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Abstract— In this paper, actuators reliability analysis is
considered in the design of active fault tolerant control system.
The main objective consists on the synthesis of a fault tolerant
controller gain which guarantees a highest overall system
reliability. Benefit of incorporating reliability indicators on the
controller gain design is to manage effectively the control inputs
in order to increase the remaining life time of a system in the
presence of faults. A reliability analysis of system modeled by a
state space representation is proposed. A controller gain design
is reformulated as an Linear Matrix Inequality (LMI) problem
and synthesized through an effective admissible model matching
approach.

I. INTRODUCTION

the control design of safety-critical systems, reliability,

maintainability, and safety are the basic design requirements.

Safety critical systems should be able to maintain a sat-

isfactory closed-loop performance in nominal case and to

adapt with faulty situations. These types of adaptive systems

are known as Fault Tolerant Control Systems (FTCS). The

aim of FTC is to keep plant available by the ability to

achieve the objectives assigned in the faulty behavior and to

accept reduced performance when critical faults occur [3].

Currently, various approaches for FTCS design have been

developed and and proposed in the literature. Overviews on

the development of FTCS have been provided in survey pa-

pers and books such as [3] or [15]. Among these approaches,

some of them require an on-line Fault Detection and Isolation

(FDI) mechanism. These approaches are called Active Fault

Tolerant Control Systems (AFTCS).

Therefore, it is important to enhance the system safety not

only by improving reliability of individual components or by

designing control systems to compensate the effect of fault

on the dynamic behavior but also by taking into consideration

the degradation of components health. One motivation to

integrate information about actuator health in the controller

design is to improve the safety and the life time of the

reconfigurable systems. Indeed, system safety and overall

system reliability can be improved by Fault Tolerant Control

Design based on an effective control inputs management.

Consequently, the system remains operational for a longer

duration with respect to the acceptable control performance

requirements.
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Some research works have introduced reliability analysis

for FTCS. [14] has used Markov chain to model the system

reliability where subsystems are supposed to reach two

states: intact (available) or failed (unavailable) states. In

[13] and [11], the authors proposed a sensor and actuator

reconfiguration strategy based on physical redundancy. The

reliability analysis provides some indicators to select the

optimal set for reconfiguration strategy. In a similar way, [9]

has considered the reliability of sensor faults in the filtering

design issue. A reconfiguration mechanism of FTC strategy

incorporating reliability analysis under a dynamic behavior

constraints has been proposed in [8].

In this paper, actuator criticality evaluation is integrated

in the design of active fault tolerant controller gain. The

novelty of the proposed approach is to design a fault tolerant

controller gain which achieves the control objective with

a highest overall system reliability level by respecting the

criticality of each actuator. Indeed, this objective improves

the safety of the reconfigurable system and keeps the set of

actuators available as long as possible by minimizing the use

of the critical actuators. To select the critical actuators, sen-

sitivity analysis of the overall system reliability is proposed

a priori.

The problem of fault tolerant control design with respect

to actuator criticality is reformulated as an Linear Matrix

Inequalities (LMIs) problem . Among various methods, the

active fault tolerant controller gain synthesis which guar-

antees the overall system reliability and safety is achieved

through an admissible model matching (AMM) method.

As indicated in [12], the AMM method is able to obtain

admissible solutions in cases where the classical Pseudo-

Inverse Method (PIM) leads to unstable behaviors [6]. In the

proposed method, effective admissible solution is proposed

in nominal case based on reliability analysis and actuators

criticality. After fault occurrence, the LMI-based regional

pole placement is used to reach the admissible behavior by

considering the actuators aging. The actuators criticality is

re-actived by taking into account the actuators aging caused

before faults occurrence.

This paper is organized as follows. Section II presents

the general framework of fault tolerant control design for

a reliability objective requirement. Preliminaries on AMM

FTC and the considered faulty system are introduced. In

Section III, reliability analysis procedure of closed-loop

systems is presented and an actuators criticality indicator is

given. In Section IV, active fault tolerant control design maxi-

mizing the overall system reliability with respect to actuators

criticality is proposed. In Section V, the application of the
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proposed approach on a linearized flight control example are

given. Finally, Section VI concludes the contribution of this

paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

Let us consider the linearized dynamic of the system given

by:
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(1)

where A ∈ IRn×n, Bu ∈ IRn×m and C ∈ IRp×n are

respectively, the state, the control and the output matrices.

x ∈ IRn is the system state, u ∈ IRm is the control input,

y ∈ IRp is the system output and (A,B) is assumed to be

stabilizable.

In nominal operation, the control law u(t) is designed with

the classical state feedback as:

u(t) = −Kx(t) (2)

Indeed, several methods have been proposed to design a

feedback controller K which satisfies A−BK ∈ Ma where,

Ma presents a family of acceptable closed-loop behaviors

called admissible behaviors [13].

Definition 1 (Admissibility): The triple (A,B,K) ∈ Ma

is called admissible if and only if,

Ma = {(A,B,K) : ΦM(A,B,K) ≤ 0} (3)

where ΦM(A,B,K) are the set of constraints that guarantee

(A − BK) ∈ Ma is achieved with the control law u(t) =
−Kx(t).

