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Abstract— The paper addresses the control of multi-terminal
high voltage direct current (HVDC) networks with voltage
source converters (VSCs). A general model is presented in order
to describe the behavior of the multi-terminal VSC-HVDC
networks in any possible operating condition. Based on this
model, we propose a systematic design procedure for computing
a decentralized static output feedback (SOF), the so-called
droop control, with the aim of controlling the DC voltages. The
design procedure is reduced to solving a convex optimization
problem with linear matrix inequalities (LMIs). A four-terminal
VSC-HVDC grid is use to illustrated the application of the
proposed procedure.

I. INTRODUCTION

The need for increasing the wind power production is

fostering the research on offshore wind farms. In these

facilities, the power captured by each turbine is concentrated

in a common point and then conducted by submarine cables

to the onshore substations connected to the main transmission

system. Recent studies have concluded that for long distances

the most appropriate option for the power transmission from

the offshore wind farms to the coast is by high voltage direct

current (HVDC) links [1]. This fact has led to a renewed

interest in the HVDC grids and especially in the study of

the stability and the voltage control.

The stability of HVDC grids have been widely studied

[2], [3]. However, HVDC grids in the context of wind farm

exhibit different characteristics and especially new control

alternatives [4]. In wind power applications, an HVDC

transmission results in a multi-terminal network where its

terminals are connected to voltage source converters (VSCs)

[5]. These converters permit to transfer the power from the

wind farms to the AC grids where the consumes are con-

nected. The role of control in these multi-terminal networks

is to maintain the DC voltage almost stable and also to

attenuate any oscillations produced by the change in the

incoming power and by faults in the AC grids [4].

In general, in these multi-terminal HVDC grids, a de-

centralized proportional control, known as droop control,

is employed to fulfil the specifications on the DC voltage

behavior. Only a few works have addressed the control of

these multi-terminals [4], [6]. The objective of this paper is
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to propose a systematic procedure to compute the droop gains

ensuring stability and minimizing the effect of disturbances

on the DC voltage. The proposed design is cast as a static

output feedback (SOF) problem based on an L2 criterion

expressed as a convex optimization problem with linear

matrix inequalities (LMIs).

II. MULTI-TERMINAL VSC-HVDC GRIDS

A typical multi-terminal VSC-HVDC network is shown in

Figure 1. These systems can be modelled as an interconnec-

tion of nodes and branches. The nodes represent the VSCs

and the joints of several cables at intermediate points. The

branches are the cables linking the nodes. The converters

on both sides of the multi-terminal grid are nodes injecting

power (wind farm side) and extracting power (AC grid side).

The converters on the wind farm side (WFCs) are called

power input nodes and the converters on the AC grid side

(GSCs) are the power output nodes.

Wind Farm 1

VSC

...

Wind Farm Nin

VSC

HVDC

grid

VSC

AC grid Nout

...

VSC

AC grid 1

Fig. 1. Typical HVDC multi-terminal network

For the present analysis, it is sufficient to consider average

models for the VSCs. In this case, the converter is modelled

as three AC sources and one DC source plus a capacitor

[7]. The currents and voltages on the AC side are connected

with the DC side variables through the power transferred

from one side to the other. The control of the VSCs consists

of two feedback loops, an inner loop controlling the currents

and an outer loop regulating the DC voltage. The dynamic

of the inner loop can be considered much faster than the

outer loop and therefore it can be neglected in this study.

As a consequence, the VSCs will be represented as sources

that inject or extract current according to a current-voltage

characteristic given by the local control of the VSCs [5].

The WFCs present three operating modes as can be seen

in Figure 2 [5]. The normal operation mode, where the
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converters transfer all the power coming from the wind farm,

the VSC behaves as a current source keeping the power

injected into the grid constant. In Figure 2, it can be seen

several characteristics for several power values, where Pmax

denotes the converter power limit. The hyperbolic sector of

the curves corresponds to the normal operation. At high DC

voltages, the VSC maintains the voltage almost constant by

means of a proportional control law, commonly known as

droop control. The current is limited when it reaches the

maximum value IwfH. This characteristic for a generic node

k is summarized as follows

Ik =







Kk(EwfH,k − Ek), EwfL,k < Ek < EwfH,k;

Pk/Ek, Ek ≤ EwfL,k & Ik < IwfH,k;

