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Abstract— An adaptive backstepping approach is used to
design an output feedback control law for the longitudinal
dynamics of an Unmanned Air Vehicle (UAV). The resulting
nonlinear controller makes the system to follow references in
the aerodynamic velocity and flight path angle, using elevator
deflections and thrust as actuators. Only measurable quantities
are used in the control and adaptation laws. The proposed
strategy allows to design an explicit controller without any
knowledge of the aerodynamic coefficients or the trim angle of
attack, which also depends on the aerodynamic coefficients; only
well-known qualitative physical properties from aerodynamics
are used. Simulations are included for a realistic UAV model
including actuator saturation.

I. INTRODUCTION

In recent years, the interest in unmanned air vehicles
(UAVs) has increased considerably. Not having a pilot makes
aircraft lighter, cheaper and more efficient for missions such
as surveillance or reconnaissance. The absence of a pilot
implies that the design of an adequate automatic flight control
system has a crucial role in the UAV design process.

The main difficulty in the design of an automatic flight
control system is the absence of effective mathematical
models valid for all flight conditions. Aerodynamic forces
and moments appearing in the flight mechanics equations
are not only highly nonlinear, but also very difficult to model
accurately.

Traditionally, flight controllers have been designed based
on a linearized aircraft model for a selected operating point.
Using the linear model, a range of control techniques can
be then applied [1]. However, when the flight condition
is changed, the model is no longer valid and the con-
troller performance can be compromised. To overcome this
difficulty, gain scheduling methods have been applied in
the past [2]. However, these methods have the need of
computing different controllers for different operating points
and estimating aircraft stability derivatives for a wide range
of flight conditions, which can be a very cumbersome task.

Nonlinear control methods are natural candidates to deal
with these difficulties. For instance, feedback lineariza-
tion [3] has been proposed to generate feedback laws suitable
for all the flight envelope, if a precise model of the aircraft is
known; however, this is not usually the case. Backstepping is
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another nonlinear control technique which can handle nonlin-
earities, for systems with a cascade structure [4]. For systems
with parametric uncertainties, the adaptive backstepping con-
trol technique can guarantee system stability without exact
knowledge of the model. This makes adaptive backstepping
a very useful tool for flight control system design, given the
fact that accurate aerodynamic and propulsive models are
seldom available.

Several examples of backstepping applied to flight control
can be found in the literature. For instance, [5] develops
some aircraft flight controllers which use this technique; the
aerodynamic moments are used as virtual control signals in
the backstepping design, and a control allocation scheme is
used to find the aerodynamic surface deflections.

In [6] an adaptive backstepping flight controller for a
high-performance UAV is developed, guaranteeing Lyapunov
stability and including physical constraints in the control
system, such as saturations, bandwidth limitations or rate
limits. A linear aerodynamic model is used, with adaptation
laws to estimate online the stability derivatives in the model.
A similar approach is described in [7], where a constrained
adaptive backstepping controller is designed for the F-
16/MATV simulation model, representing its aerodynamics
with neural networks whose weights are estimated through
adaptation laws.

The objective of this paper is to develop an output-state
feedback law for aircraft longitudinal dynamics that works
for all the normal operating regimes of the aircraft, and
needs minimal information of the aerodynamic model. The
control objective is to seek references in the aerodynamic
velocity and flight path angle, using as actuators the elevator
deflections and the thrust level. An adaptive backstepping
strategy is proposed, which exploits the structure of the
system and well-known qualitative properties from aerody-
namics. The nonlinear longitudinal aircraft model is used,
and, since only some specific properties of the aerodynamic
coefficients are known, an adaptation law is designed for
their online estimation. The controller for velocity and flight
path angle are designed separately. The resulting control laws
are explicit and simpler than those produced by the previ-
ously cited works, and do not require much computational
power on board. Simulations are included for a realistic UAV
model including actuator saturation and nonlinear dynamics.
The model is a description of the Cefiro aircraft [8], an
UAV recently designed and constructed in the University of
Seville.

Contribution. The basis of this work is our previous full-
state feedback design presented in [9]. In that work, we
were able to solve the problem but assumed some knowledge
of aircraft aerodynamics. In particular, we made use of the
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trim angle of attack (which depends on the desired reference
and the aerodynamics coefficients) and the coefficient Cmδe
(which multiplies the elevator deflection actuation). In this
paper we drop both hypothesis, using only physically mea-
surable quantities and estimating all the coefficients. Thus,
the controller is formulated without using any aerodynamics
model; only fundamental properties of aerodynamics (which
are valid for all kind of aircraft) are used in the design.

