LMI constraints in (34) and (35) for a specific set of gains

and an artificial delay is not satisfied, the cost associated

with such a set is penalized by assigning it a large value.

The idea is during the iterations, the DIRECT optimization

procedure then eliminates that region from the search space.

Since the transformed systems as in (33) are considered,

the positive scalar α, which is design freedom associated

with the required exponential convergence decay rate, is fixed

a-priori. In a similar way, the other design scaling parameter

β in (12) is also fixed a-priori. The MATLAB code used for

the DIRECT optimization is available from the authors of

[39].

V. NUMERICAL EXAMPLE

Consider a network of N = 4 agents, described by (1)

and (2) with matrices A, B and C as given in (3)-(4),

connected over a nearest neighbour interconnection topology.

In the example the decay rate α = 1 and β = 0.1. The

number of partitions of the delay interval for Proposition

5.22 was considered to be M = 1. After employing the

transformations (17), (25) and (32) a system of the form

(33) is obtained. The DIRECT algorithm has been employed

with the following bounds

k1 ∈ [10 20]; k2 ∈ [10 20] (56)

τ ∈ [0.1 0.5]

The weights for the cost function J(k1, k2, τ) in (55) for

this range have been chosen as W1 = W2 = W3 = 1. The

optimal gains k1 and k2 and delay τ obtained from within

these bounds are

k1 = 18.33; k2 = 11.29; τopt = 0.1667 (57)

The offset D is then calculated using (24). The desired

formation is a square with (xf
i , yf

i ) = (±5,±5). The system

in (6) has been simulated with the control law in (13) using

the values in (57). Fig. 1 shows the agents form a square

from random initial conditions. The initial condition for the

delayed output in (14) is set as the initial condition in the

interval t ∈ [−τopt, 0]. Fig. 2 shows the agents settling into

a formation as a function of time.

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

X

Y

 

 

Agent 1

Agent 2

Agent 3

Agent 4

Fig. 1. Formation of agents

VI. CONCLUSIONS

In this paper, a novel distributed control law to stabilize

a formation of multi-agent systems described by double

integrator dynamics is proposed. The distributed control law

employs delays in static output feedback to stabilize the

network of double integrators. Optimal gains that guarantee

performance in terms of a pre-specified decay rate along
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Fig. 2. Formation of agents with time

with minimum control effort at a minimum possible level of

delay were obtained by employing the DIRECT optimization

algorithm.
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