IwfH,k, Ik ≥ IwfH,k.
(1)

with k = 1, . . . , Nin. Notice that the limit between the droop

and normal modes (EwfL,k) depends on the power level

delivered by the wind farm. In Figure 2, the operation modes

are indicated for the case of 60%Pmax injected into the grid

(thick line). The shadow area indicates the range where the

DC voltages must remains, i.e., Ek ∈ [Ewf , Ewf ]
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Fig. 2. Current-voltage characteristic of a wind farm converter for several
values of power delivered by the wind farm

The GSCs present two operating modes. In this case, the

normal operation corresponds to the droop control of the

DC voltage. The second operating mode, current limitation,

is applied when the current reaches the converter limit given

by

IgsH,k =
Pmax

Ek

=

√
3VAC cos θ

Ek

Imax
AC , (2)

where VAC and Imax
AC are the AC voltage and the AC

current, respectively. The current-voltage curve is illustrated

in Figure 3 and obeys the following expression

Ik =

{
Kk(Ek − EgsL,k), Ik < IgsH,k;

IgsH,k, otherwise.
(3)

with k = 1, . . . , Nout. The shadow area indicates the range

[Egs, Egs] of the acceptable DC voltage values. Commonly,

the converters on the AC grid side work in droop control

mode. However, the converter may enter in the current

limitation mode during severe voltage faults in the AC grid.

In this circumstance, the AC voltage (VAC ) drops and the

capacity of the converter to transfer power is reduced. From

(2), it is clear that a voltage sag of 50% causes a reduction

of the current limit IgsH in 50%, which in turn reduces the

normal operation area. This situation is also illustrated in

Figure 3 (thin line).
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Fig. 3. Current-voltage characteristic of a grid side converter. The thin line
shows the characteristic under a voltage sag of 50%

The rest of the multi-terminal VSC-HVDC is basically an

RLC circuit where each cable is substituted for an equivalent

π-circuit. The capacitors of the VSC models are included in

this RLC circuit. In order to eliminate unnecessary states,

capacitors in parallel are substituted for an equivalent one of

value

Ck =

N∑

j=1

Cj . (4)

The interconnection of nodes and branches after combining

parallel capacitors results in passive electrical network with

Nin power input nodes and Nout power output nodes. A

current source is connected to each terminal. These current

sources, obeying one of the current-voltage characteristic

previously described, model the effect of the local control of

the VSCs. An example of this kind of circuits can be seen in

Figure 4, which represents a four-terminal VSC-HVDC grid

with two wind farms transferring power to two AC grids.

The state-space representation of the equivalent electrical

network can be obtained from the following expressions.

• The voltage at an input/output node k is given by

Ėk =
αk

Ck

(Ik −
∑

j∈Jio

ILj
), k = 1, . . . , Nin +Nout

(5)

where the set Jio includes the indexes of all branches

converging to the node k and αk is a parameter that

takes the value 1 in case of a power input node and −1
in case of a power output node.
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Fig. 4. Equivalent circuit of a four-terminal VSC-HVDC network

• The voltage at an intermediate node k is given by

Ėk =
1

Ck

(
∑

j∈Jin

ILj
−

∑

j∈Jout

ILj
), k = 1, . . . , Nint

(6)

where Jin is the set of indexes of all branches with

currents flowing to the node k and Jout is the set of

indexes with currents flowing from the node k.

• The current in a branch l between the nodes k and m
is given by

İLl
=

1

Ll

(−RlILl
+Ek − Em), l = 1, . . . , Nbr (7)

Then, defining the state vector as

x = [E1, · · · , E(Nin+Nout), E(Nin+Nout+1), . . . ,

E(Nin+Nout+Nint), IL1
, · · · , ILNbr

]T , (8)

the electrical network has the state-space representation

M :

{

ẋ = Ax+Bqq,

p = Cpx,
(9)

where

A =





0 0 A13

0 0 A23

A31 A32 A33



 , Bq =





B1

0
0



 , Cp =





I
0
0





T

,

with A13, A23, A31, A32, A33 and B1 matrices obtained

from the previous electrical equations.

III. CONTROL DESIGN PROCEDURE

In this section, we provide a procedure to design the droop

control gains on both side of the multi-terminal network

under multiple operating conditions. In normal operation, the

WFCs inject power into the multi-terminal and the GSCs

regulate the DC voltage. This implies that only the con-

trollers on the AC grid side are active. However, this control

configuration changes under different operating conditions.