The paper is structured as follows: First, in Section II the
aircraft model used in this work is presented. The controller
design is detailed in Section III, which begins with the
velocity controller (III-A) and follows with the flight-path-
angle controller (III-B). Simulation results are shown in
Section IV. Section V closes the paper with some concluding
remarks.

II. AIRCRAFT LONGITUDINAL FLIGHT MODEL

Let (Va, γ, θ, q) ∈ R4 be the state vector where Va is the
aerodynamic velocity, γ is the flight path angle, θ is the pitch
angle, q is the pitch angular velocity and, let (FT , δe) ∈ R2

be the control input vector where FT is the engine thrust and
δe the elevator angle. Thus, the equations of motion of the
aircraft longitudinal flight dynamics from [10] are

V̇a =
1

m
(−D + FT cosα−mg sin γ) , (1)

γ̇ =
1

mVa
(L+ FT sinα−mg cos γ) , (2)

θ̇ = q, (3)

q̇ =
M(δe)

Iy
, (4)

where we have introduced some abuse of notation for com-
pactness since the angle of attack α(θ, γ) = θ − γ is not an
additional state; m and Iy are the mass and the inertia; and
L, D and M(δe) are the aerodynamic forces lift, drag and
pitching moment, respectively. In Fig. 1 a detailed definition
of the forces, moments, and velocities are shown.

Fig. 1. Definition of forces, moments and angles.

The aerodynamic forces and moments are computed
through their non-dimensional coefficients as follows

L =
1

2
ρV 2

a SCL, D =
1

2
ρV 2

a SCD, M =
1

2
ρV 2

a Sc̄Cm(δe),

(5)
where ρ is the air density, S is the reference wing surface, c̄
is the mean chord and CL, CD and Cm(δe) are the lift, drag
and pitching moment coefficients, respectively. Moreover,
we consider the following models for the drag and moment
coefficients (see for instance [11], [12] and [13]):

CD = CD0 + k1CL + k2C
2
L, (6)

Cm(δe) = Cm0 + Cmαα+ Cmqq + Cmδe δe, (7)

where CD0
, k1, k2, Cm0

, Cmα , Cmq and Cmδe are aircraft
aerodynamic coefficients. In this work, all coefficients are
considered to be unknown parameters, except for the well-
known fact that Cmδe < 0. This is an improvement over [9]
where knowledge of Cmδe was assumed in the design.

Regarding the lift coefficient model, only the following
assumption is considered.

Assumption 1: The lift coefficient CL is only a function
of α. The reference axis xB is chosen so that CL(0) = 0, i.e.
xB is parallel to the aircraft zero-lift line. Then, the property
x · CL(x) ≥ 0 is satisfied for all x ∈ R.

This assumption is satisfied by all conventional airplanes
in the non-stalled regime1. We underscore that this is the
only assumption about CL, which is considered unknown.

III. CONTROLLER DESIGN

The control objective is to design feedback laws for
(FT , δe) which make the system seek for known references
in velocity and flight path angle (Vr, γref ). In [9], as a
first attempt to solve this control problem, we designed a
full-state control law accomplishing this objective. However,
while the state vector (Va, γ, θ, q) is physically measurable
in an aircraft, the reference value θref needed to reach the
flight condition (Vr, γref ) is unknown and so, the state error
θ − θref used in [9] is not measurable. It is shown below
that θref = α0 + γref , with α0 being the trim angle of
attack, which is not known since it depends on the desired
flight condition (Vr, γref ) and on the lift coefficient function
CL. Thus, our previously derived full-state control law has
to be suitably modified to obtain an output feedack law not
requiring the knowledge of θref .

The controller is designed considering first the velocity
dynamics, given by Equation (1), and then the pitch dy-
namics given by (2)–(4). Thus, two different controllers are
designed: the aerodynamic velocity is controlled using only
the thrust (FT ) and the flight path angle (pitch dynamics) is
controlled with the elevator angle (δe). The compound con-
troller makes the closed-loop system follows the references
as desired. Even though the novelties with respect to [9]
are only on the flight-path-angle control design (Section III-
B), for the sake of completeness, we reproduce next in
Section III-A the design of the velocity control law; we refer
the reader to [9] for the proof of stability.

