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Abstract— This paper investigates the problem of simultane-
ous state and fault estimation and observer-based fault tolerant
controller design for Lipschitz nonlinear systems with sensor
failure. A new estimation technique is presented in this paper
to deal with this design problem. In the proposed approaches,
the original system is first augmented by a descriptor model
transformation, then a new Proportional and Derivative sliding
mode observer technique is developed to obtain accurate esti-
mations of both system states and sensor faults. The designing
observer is generalized from the PD observer in [3], but is not
a trivial extension. Based on the state estimates, a observer-

based control strategy is developed to stabilize the resulting
closed-loop system. Finally, a numerical example is presented
to illustrate the effectiveness and applicability of the proposed
technique.

I. INTRODUCTION

In practical industrial process, sensor and actuator

faults may possibly result in unsatisfactory performance

or even instability, especially for complex safety critical

systems, e.g. space craft and nuclear power plant, aircraft

space, etc. To pursue an ideal performance of the control

system, it is desirable for faults and failures to be detected

and estimated, or to design control scheme in the presence

of faults such that the stability and performance of the

closed-loop system can be maintained. Hence, fault toler-

ance can be classified into the following two categories: 1)

Fault Detection Isolation (FDI), that is, detect, estimate or

reconstruct faults by developing effective filters or observers

techniques [2]; 2) Fault Tolerant Control (FTC), that is,

design reliable control schemes independent of fault/failure,

main approaches include passive redundancy controller, H∞

reliable control [4], [5]. In particular, sliding mode control

scheme has been applied to fault estimation and tolerant

control [6], [7] since such type of control strategy is robust

to system uncertainties [8], [9], [10].
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It is worth pointing out that, recently an significant and

effective fault estimation scheme has been designed in [3],

where a proportional and derivative observer technique is

proposed to deal with the sensor/actuator faults, such that the

fault estimation can be obtained. However, in the approach

of [3] the derivative observer gain is required to be a high

gain, which results in a higher cost in practical application.

Motivated by this observation and based on the work of

[3], in this paper, we will develop a new fault estimation

scheme incorporated with the characterizations of both PD

observer and sliding mode observer for a class of Lipschitz

nonlinear systems. Compared with the approach of [3], the

main advantage of our method is that a discontinuous control

term is injected into the observer to eliminate the effects of

sensor faults instead of designing the derivative observer gain

as a high gain. Hence, compared with the approach of [3],

our method is more feasible effective to be performed in

practice.

In this paper, the objective is to design an effective

observer technique and an observer-based fault tolerant con-

trol scheme for a class of Lipschitz nonlinear systems in

the presence of sensor failures. The design procedure is

composed by the following several steps: (i) the original

plant is first augmented into a descriptor system, in which

the sensor fault is assembled into the state vector of the

augmented singular system to facilitate the analysis and

synthesis. (ii) a new PD sliding mode observer is proposed

which is generalized from the PD observer in [3] by injecting

a discontinuous input into the observer to reject the sensor

faults and Lipschitz nonlinearity. In light of the proposed

estimation technique, accurate estimation of the system state

and the sensor fault can be obtained simultaneously. (iii)

based on the state estimation, an observer-based fault tolerant

control strategy is developed to stabilize the plant.

It is worth pointing out that our work is not a simple

extension of [3]. The main difficulties come from the sliding

surface function design based on the state estimation error

vector and the stability and reachability analysis for the

resulted sliding-mode dynamics. Thus, how to design an

appropriate sliding surface function and perform stability and

reachability analysis for the resulted sliding-mode dynamics

are the main problems to be solved in this paper.

This paper is organized as follows. Section 2 provides

preliminaries for subsequent developments. It is followed

by the PD sliding mode observer design in section 3. In

section 4, the observer-based fault tolerant control strategy

is investigated. Finally, in Section 5, a numerical example

is provided to demonstrate the effectiveness of the proposed
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methods.