For example, under a voltage fault on the AC grid, the

w
K Λj

q
M

p

HI− Λj

z

Fig. 5. Proposed control loop representation for the multi-terminal VSC-
HVDC grid

roles of the converters may be reversed and the WFCs

become responsible for maintaining the DC voltage within

limits whereas the controllers on the AC grid side remain

inactive. As a consequence, the control design must ensure

stability and performance for a time varying system, actually

the control must deal with a time-varying system since the

changes in the control configuration occur in very short

periods of time. On the other hand, the control must be

decentralized since each local control can not use the voltage

measured at other nodes. The distance among nodes makes

unreliable the use of the voltage at other nodes in a control

law.

Here, we propose the scheme depicted in Figure 5 to

represent the changes in the operating modes of the multi-

terminal VSC-HVDC networks. In this scheme, all outputs

are fed back into the multi-terminal network M; however,

the only feedback gains to be designed are those associated

to the droop control (the matrix K). The other feedback paths

are caused by the relation between the current and the voltage

when the power handled by the converter is constant.

The main idea consists in representing the nonlinear

relation between the current and the voltage at each power

node as

Ik = δkEk,

where δk is a time-varying parameter taking values in the

sector [δk,Kk]. Therefore, the multi-terminal network can

be modelled as the LPV system

Fu(∆,M)

where Fu denotes the upper linear fractional interconnection

and ∆ = diag(δ1, . . . , δ(Nin+Nout)).
As the resultant model is actually an affine LPV system,

to establish stability and performance is sufficient to eval-

uate the closed loop system at the vertex of the polytope

∆∆∆ = [δ1,K1]× · · · × [δNin+Nout
,KNin+Nout

]. Therefore, for

control design purpose, the input to the multi-terminal M is

q = KΛj(w + p) +H(I− Λj)p (10)

where I is the identity matrix,

K = diag(K1, . . . ,K(Nin+Nout))

is the droop gain to be determined and

H = diag(δ1, . . . , δ(Nin+Nout)).
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The matrix Λj is defined as

Λj = diag(Λ1,j , . . . ,Λ(Nin+Nout),j),

where

Λk,j =

{
1, if droop is applied at the node k;

0, otherwise.
(11)

This matrix determines the control configuration, i.e., which

nodes are in droop control and which are just injecting or

extracting power without voltage control. For example, in

normal operation, where the WFCs inject into the multi-

terminal HVDC network all the wind power available and

the GSCs are in droop control to regulate the DC voltage,

the matrix results

Λ = diag(0, . . . , 0
︸ ︷︷ ︸

Nin

, 1, . . . , 1
︸ ︷︷ ︸

Nout

).

This configuration changes if, for instance, a voltage fault

occurs in the AC grid. This provokes that some of the

converters on the AC grid side enter in current limitation

and some of the WFCs enters in droop control. If all WFCs

are in droop control and the GSCs in current limitation, the

matrix Λ takes the form of

Λ = diag(1, . . . , 1
︸ ︷︷ ︸

Nin

, 0, . . . , 0
︸ ︷︷ ︸

Nout

).

There are 2(Nin+Nout) possible configurations. Nevertheless,

this number can be reduced with an analysis to determine the

possible cases. This depends to a large extent on the voltages

EwfL,k and EgsL,k which are set in accordance to a power

distribution study which is out of the scope of this paper [5].

Then, the closed loop system is governed by

ẋ = Acl,jx+Bww,

z = Czx+Dzww,
(12)

where

Acl,j =





B1(KΛj +H(I− Λj)) 0 A13

0 0 A23

A31 A32 A33



 ,

Bw,j =
[
(B1Λj)T 0 0

]T
, Cz =

[
I 0 0

]
,

Dzw = I, with j = 1, . . . , N (N ≤ 2(Nin+Nout)). Due to

the changes in the matrix Λj , the multi-terminal HVDC grid

represented by (12) is actually a time-varying system.

The purpose of the droop control is to maintain almost

constant the DC voltages in spite of disturbances caused by

the change in the wind power and the faults in the AC grid.

This objective must be fulfilled even though when some

converters change from one operating mode to other. This

objective will be stated in the form of the L2 criterion

max
w 6=0

‖z‖2
‖w‖2

< γ. (13)

A result similar to the Bounded Real Lemma permits to

formulate the previous performance criterion as constraints

on the droop gain K [8]. Using this result, the system

satisfies the performance condition (13) if there exists a

positive definite matrix P such that




PAcl,j + (⋆) PBw,j CT
z

⋆ −γI DT
zw

⋆ ⋆ −γI



 < 0, ∀ j = 1, . . . , N

(14)

where < 0 denotes negative definite and ⋆ the matrix sym-

metric elements. Notice that in order to guarantee stability

and performance against changes in the operating modes, the

Lyapunov matrix P must be common to each system j.