Then, when actuator faults occurrence, the system (2) can

be modeled in degraded functional mode as follows:

ẋ(t) = Ax(t) + Bfu(t)
y(t) = Cx(t)

(4)

where the matrix Bf is written according to the nominal

control input matrix B and the control effectiveness factors

γi ∈ [0, 1], i = 1, . . . ,m, as follows:

Bf = BΓ, Γ = diag([γ1, γ2, . . . , γm]) (5)

Indeed, if γi = 1, then the ith actuator is considered to

be fault-free. Nevertheless, when 0 < γi ≤ 1, the considered

faults is a partial loss of control effectiveness. Moreover,

when γi = 0 critical failure is considered and the actuator is

out of order.

In this paper, admissible model matching FTC is consid-

ered. The main idea of admissible model matching is that

instead of looking for a controller gain that provides an

exact (or best) matching to a nominal behavior after the fault

appearance.

Definition 2: The faulty system (A,Bf ) is fault-tolerant

using active FTC if and only if the set:

Kf (A,Bf ) = {Kf : ΦM(A,Bf ,Kf ) ≤ 0} (6)

is not empty. Indeed, there exists a Kf ∈ Kf : A−BfKf ∈
Ma.

The main contribution of this work is to consider the

overall system reliability as a principle objective that guide

the design of the controller gain. Thus, to design an effective

fault tolerant controller gain with an overview on the overall

system reliability, the generated control inputs should be

applied to the system taken into account the actuators aging.

This objective leads to design an optimal controller K∗
f ∈

Kf with an optimal value of the overall system reliability

Rg(tM ) where, the acceptable performance is guaranteed

until the end of the mission with a hight probability. The

problem of effective fault tolerant control design is defined

as follows:

Definition 3: The system (A,Bf ) is fault-tolerant and

effective using active fault tolerant control for K∗
f ∈ Kf

defined by:

K∗
f = {Kf : ΦM(A,Bf ,Kf ) ≤ 0, Rg(tM ) −→ Rmax

g }
(7)

where Rmax
g is the maximum value of reliability that can

be obtained using K(A,Bf ). Rg(tM ) is the overall system

reliability estimated for t = tM . tM is the predefined time

of the end of mission.

III. RELIABILITY ANALYSIS OF CLOSED-LOOP SYSTEMS

A. Reliability computation

The life time of the system can be quantified by the overall

system reliability estimation.

Definition 4: Reliability R(t) is defined as the probability

that units, components, equipments and systems will accom-

plish their intended function for a specified period of time un-

der some operating conditions and specific environments [7].

In the useful period of life, the component can be char-

acterized at a given time t by a baseline reliability measure

R0(t). In the following, R0(t), associated to the reliability

of the actuator, is obtained under nominal conditions in the

useful period of life defined such as:

R0
i (t) = exp(−λ0

i t), i = 1 . . . m (8)

where λ0
i is a baseline failure rate of the ith actuator obtained

under a nominal operating condition defined by a specific

applied load level.

However, a realistic health measurement should also in-

clude the trend of actuator aging according to the variation

of the operating conditions. Indeed, in many situations and

especially in the considered study, failure rates are obtained

from actuators under different levels of loads depending on

the applied control input. Several mathematical models have

been developed to introduced the impact of load level in

the reliability estimation. Proportional hazard model firstly

proposed by [5] is used.

Definition 5: In the case of time variation of operating

condition, the reliability component can be estimated accord-

ing to the nominal failure rate as follows:

Ri(t) = exp(−λit)
λi = λ0

i × gi(ℓ, ϑ)
(9)

where λ0
i represents the baseline failure rate (nominal failure

rate) for the ith subsystem or component and gi(ℓ, ϑ) is a
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function (independent of time) taking into account the effects

of applied loads called stress with ℓ presenting an image of

the load and ϑ defining component parameters.

Assumption 1: In this study, the exponential distribution

for reliability estimation is considered. The function load

introduced in (9) will be defined according to the applied

load until the end of the mission t = tM , assumed to be

known. In this framework, the component reliability measure

will be evaluated for t = tM noted as R(tM ).
Different definitions of the load function gi(ℓ, ϑ) exist in

the literature where, the exponential form is commonly used.

In this study, the load function is defined according to the

root-mean-square of the applied control input as follows:

gi(ℓ, ϑ) = exp(βi

∫ tM

0

u2
i (t)dt), i = 1, . . . ,m (10)

where βi is an actuator parameter defined as follows:

βi = (tM (ui − ui))
−1, i = 1, . . . ,m (11)

where ui and ui are the physical saturations of ui(t).
In fact, based on (9) and (10), the actuators health degra-

dation at a given time tM is modeled as a function of the

applied load.