II. PROBLEM FORMULATION

Consider the following continuous-time Lipschitz non-

linear system
{

ẋ(t) = Ax(t) + Bu(t) + fd(t, x, u),
ys(t) = Cx(t) + fs(t),

(1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input,

ys(t) ∈ R
p is the fault measurement output, fd(t) ∈ R

n is

the real nonlinear vector function, fs(t) ∈ R
p is the unknown

sensor fault vector. Throughout this paper, the following

assumptions are made:

(A1) The pair (A, C) is observable;

(A2) The nonlinear function fd(t) satisfies the Lipschitz

constraint

‖fd(t, x̂, u) − fd(t, x, u)‖
≤ ‖GC(x̂(t) − x(t))‖
≤ η0‖C(x̂(t) − x(t))‖
≤ η‖(x̂(t) − x(t))‖, (2)

and η0 , ‖G‖, η , ‖GC‖ are positive scalars;

(A3) The sensor fault vector fs(t) satisfies the following

norm bounded constraint:

‖fs(t)‖ ≤ α, (3)

and α > 0 is a known constant.

In this paper, the main objectives to be addressed are

formulated as follows: (i) An effective estimation technique

is proposed for system (1) to obtain the accurate estimations

of x(t) and fs(t) simultaneously. (ii) Based on the state

estimation, an observer-based control scheme is developed

such that the closed-loop system is asymptotically stable.

III. DESIGN OF THE OBSERVER DYNAMICS

To begin the presentation of our design approach, we

define the following augmented variables and matrices

x̄(t) ,

[

x(t)
fs(t)

]

, Ā ,

[

A, 0
0, −Ip

]

,

B̄ ,

[

B
0

]

, C̄ ,
[

C, Ip

]

,

Ē ,

[

In, 0
0, 0p×p

]

, N̄ ,

[

0n×p

Ip

]

,

F̄ ,
[

In 0T
p×n

]T
, (4)

and we construct the following augmented plant






Ē ˙̄x(t) = Āx̄(t) + B̄u(t) + F̄ fd(t, x, u)
+N̄fs(t),

ys(t) = C̄x̄(t).
(5)

System (5) is a descriptor nonlinear model where the state

vector x(t) and the sensor fault variable fs(t) are both the

components of the descriptor state vector. If an ideal state

observer can be constructed for the augmented plant (5),

the accurate estimation of system state x(t) and sensor fault

fs(t) can be obtained simultaneously. It is observed that the

system matrices Ē and C̄ has the following property

rank

[

Ē
C̄

]

= rank





In 0
0 0p×p

C Ip



 = n + p,

and thus an appropriate gain L̄D ∈ R
(n+p)×p can be selected

such that the new defined matrix S̄ , (Ē + L̄DC̄) is non-

singular. We decompose L̄D into the following form L̄D =
[

L̄T
D1 L̄T

D2

]T
, and it is derived that

S̄−1 =

[

In, −L̄D1(L̄D2)
−1

−C, (Ip + CL̄D1)(L̄D2)
−1

]

C̄S̄−1L̄D = Ip. (6)

Motivated by this observation, the following PD sliding mode

observer is presented for system (5)







S̄ ˙̄z(t) = (Ā − L̄pC̄)z̄(t) + ĀS̄−1L̄Dys(t)
+B̄u(t) + L̄sus(t) + F̄ fd(t, x̂, u)

ˆ̄x(t) = z̄(t) + S̄−1L̄Dys(t),
(7)

where z̄(t) , [zT
x (t), zT

f (t)]T is the middle variable; ˆ̄x(t) ,

[x̂T (t), f̂T
s (t)]T is the estimation of x̄(t); L̄p and L̄D ∈

R
n×p are the proportional gain and derivative gain matrices

respectively to be designed; S̄ , Ē + L̄DC̄ is a non-singular

parameter matrix by selecting appropriate L̄D (such L̄D can

be always found as discussed below); us(t) with the gain

Ls ∈ R
(n+p)×p is the discontinuous input term which is

robust to system uncertainties and nonlinearities. We now

derive the error system. From observer (7), the following

can be derived

S̄ ˙̄̂x(t) = (Ā − L̄pC̄)ˆ̄x(t) + L̄pC̄S̄−1L̄Dys(t)