A. Control of aerodynamic velocity

The velocity dynamics are governed by the equation (1),
where after substituting the moment model D from (5) reads

V̇a =
1

m

(
−1

2
ρV 2

a SCD + FT cosα−mg sin γ

)
, (8)

where α and γ are measurable quantities and the engine
thrust FT is the control input. In addition, based on (6), we
use the following drag model:

CD = CD0 + k1α+ k2α
2, (9)

where CD0
, k1 and k2 are unknown parameters. Denote Vr

to the reference velocity and define the error zV := Va−Vr.

1See for instance [14], where an extensive compendium of lift curves
with this property can be found.
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Thus, the evolution of the error from (8) becomes

żV = − 1

2m
ρ (zV + Vr)

2
SϕV (α)T · θV + FT

cosα

m
−g sin γ − V̇r

= −β1

(
z2
V + V 2

r + 2zV Vr
)
ϕV (α)T · θV

+FT
cosα

m
− g sin γ − V̇r, (10)

where we have defined

ϕV (α) :=
[
1 α α2

]T
,θV := [CD0

k1 k2]
T
, β1 :=

ρS

2m
,

(11)
where θV ∈ R3 is the unknown parameters vector, the ϕV ∈
R3 is defined using (9) as CD = ϕV (α)T · θV > 0 and it
holds that β1 > 0.

The velocity controller is formally stated in the following
Proposition.

Proposition 1: Consider the system (10) and let θ̂V be the
estimate of θV defined in (11). The adaptative-state feedback
law given by

FT =
m

cosα

(
g sin γ + V̇r + β1(z2

V + V 2
r )ϕV (α)T · θ̂V

−κV1
zV

)
, (12)

˙̂
θV = −β1

(
z3
V + zV V

2
r

)
ΓV ϕV (α), (13)

guarantees global boundedness of zV and θ̂V and conver-
gence of zV to zero.

Proof: The proof is given in [9].

B. Control of the flight path angle
In this section a new adaptative output-feedback controller

for the flight path angle is proposed, improving the adaptative
full-state design given in [9]. There are two main novelties.
On the one hand, the value α0 is considered unknown, which
leads to a more involved output-feedback design. On the
other hand, the parameter Cmδe is here considered unknown
but negative. Both α0 and Cmδe were considered known
in [9], paving the way for the design provided here; these
improvements are far from being just trivial extensions.

The pitch dynamics is governed by equations (2)–(4) after
substituting (5) and (12). We next state some assumptions
regarding the pitch dynamics.

Assumption 2: The following assumptions are made:
- It is assumed that cos γ ≈ cos γref , as proposed in [5].
- γ̇ref is assumed to be zero.
- Aircraft engines can not produce negative thrust. Thus
FT is always nonnegative.

Under Assumption 2 the equation (2) becomes

γ̇ = f(α) = f(θ − γ), (14)

where the scalar function f is defined as

f(α) :=
1

mVa

(
1

2
ρV 2

a SCL(α) + FT sinα−mg cos γref

)
.

Note that f depends implicitly on γref .
Property 1: Let α0 be the trim angle of attack, which is

the value of α that makes f(α) zero (for a given γref ), i.e.,
f(α0) = 0. Then, under the Assumption 1, the function f(α)
satisfies (α − α0)f(α) > 0. Since f(α) is unknown, α0 is

not computable. In addition, in what follows α0 is assumed
to be constant.

Let us first shift the equilibrium to zero defining the
following vector of error coordinates z ∈ R3 as

z =

 z1

z2

z3

 :=

 γ − γref
θ − γref − α0

q

 . (15)

Note that since α0 is unknown it follows that z2 is not a
measurable quantity by itself. The equations (2)–(4) together
with (14) in the new set of coordinates read

ż1 = η(z2 − z1), (16)
ż2 = z3, (17)
ż3 = β2 [Cm0

+ Cmα(z2 − z1 + α0)

+Cmqz3 + Cmδe δe
]
, (18)

where we have defined β2 :=
ρV 2
a Sc̄

2Iy
and

η(x) := f(x+ α0). (19)

Notice that Property 1 makes the scalar function η(x) to
satisfy x · η(x) ≥ 0.
The control problem. To make the origin of (16)–(18) glob-
ally stable, that with (15) becomes (γ, θ, q) = (γref , θref , 0),
through the input δe and under the following conditions:
C1. γref is a given reference.
C2. α0 is unknown and therefore θref := α0 + γref is also

unknown.
C3. Cmδe from (7) is unknown but assumed to be negative.
C4. The measurable output vector y ∈ R3 is defined as

y :=

 γ − γref
α
q

 ≡
 z1

z2 − z1 + α0

z3

 . (20)

Remark 1: This control objective differs from [9] in the
conditions C2, C3 and C4, making the design more involved.
By dropping the assumption of knowledge of α0 and Cmδe ,
the control law designed in [9] is no longer implementable.