The droop gain can be computed replacing the closed

loop matrices Acl,j in (14). This leads to a decentralized

static output feedback problem which requires solving a non-

convex optimization problem. Nevertheless, since Bw is a

full column rank matrix, the gain computation can be reduced

to a convex problem (at the expense of some conservatism)

by defining the Lyapunov matrix as

P =

[
P1 0
0 P2

]

,

with P1 = diag(p1, . . . , p(Nin+Nout)) and P2 a symmetric

matrix of dimension (Nbr +Nint)× (Nbr +Nint) [9]. From

the previous discussion, it is straightforward to prove the

following result.

Theorem 3.1: The decentralized proportional control K
stabilizes the system (9) and ensures (13) if there exist

matrices P1 = diag(p1, . . . , p(Nin+Nout)) > 0, P2 = PT
2 > 0

and V = diag(v1, . . . , vNin+Nout
) such that





P (A+B1H(I − Λj)) + V Λj + (⋆) V Λj CT
z

⋆ −γI DT
zw

⋆ ⋆ −γI



 < 0

(15)

for all j = 1, . . . , N . Once P1 and V are computed, the

droop gain can be obtained from

K = V P−1
1 .

IV. EXAMPLE

The application of Theorem 3.1 is illustrated with the

simple four-terminal VSC-HVDC grid that is shown in

Figure 4. It consists of two offshore WFCs and two onshore

GSCs. The values of the parameters are listed in Table I. The

four-terminal grid has two power input nodes, two power

output nodes and three branches representing the cables

linking the converters.

Using the expression (5) at each power input/output node

and (7) in the three branches, the following differential

equations can be obtained

Ė1 =
1

C1
(I1 − IL1

− IL2
), (16)

Ė2 =
1

C2
(I2 − IL3

− IL2
), (17)

Ė3 =
−1

C3
(I3 − IL1

), (18)

Ė4 =
−1

C4
(I4 − IL3

), (19)
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TABLE I

PARAMETER OF THE FOUR-TERMINAL EXAMPLE

Grid parameters Value

Line resistance R1 and inductance L1 0.50 Ω, 5.0 mH

Line resistance R2 and inductance L2 0.25 Ω, 2.5 mH

Line resistance R3 and inductance L3 0.40 Ω, 4.0 mH

Capacitances Ck (k = 1, . . . , 4) 150 µF

Rated line current irtd
L

667 A

Rated input current irtd
k

667 A

Converter rated power Pk 100 MW

Rated DC voltage Ek 150 kV

Reference voltage E0 145 kV

İL1
=

1

L1
(−R1 IL1

+ E1 − E3), (20)

İL2
=

1

L2
(−R2 IL2

+ E1 − E2), (21)

İL3
=

1

L3
(−R3 IL3

+ E2 − E4), (22)

There are four capacitors and three inductor; therefore, the

variables E1, E2, E3, E4, IL1
, IL2

and IL3
are sufficient to

completely define the state of the system, i.e.,

x = [E1 E2 E3 E4 IL1
IL2

IL3
]T .

From this previous definition and the equations (16)–(22),

the open loop matrix in the state-space representation (9)

results

A =














0 0 0 0 − 1
C1

− 1
C1

0

0 0 0 0 0 − 1
C2

− 1
C2

0 0 0 0 − 1
C3

0 0

0 0 0 0 0 0 − 1
C4

1
L1

0 − 1
L1

0 −R1

L1
0 0

1
L2

− 1
L2

0 0 0 −R2

L2
0

0 1
L3

0 − 1
L3

0 0 −R3

L3














,

B =













1
C1

0 0 0

0 1
C2

0 0

0 0 − 1
C3

0

0 0 0 − 1
C4

0 0 0 0
0 0 0 0
0 0 0 0













.

There are Nin + Nout = 2 + 2 = 4 converters therefore

there are 2(Nin+Nout) = 16 possible control configurations.