+L̄Dẏs(t) + B̄u(t)

+L̄sus(t) + F̄ fd(t, x̂, u). (8)

Recall the second equation in (6), equation (8) now becomes

S̄ ˙̄̂x(t) = (Ā − L̄pC̄)ˆ̄x(t) + L̄pys(t) + L̄Dẏs(t)

+B̄u(t) + L̄sus(t) + F̄ fd(t, x̂, u). (9)

On the other hand, if we add L̄Dẏs(t) to both sides of the

plant (5), one can obtain

S̄ ˙̄x(t) = (Ā − L̄pC̄)x̄(t) + L̄pys(t) + L̄Dẏs(t)

+B̄u(t) + F̄ fd(t, x, u) + N̄fs(t). (10)

Define the following error variables

ē(t) , ˆ̄x(t) − x̄(t),

fe(t, x, u) , fd(t, x̂, u) − fd(t, x, u), (11)

and subtracting (9) from (10), one can obtain the following

error system

˙̄e(t) = S̄−1(Ā − L̄pC̄)ē(t) + S̄−1L̄sus(t)

−S̄−1N̄fs(t) + S̄−1F̄ fe(t, x, u). (12)

In error dynamics (12), the derivative gain L̄D has been

designed. The subsequent analysis should be focused on
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the design of proportional gain L̄p and discontinuous input

us(t), such that the error system (12) achieves asymptotically

stable. The remaining part of this section is divided into two

parts: III-A. Design of the observer gain L̄p, III-B. Stability

analysis of the error dynamics.

A. Design of observer gain L̄p

In this Subsection, our objective is to design the propor-

tional gain L̄p, which plays a crucial role in our whole design

work. We first introduce the following Lemma, which will

be used in further analysis below.

Lemma 1: [1] Given a pair of matrix (Ã, C̃) with Ã ∈
R

n×n, C̃ ∈ R
p×n, the following two conditions are equiva-

lent:

(i) The matrix Ã is stable;

(ii) If the pair (Ã, C̃) is observable, then the following

Lyapunov equation

ÃT P̃ + P̃ Ã = −C̃T C̃ (13)

has unique solution.

We now consider the matrix S̄−1Ā, it is noticed

that a positive number β can always be chosen

such that Re
[

λi(S̄
−1Ā)

]

> −β, or equivalently

Re
[

λi(−(βI + S̄−1Ā))
]

< 0,
∀ i ∈ {1, 2, · · · , n + p}. It is easy to see that

∀s ∈ C+, the following holds rank

[

sIn+p − S̄−1Ā
C̄

]

=

rank

[

sIn − A
C

]

+ p . This condition implies that [S̄−1Ā,

C̄] is observable, and thus [−S̄−1Ā, −C̄] is observable.

Hence, there exits a matrix L∗ such that −S̄−1Ā − L∗C̄ is

stable. This implies that −βI − S̄−1Ā−L∗C̄ is stable (note

that β > 0), which further implies that (−βI − S̄−1Ā, C̄)
is observable. Hence, there exists a positive definite matrix

X̄ such that

−(βI + S̄−1Ā)T X̄ − X̄(βI + S̄−1Ā) = −CT C. (14)

We choose the observer gain L̄p as

L̄p = S̄X̄−1C̄T , (15)

Hence, one can obtain [βI + S̄−1(Ā − L̄pC̄)]T X̄ +
X̄

[

βI + S̄−1(Ā − L̄pC̄)
]

= −CT C, which implies that

Re
[

λi(S̄
−1(Ā − L̄pC̄))

]

< −β, ∀ i ∈ {1, 2, · · · , n+p}. As

a result, by selecting L̄p as (15), the matrix S̄−1(Ā− L̄pC̄)
is designed to be stable. Hence, the design of proportional

gain L̄p has been well proceeded.