Remark 2: A backstepping control law was designed in
[5] for the cascade structure (16)–(18), but using in (4) the
aerodynamic moment model M as the control input. Then, a
control allocation scheme was used to estimate the elevator
deflections δe; additionally, Property 1 was invoked assuming
knowledge of α0. In this work M(δe) is a function of the
physical control input δe, given by (7) with all aerodynamic
coefficients unknown.

In what follows, we stabilize each step of the cascade
explicitly using the backstepping approach.
Step 1. First, equation (16) is stabilized using z2 as a virtual
control. Defining the Lyapunov function as

W1 =
1

2
z2

1 ,

the derivative reads Ẇ1 = z1η(z2−z1); we select the control
z2 = u1(z1) = −κγ1z1, where notice that z1 = y1 and thus
measurable. Thus,

Ẇ1|z2=u1(z1) = z1η(−(1 + κγ1)z1),

and hence Ẇ1|z2=u1(z1) is negative definite for κγ1 > −1.
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Step 2. Defining now the error variable

z̃2 := z2 − u1(z1),

the equations (16)–(17) can be rewritten as

ż1 = η(z̃2 − (1 + κγ1)z1), (21)
˙̃z2 = z3 + κγ1η(z̃2 − (1 + κγ1)z1), (22)

The Lyapunov function for (21)–(22) is

W2 = c1W1 +

∫ z̃2−(1+κγ1 )z1

0

η(s)ds,

which is a positive definite function by the Property 1.
Calculating Ẇ2 we get

Ẇ2 = c1z1η + (−η + z3)η

= −η2 + (c1z1 + z3)η, (23)

where we have omitted the argument of η for clarity, minding
that η = η(z̃2 − (1 + κγ1)z1). Selecting the virtual control
as z3 = u2(z1) = −c1z1, (23) becomes Ẇ2 = −η2 and
then negative semidefinite, using again only the available
output y1. Invoking LaSalle’s theorem, z1 and z̃2 tend to the
largest invariant set inside the set {(z1, z̃2) ∈ R2 : η = 0}
which in turn implies from Property 1 and (19) that z̃2 −
(1 + κγ1) z1 = 0. The residual dynamics on this set become

ż1 = 0, (24)
˙̃z2 = −c1z1, (25)

and then (24) implies that z1 a constant. The derivative of
the set is ˙̃z2 − (1 + κγ1) ż1 = 0, so it follows that ˙̃z2 = 0,
which together with (25) implies that the largest invariant set
is the origin z1 = z̃2 = 0. Moreover, since W2 is radially
unbounded the origin is globally stable. Notice that this
implies γ → γref , θ → θref even though θref is unknown,
or equivalently α→ α0 with α0 unknown.

Remark 3: In [9] an additional term was added to the
Lyapunov function in this step, to get a negative term in z̃2

2 in
the derivative, allowing to conclude exponential convergence
but with the exact knowledge of α0 needed in the resulting
control law. Here, the use of z̃2 in the virtual control law has
been avoided by omitting that z̃2

2 term, which in turn allows
to avoid the knowledge of α0. This improvement comes at
the cost of not obtaining exponential stability, which implies
some loss of robustness with respect to unmodeled dynamics.

Remark 4: This virtual control law does not need the
function f(α), since the integral in the Lyapunov function
W2 (first introduced in [15]) has been used to avoid cancel-
lations of the terms associated to η, which would introduce
extra terms in the controller.
Step 3. In this last step, we extend the backstepping design
to generate the elevator deflections laws. We employ an
adaptive scheme to estimate online the aerodynamic moment
coefficients. As commented before a further improvement
upon [9] comes from dropping the hypothesis that Cmδe is
known. Only the physical fact that Cmδe < 0 is used.