The application of the proposed procedure given by Theo-

rem 3.1 for the 16 possible Λj produces the following droop

gain

K = diag(−0.1333,−0.1333, 0.1333, 0.1333).

with a performance level of γ = 2.00, where the output z
was weighted with the function

Wz,j(s) =
s/0.5 + 1

s/50 + 1
· diag (β1,j, β2,j , β3,j , β4,j) ,
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Fig. 6. Simulations corresponding to a change in the power injected into
the grid by the WFCs

The parameters βi,j was set at 0.01 for the outputs corre-

sponding to the nodes without droop control and at 0.02
for the outputs with control. The optimization problem was

solved with the free available software Sedumi [10] and

Yalmip [11].

The droop gain computed with the proposed procedure

were evaluated by simulation. The first scenario analyzed

consists in two simultaneous changes in the power injected

into the multi-terminal VSC-HVDC grid by the WFCs. The

powers at the input nodes vary from 0 MW to the rated

value 100 MW at 0.05 s and return to 0 MW at 0.25 s.

Figure 6a shows the evolution of the power at each converter.

The solid lines correspond to the power injected by the WFCs

and the dashed lines to the power extracted by the GSCs.

The DC voltages are shown in Figure 6b, the shadow area

indicates the range (±5% of rated voltage 150 kV) where

the DC voltage must remain. Notice that the voltage at the

four terminal never exceed the limits. The DC voltages stay

at 145 kV during the period where the power flow is zero

since there is no voltage drop in the grid resistances. Once

the power input increases, the DC voltages move toward a

new voltage equilibrium. The currents flowing through each

converters are displayed in Figure 6c.

The second scenario considered is two voltage faults in

the AC grids. Initially, the four converters are working at

normal operation, i.e., the WFCs are injecting all wind power

available and the GSCs are regulating the DC voltages. At

0.05 s, a three phase voltage sag of 90% deep of the nominal

AC values occurs at the AC grid connected to the GSC3. At

the same time, another voltage sag of 80% deep is applied

to the grid connected to the GSC4. The both sags last 0.2
s. The simulation results are shown in Figure 7. It can be

observed that the powers and the currents at the grid side
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Fig. 7. Simulations corresponding to voltage sags in the AC grids

(I3 and I4 and P3 and P4, respectively) fall at 0.05 s due to

the voltage sags in the AC grids. When the WFC voltages

exceed 154 kV, the corresponding converters start to applied

droop control in the DC grid, reducing the power injected

into the grid from 100 MW to 20 MW. (Figure 7a). The

DC currents also decrease during the voltage sag due to the

power reduction caused by the droop control in the WFCs

(Figure 7c). Notice that the disconnection of the system due

to over-voltage was avoided during the fault. The voltages at

all terminal rose as consequence of the grid side converter

operated in current limitation mode. Nevertheless, the DC

voltages never left the shadow area delimited by the voltage

limits.

The change of operating modes is clearer in Figure 8,

where the behavior of the system is represented in the

current-voltage plane (For sake of clarity, only the voltages

and the currents of WFC1 and GSC3 are depicted, similar

results can be observed in the others converters). Initially,

WFC1 and GSC3 are in normal operation (point A). After

the voltage faults in the AC grids, GSC3 enters in current

limitation mode (point C) whereas WFC1 remains in normal

operation but the voltage E1 begins to rise. Once E1 reaches

154 kV (point B), the WFC1 enters in droop control mode.

Both converters stay in this configuration until the voltage

fault vanishes (point D). Once the AC voltage recovers the

rated values, the GSC3 returns to normal operation (point E),

causing an initial increment of the current I3 until the system

reaches the final operating point A. Whereas, the variables

in WFC1 return to the initial point A along the same path

than they followed to reach D.

V. CONCLUSIONS

The voltage regulation of multi-terminal VSC-HVDC net-

works requires the design of decentralized static controller

that ensures stability and performance under changes in the
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Fig. 8. Simulations corresponding to a voltage sag in the AC grids in the
current-voltage plane

operating conditions. The synthesis of these decentralized

controllers has been cast a SOF problem. The particular

structures of the system and the control have been exploited

to propose a relaxation in order to convexify the synthesis

procedure and thus simplifying the computation of the static

feedback. As a result, the decentralized static controller can

be computed by solving a convex optimization problem with

LMI constraints. A general switched description of multi-

terminal VSC-HVDC networks has also been introduced

with the aim of describing the multi-terminal under any

possible operating conditions. With this formulation, the

designed static control stabilizes and provides certain per-

formance level under any operating condition of the multi-

terminal VSC-HVDC grid.
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