B. Stability analysis of the error dynamics

In the previous analysis, the observer gains L̄p and L̄D

have been designed. In this subsection, we shall focus on

the design of the discontinuous input us(t) and establish

sufficient condition for the stability of the error dynamics

(12).

We define the following sliding surfaces s(t)

s(t) = N̄T S̄−T P̄ ē(t), (16)

where the Lyapunov matrix P̄ > 0 satisfies the following

constraint

N̄T S̄−T P̄ = HC̄, (17)

and H ∈ R
p is the matrix be determined.

In (17), it is noted that rank(N̄T S̄−T P̄ ) = rank(C̄) = p,

which implies that rank(H) = p. Since H ∈ R
p, this

means that H is non-singular. Hence, we can design the

discontinuous input us(t) as the following sliding mode

control form

us(t) = −
(

α + γ1 + η0‖P̄ S̄−1‖‖H−1‖
)

×sgn(s(t)), (18)

where γ1 > 0 is parameter to be designed, α > 0 are defined

as in Assumption 3.

Theorem 1: Apply the sliding mode control input us(t)
(18) to the error dynamics (12) , if there exist nonsingular

matrices P̄ , L̄P , H ∈ R
p×p with appropriate dimensions,

such that the following matrix constraint holds,

P̄ S̄−1(Ā − L̄pC̄) + (Ā − L̄pC̄)T S̄−T P̄ < 0, (19)

N̄T S̄−T P̄ = HC̄,(20)

then the error dynamics (12) is asymptotically stable.

Furthermore, the observer gain L̄s is given by

L̄s = S̄P̄−1C̄T HT = N̄. (21)

Proof: We choose the following Lyapunov func-

tion Ve(t) = ēT (t)P̄ ē(t), and take the time deriva-

tive along the state trajectories of (12), it follows that

V̇e(t) = ēT (t)[P̄ S̄−1(Ā−L̄pC̄)+(Ā−L̄pC̄)T S̄−T P̄ ]ēT (t)+
2ēT (t)P̄ S̄−1(L̄sus(t) − N̄fs(t)) − 2P̄ S̄−1F̄ fe(t, x, u).
Hence, it is derived that 2ēT (t)P̄ S̄−1(L̄sus(t)− N̄fs(t)) ≤
−2η0‖P̄ S̄−1‖‖H−1‖‖s(t)‖ − 2γ1‖s(t)‖. On the other

hand, by Assumption 2, it is derived that−2ēT P̄ S̄−1

F̄ fe(t, x, u)≤ 2‖ēT‖ ‖P̄ S̄−1‖‖F̄‖‖fd(t, x̂, u) −fd(t, x, u)‖
=2η0‖P̄ S̄−1‖‖H−1‖‖s(t)‖. As a result, we haveV̇e(t) =
ēT (t)[P̄ S̄−1(Ā − L̄pC̄) + (Ā − L̄pC̄)T S̄−T P̄ ]ēT (t) −
2γ1‖s(t)‖ ≤ −λmin(−Γ)‖e(t)‖2 − 2γ1‖s(t)‖ < 0.This

completes the proof.