The system, for this last step of the design, is composed
by the subsystem (21)-(22) and the equation (18) in the new
error coordinate defined as z̃3 := z3 − u2(z1), as follows

ż1 = η, (26)
˙̃z2 = z̃3 − c1z1 + κγ1η, (27)
˙̃z3 = β2Cmδe

(
ϕTγ · θγ + δe

)
− β2κγ3 z̃3 + c1η, (28)

where we have defined a scaled vector from (7) of unknown
aerodynamic coefficients θγ ∈ R4 as

θγ :=

[
Cm0

Cmδe

Cmα
Cmδe

Cmq
Cmδe

1

Cmδe

]T
, (29)

and a vector of measurable quantities ϕγ(y) ∈ R4 as

ϕγ(y) :=


1
α
z3

κγ3 z̃3

 =


1
y2

y3

κγ3(y3 + c1y1)

 . (30)

Recall that δe is the elevator deflection, which is the real
control input of the aircraft.

Remark 5: The controller proposed in this step is designed
to stabilize the system (26)–(28) with an adaptation law to
estimate the parameters (29) and using the only available
outputs given by (20).

Let us define the compound Lyapunov function as

W3 = W2 +
c3
2
z̃2

3 +
|Cmδe |

2
θ̃
T

γ Γ−1
γ θ̃γ , (31)

where c3 > 0, Γγ = ΓTγ > 0 is the adaptation gain matrix,
θ̂γ is the estimate of θγ and θ̃γ := θγ− θ̂γ is the estimation
error vector.

The Lyapunov function derivative becomes

Ẇ3 = −η2 + z̃3η + c3z̃3β2Cmδe
(
ϕTγ · θγ + δe

)
+ c3z̃3c1η − c3β2κγ3 z̃

2
3 + |Cmδe |θ̃

T

γ Γ−1
γ

˙̃θγ . (32)

Defining the control and the adaptation laws as

δe := −ϕTγ · θ̂γ , (33)
˙̂θγ = − ˙̃θγ := −c3β2z̃3Γγϕγ , (34)

and selecting c3 = 1
c1

then (32) yields

Ẇ3 = −η2 + 2z̃3η −
β2κγ3
c1

z̃2
3

≤ −
(

1− 2

λ

)
η2 −

(
β2κγ3
c1

− 2λ

)
z̃2

3 ,

where we used the Young’s inequality with the parameter λ
still free. Thus, pick λ = 4 and κγ3 > 8c1/β2 and we get

Ẇ3 ≤ −
1

2
η2 − 1

2
z̃2

3 ,

which is a negative semidefinite function, as before. Invoking
again LaSalle’s theorem, it is straightforward to see that the
largest invariant set inside the set {(z1, z̃2, z̃3) ∈ R3 : η =
0, z̃3 = 0} is the origin z1 = z̃2 = z̃3 = 0, because z1 =
z̃2 = 0 implies z2 = 0 by the same arguments as before, and
additionally z1 = 0 and z̃3 = 0 implies directly z3 = 0. We
formally summarize the result obtained in this section in the
following Proposition and in the original coordinates.

Proposition 2: Consider the flight-path-angle dynamics
(2)–(4) under Assumptions 1 and 2, with the only measurable
outputs given by (20) and being θ̂γ the estimate of θγ defined
in (29). Then, the adaptative output-feedback given by

δe = −ϕγ(y)T · θ̂γ , (35)

˙̂θγ = −β2

c1
(q + c1(γ − γref )) Γγϕγ(y), (36)
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with c1 > 0 and κγ3 > 8c1/β2, Γγ = ΓTγ > 0 and

ϕγ(y) =


1
α
q

κγ3(q + c1(γ − γref ))

 , (37)

assures that the equilibrium manifold (γ, θ, q, θ̂γ) =

(γref , θref , 0, θ̂
∗
γ) is globally asymptotically stable, for some

constant θ̂
∗
γ .

Proof: The proposed Lyapunov function (31) is positive
definite and radially unbounded which, together with the
adaptative output-feedback (33)–(34), or equivalently (35)–
(36), makes Ẇ3 ≤ 0 and then, by LaSalle-Yoshizawa theo-
rem we conclude global boundedness (z1, z̃2, z̃3), or equiv-
alently (γ, θ, q, θ̂γ). Since the whole closed-loop system is
time-invariant we can invoke LaSalle’s invariance principle
assuring that all trajectories converge to the largest invariant
set contained in {(z1, z̃2, z̃3, θ̂γ) ∈ R4 : Ẇ3 = 0}. Since it
is a cascade system the backwards analysis of the residual
dynamics done along the design steps holds, where we
concluded (z1, z̃2, z̃3) = (0, 0, 0). Thus, since all trajectories
are bounded then we conclude that the equilibrium manifold
(z̃3, z̃2, z1, θ̂γ) = (0, 0, 0, θ̂

∗
γ), or equivalently (γ, θ, q, θ̂γ) =

(γref , θref , 0, θ̂
∗
γ), is globally asymptotically stable.