C. Calculation of the constrained linear matrix equality

In the previous Section, we have presented the sufficient

condition for the asymptotic stability of the dynamics (12). It

is noted that, the condition proposed in Theorem 3 includes a

linear matrix equality which is difficult to directly solve by

Matlab toolbox. We consider the linear equality condition

(20). In fact, it can be rewritten as the following equivalent

form: Trace[(N̄T S̄−T P̄ − HC̄)T (N̄T S̄−T P̄ − HC̄)] = 0.
We introduce the condition

(N̄T S̄−T P̄ − HC̄)T (N̄T S̄−T P̄ − HC̄) < θI, (22)

by Schur complement, (22) is equivalent to
[

−θI, ΠT

Π, −I

]

< 0 (23)

with Π = N̄T S̄−T P̄ − HC̄. Hence, the design problem of

PD sliding mode observer is now converted into a problem

of finding a global solution of the following minimization
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problem:

min θ, subject to (19) and (23) (24)

This problem is a minimization problem which can be solved

by using the Solvers mincx in the LMI toolbox of Matlab.

D. Reachability condition of s(t)

In this subsection, we investigate the reachability of the

following sliding surface (16)

s(t) = N̄T S̄−T P̄ ē(t) (25)

in the estimation error space. The following theorem shows

that the SMC us(t) in (18) will guarantees the state-

estimation error trajectories uniformly convergent to the

sliding surface s(t) = 0.

Theorem 2: If there exists a nonsingular matrix P̄ and

parameter matrix H with appropriate dimension such that

the matrix constraint (19) and (20) holds, and the observer

gains L̄D and L̄p are designed as in Section III-A, then the

sliding mode control law (18) guarantees that the sliding

motion is attained on the sliding surfaces s(t) = 0.

Proof: Choose the Lyapunov function candidate as

follows: Vs(t) = 0.5sT (t)(N̄T S̄−T P̄ S̄−1N̄)−1s(t). We

denote Ns := N̄T S̄−T for simplicity, and it is derived

that V̇s(t) = sT (t)(NsP̄NT
s )−1Ns P̄ S̄−1[(Ā − L̄pC̄)ē(t)

+L̄sus(t) − N̄fs(t) + F̄ fe(t, x, u)]. On the other hand, it

is clear that sT (t)(NsP̄NT
s )−1 NsP̄ S̄−1[L̄sus(t)− N̄fs(t)]

= sT (t)(us(t) − fs(t)) < −2η0‖P̄ S̄−1‖‖H−1‖‖s(t)‖ −
2γ1‖s(t)‖. As a result, one can obtain V̇s(t) <
−2γ1‖s(t)‖ + ‖s(t)‖‖(NsP̄NT

s )−1NsP̄ S̄−1‖‖C̄‖‖ē(t)‖ +
‖s(t)‖‖(NsP̄NT

s )−1NsP̄ S̄−1(Ā− L̄pC̄)‖‖ē(t)‖. We define

δ1 = ‖(NsP̄NT
s )−1Ns P̄ S̄−1 (Ā−L̄pC̄)‖+ ‖(NsP̄NT

s )−1

NsP̄ S̄−1‖‖C̄‖, it is shown that V̇s(t) <−‖s(t)‖(2γ1 −
δ1‖ē(t)‖). We define following domain: Ω(δ1) =
{2γ1 − δ1‖ē(t)‖ > 0} . Recall that in Theorem 1 it has been

proved that the error system (12) is stochastically stable.

Hence, the trajectories of ē(t) will enter Ω in finite time and

remains there. As a result, it is shown that the trajectories of

ē(t) will attain the sliding surface s(t, i) = 0 in finite time.

This completes the proof.

IV. DESIGN OF OBSERVER-BASED CONTROLLER

In this section, the goal is to investigate the design problem

of the observer-based controller for plant (1). We construct

the following observer-based controller






















S̄ ˙̄z(t) = (Ā − L̄pC̄)z̄(t) + ĀS̄−1L̄Dys(t)
+B̄u(t) + L̄sus(t) + F̄ fd(t, x̂, u)

ˆ̄x(t) = z̄(t) + S̄−1L̄Dys(t)
u(t) = Kx̂(t) = K̄ ˆ̄x(t)
K̄ = [K, 0m×p]

(26)

in which L̄D, L̄p and us(t) have been designed in Section

III-A, whilst state-feedback gain K will be designed in this

section. Applying controller (26) to the open-loop system

(1), we can obtain the following closed-loop system

ẋ(t) = (A + BK)x(t) + BK̄ē(t) + fd(t, x, u).(27)

For the nonlinear function fd(t, x, u), a further derivation is

performed. Let x̂(t) = 0 in (2), one can obtain fd(t, x̂, u) =
0, which further implies that ‖fd(t, x, u)‖ ≤ η‖x(t)‖. This

inequality will be useful in the following discussion. We now

provide how to design K such that the closed-loop system

(27) is asymptotically stable.

Theorem 3: If there exist positive and definite matrix Z ∈
R

n×n and matrix K ∈ R
m×n, such that the following matrix

constraints hold

(A + BK)T Z + Z(A + BK) + In + η2ZT Z < 0, (28)

then the closed-loop system (27) is asymptotically stable.

Proof: We define the Lyapunov function

Vx(t) = xT (t)Zx(t) for system (27), it is derived

that V̇x(t) = xT (t)
[

(A + BK)T Z + Z(A + BK)
]

x(t) +
2xT (t)Z(BK̄ē(t) + fd(t, x, u)),

Note that 2xT (t)Zfd(t, x, u) ≤ xT (t)x(t) +η2xT (t)ZT

Zx(t), which implies that V̇x(t) = xT (t)[(A + BK)T Z +
Z(A + BK) + In + η2ZT Z]x(t) − 2xT (t)ZBK̄ē(t) ≤
−λmin(−Π)‖x(t)‖2 + 2‖ZBK̄‖ · ‖x(t)‖ · ‖ē(t)‖. We now

define a new Lyapunov function V (t) = Vx(t) + g0Ve(t),
where g0 is a positive number to be designed and Ve(t) =
ēT (t)P̄ ē(t) with P̄ > 0. From the proof of Theorem

1, it is known that V̇e(t) ≤ −ǫ1‖ē(t)‖2, with ǫ1 =
λmin([P̄ S̄−1(Ā − L̄pC̄) + (Ā − L̄pC̄)T S̄−T P̄ + P̄ ]) >
0. We furthermore define ǫ2 = λmin(−Π) > 0, ǫ3 =
2‖ZBK̄‖ > 0, and select the scalar g0 as g0 >
ǫ23/ǫ2ǫ1. Then, taking the derivative along the trajectory

of (27), one can obtain V̇ (t) = V̇x(t) + g0V̇e(t) =
−ǫ2‖x(t)‖2 + ǫ3‖x(t)‖‖ē(t)‖− ǫ1g0‖ē(t)‖ ≤ −ǫ2‖x(t)‖2 +√

ǫ2ǫ1g0‖x(t)‖‖ē(t)‖ − ǫ1g0‖ē(t)‖ ≤ −0.5ǫ2‖x(t)‖2 −
0.5ǫ1g0‖ē(t)‖ < 0, which implies that x(t) → 0 and

ē(t) → 0 as t → 0. This completes the proof.

It is noticed that (28) is a nonlinear matrix inequality, we

thus have to transform (28) into the LMI form.

Theorem 4: The closed-loop system (27) is asymptotically

stable, if there exist a positive and definite matrix Y ∈ R
n×n,

and a matrix W ∈ R
n×m such that

[

Γ11, Y
Y, −In

]

< 0, (29)

with Γ11 = AY +Y AT−BWT−WBT +η2In. Furthermore,

the state-feedback gain can be calculated as K = WT Y −1.

Proof: Pre- and post-multiplying Z−1 on the inequality

(28), and letting Z−1 = Y , W = Y KT , using the Schur

complement, the inequality (29) can be obtained. This com-

pletes the proof.