Remark 6: A comment about the stability of the whole
aircraft longitudinal closed-loop dynamics is in order. Notice
that the controllers were designed separately, and moreover,
in the construction of the flight path angle controller the
assumption of FT being non-negative was made. Although
this assumption is enough to keep the aerodynamic properties
unchanged (in particular, Property 1), the control law for
the aerodynamic velocity does not enforce this physical
constraint, i.e., there are no guarantees that FT avoids the
zero crossing. This is currently under investigation since,
in the light of the simulation results (see next section), it
looks that under some mild extra assumptions the global
boundedness and convergence are guaranteed.

IV. SIMULATION RESULTS

In this section, simulation results of the controllers de-
veloped are shown. The simulation model is composed of
Equations (1)–(4), and the aerodynamic model of Cefiro
UAV, developed by the University of Seville [8].

For a more realistic simulation, saturations in the control
signals are also considered. Thus, the following limits are
introduced in the thrust and elevator angle:

FT ∈ [4.9 N, 117.6 N] , δe ∈ [−30o, 30o] . (38)

The tuning parameters for the velocity controller are

κV1 = 10; ΓV = 0.001I3,

where I3 is the identity matrix of dimension 3. For the flight
path angle controller, the parameters are

κγ3 = 3; c1 = 1; Γγ = 0.5


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 20

 .

The initial estimate of the unknown parameters is

θ̂V =
[

0.05 0.05 0.05
]T
,

θ̂γ =
[

0.5 1 15 −0.3
]T
.

The reference maneuver selected is as follows. The veloc-
ity profile consist on three segments with constant velocity,
separated by uniform acceleration and uniform deceleration
segments. The flight path angle profile consist on six different
segments with constant values of the flight path angle.

Fig. 2 shows the time evolution of the aerodynamic
velocity. After an initial period with some oscillations in
which saturations in thrust occurs, the velocity controller
achieves an excellent agreement with the reference even
when a constant acceleration is demanded. Fig. 4 shows the
control signals. In the figure, the dashed line represent the
computed control signal, whereas the solid line represents
the commanded control signal (with saturations). Notice that
although thrust saturation is present at the beginning of
the simulation (since the engine is not allowed to produce
negative thrust) the reference value is successfully reached.

Regarding the flight path angle controller, in Fig. 3 it can
be seen that convergence to the reference is also achieved,
but at a slower rate since smaller gains were selected.
The reference flight path angle values are reached without
excessive oscillation and there are no permanent regime
errors, even without the knowledge of any value of any aero-
dynamic coefficient. Fig. 4 shows the computed (dashed) and
commanded (solid) elevator input. It can be seen that, when
instantaneous changes in flight path angle are demanded, the
controller tends to apply high elevator deflections, beyond
the maximum values. However, even in the presence on
saturation, the stability of the system is not compromised
and convergence to the reference values is maintained.

Fig. 5 shows other state variables such as pitch, attack
angle, and pitch angular velocity, which are kept within rea-
sonable values during the maneuver. Finally, Fig. 6 shows the
time evolution of the estimated parameters, which converge
towards certain constant values.
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Fig. 2. Time evolution of the aerodynamic velocity (solid), compared with
its reference (dashed).

V. CONCLUSION

In this work, we presented the design of an adaptive
and output-feedback controller for the longitudinal flight
dynamics of an UAV that is able to make the aircraft follow
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Fig. 3. Time evolution of the flight path angle (solid) compared with its
reference (dashed).
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Fig. 4. Control signals: computed (dashed) and commanded (solid), which
includes saturation.

references in velocity and flight path angle. The design
is build upon our previously developed full-state control
law [9], it is explicit, easy to implement, only employs
measurable quantities, and does not require any knowledge of
the aerodynamic model. Simulations show that the controller
can make the system follow the references, even in the
presence of actuator saturations. A realistic UAV model (the
Cefiro aircraft developed by the University of Seville [8]) was
used. As a next step, we will work on dropping some of the
assumptions made in the paper. Also, the control laws will
be implemented on board the aircraft to perform experiments
and further validate the results.
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