V. SIMULATION

Consider the plant (1) and augmented form (5), the system

data are chosen as follows:

A =





−1.5, 0, −0.2
0.3, −0.7, 0.5
−0.3, 0.5, −1.2



 , B =





1, 1
1, 0
1, 1



 ,

C =

[

−2, 1, 1
1, −2, 1

]

,
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fd(t) = 0.1310×





sin(−2x1(t) + x2(t) + x3(t))
sin(x1(t) − 2x2(t) + x3(t))

0



 .

It can be checked that (A, C) is observable pair, and the

Lipschitz condition (2) is given as η = 0.42. It is assumed

that fs(t) =
[

fT
s1, fT

s2

]T
has the following form

fs1(t) =







0, 0 ≤ t ≤ 2,
0.4, 2 < t < 5,
0.1 sin(2t) + 0.2 cos(2t), t ≥ 5,

fs2(t) =

{

0.5, 0 ≤ t ≤ 3,
0.3 sin(2t) + 0.1, t > 3,

and we choose α = 0.4 to satisfy the constraint in Assump-

tion 3.

(i) Design of L̄D and L̄p: In the first step to design

the estimator (7), we choose the derivative gain L̄D as

L̄D =

[

1 0 0 1 0
0 1 0 0 1

]T

, such that the system matrix

S̄ =







−1 1 1 1 0

1 −1 1 0 1

0 0 1 0 0

−2 1 1 1 0

1 −2 1 0 1






is nonsingular. It can be

calculated that λmin(S̄
−1Ā) = −1, and we choose β =

−λmin(S̄
−1Ā) + 0.01 = 1.01. Solve the Lyapunov equation

(14), one can obtain X̄ as






15.9817, −25.0122, 56.3332, −2.7050, 11.0916

−25.0122, 41.9654, −95.4749, 3.3708, −19.2389

56.3332, −95.4749, 228.6139, −6.3596, 43.8952

−2.7050, 3.3708, −6.3596, 1.0933, −1.0074

11.0916, −19.2389, 43.8952, −1.0074, 9.3192






.

According to (15), the proportional gain L̄p is selected as

L̄p =







0.7210, −0.0452

−0.3090, −0.6330

0.6068, −1.0267

3.2420, −2.1109

−2.1109, 4.0580






.

(ii) Design of control input us(t) : Next, we design

the sliding mode function (16). Solve LMI conditions (23)

by applying LMI-Toolbox in Matlab environment, we have

that θ ≈ 4.3288 × 10−12 (This means that the linear

constraint N̄T S̄−T P̄ = HC̄ is satisfied). According to

(21), the observer gain L̄s is designed as L̄s = N̄ =
[

0 0 0 1 0
0 0 0 0 1

]T

, and select γ1 = 0.1, the discontinu-

ous input us(t) is given by s(t) = N̄T S̄−T P̄ × ē(t), us(t) =
−2.8674 × sgn(s(t)). To prevent the control signals from

chattering, we replace sgn(s(t)) with s(t)/(‖s(t)‖ + 0.01)
in (18). The simulation results are provided in the following

Figures 1-3. The state trajectories of x(t) is shown in Figure

1; the trajectories of sensor faults fs(t) and its estimation

are shown in Figures 2-3. It can be seen that the asymptotic

stability of the closed-loop system is guaranteed, and the

tracking performance of system states and sensor faults have

achieved an ideal performance.

VI. CONCLUSION

In this work, the problem of state and fault estimation and

observer-based control for Lipschitz nonlinear systems with

sensor failure has been investigated . A new Proportional
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Fig. 1: x(t) and the estimation
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Fig. 2: Component 1 of sensor fault fs(t) and its estimation
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Fig. 3: Component 2 of sensor fault fs(t) and its estimation
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and Derivative sliding mode observer has been proposed to

construct accurate estimation of both system states and sen-

sor faults. Based on the state estimation, an observer-based

control scheme has been designed to stabilize the closed-

loop system. Future work will be focused on applying the

proposed estimation technique to more complicated systems

such as Markovian jump systems and fuzzy systems.
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