B. Reliability analysis: parallel and series case

Based on the previous definitions, the actuator reliability

Ri(tM ) can be estimated depending on the baseline reliabil-

ity R0
i (tM ) as follows:

Ri(tM ) = αi(u)R0
i (tM ), i = 1, . . . m

αi(u) = exp(−λ0
i βi‖ui‖

2)
(12)

where, ‖.‖ is the Euclidien norm. αi(ui) ≤ 1 represents

the rate of reliability degradation due to the applied load

during the mission. In fact, the following relation is satisfied:

if ‖ui‖
2 → 0 : R(tM ) → R0(tM ) where ‖ui‖

2 is the

variation of the applied load compared to the nominal level

of load. Thus, the component reliability decreases for a large

variation of the applied load from the nominal level.

Lemma 1: For a system composed by m redundant actu-

ators, the overall system reliability Rg(tM , u) −→ Rgmax

for an effective controller K∗ ∈ K where the control inputs

u∗(t) = −K∗x(t) stress more the less reliable actuators and

satisfy the following condition as close as possible:

K∗ 7→ {u∗(t) | min
αi(u

∗
i )

αj(u∗
j )

if
λ0

i

λ0
j

< 1},

where i ∈ [1, . . . ,m]; j ∈ [1, . . . ,m] and i 6= j. Rgmax is

the optimal value of overall system reliability that can be

obtained at t = tM .

Proof: Systems composed by m redundant actuators

can be presented by a parallel scheme of Reliability Block

Diagram (RBD). The associated overall system reliability

under nominal conditions Rg0(tM ) can be obtained as

follows:

Rg0(tM ) = 1 −
∏m

k=1(1 − R0
k(tM )) (13)

The sensitivity of the overall system reliability si versus the

ith component can be evaluated as:

si = ∂Rg0(tM )
∂R0

i
(tM )

=
∏m

k=1; k 6=i(1 − R0
k(tM ))

=
∏m

k=1(1 − R0
k(tM ))(1 − R0

i (tM ))−1 (14)

It can be shown that, if R0
i > R0

j (or λ0
i < λ0

j ) then

si < sj .

This result means that a small degradation αi(ui) of the ith

more critical actuator (for that the system reliability is more

sensitive) causes a large degradation of the overall system

reliability Rg(tM ) and vice-versa for the jth actuator.

Corollary 1: For a system composed by m series actua-

tors, the overall system reliability under nominal conditions

Rg0(tM ) can be obtained as follows:

Rg0(tM ) =
∏m

k=1 R0
k(tM ) (15)

It can be seen clearly that the overall system reliability

Rg(tM , u) −→ Rgmax for an effective controller K∗ ∈ K
where the control inputs u∗(t) = −K∗x(t) stress more the

more reliable actuators and satisfy the following condition:

K∗ 7→ {u∗(t) | min
αi(ui)

αj(uj)
if

λ0
i

λ0
j

> 1},

where i ∈ [1, . . . ,m]; j ∈ [1, . . . ,m]. Rgmax is the optimal

value of overall system reliability that can be obtained at

t = tM .

C. Actuators criticality analysis: General case

In the more general case, a global reliability Rg(tM ) is

computed based on the reliabilities of elementary compo-

nents or subsystems. In this context, Rg(tM ) depends on the

actuators’s connection which can generally be decomposed

on elementary combinations of series and parallel compo-

nents.

In the context of fault tolerant control, it is crucial to

know a priori how the actuators are connected in order to

analyze the actuators criticality which guide the design of

an effective controller. In fact, the variation of the over-

all system reliability when the applied load is considered

depends on structure of the system and the applied load

corresponding to each actuator. By considering the matrix

B = [b1b2 . . . bm], bi ∈, IRn×1, reliability bloc diagram of

the actuators can be obtained by testing the controllability

condition for the different combinations of bi. For a control

problem, the intended function for which the reliability

bloc diagram will be established is to guarantee the system

controllability. This conditions make the design of the control

law possible.

In order to obtain the relation Rg(t) =
f(R1(t), R2(t), . . . Rm(t)) for the complex systems,

the following subsets Lk, k = 1, . . . , nL are considered as

follows:

Lk = {Ri, rank[Ctr(A, [ρ1b1 . . . ρmbm])] = n}, i = 1, . . . ,m
(16)
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where, Ctr(A,B) is the controllability Grammien of the

system defined by the matrices (A,B), and
{

ρi = 0, the ithactuator is not considered in Lk

ρi = 1, the ithactuator is considered in Lk
(17)

In fact, Lk, k = 1, . . . , nL are all the subsets schemes

of the actuators for which the controllability condition is

satisfied and so a fault tolerant controller can be calculated.

Lk represents the success solution of controllability similar

to the success path defined in the standard reliability analysis.

Then, based on the Poincare Theorem [10], the overall

system reliability Rg(t) can be expressed as a function of

Ri(t) as follows,

Rg(t) =

nL
∑

j=1

∏

i∈Lj

Ri(t) −

nL
∑

j=2

j−1
∑

k=1

P(Lk ∩ Lj)+

. . . + (−1)mP(L1 ∩ . . . ∩ Lm) (18)

where

P(Lk ∩ Lj) =
∏

i∈{Lk,Lj}

Ri(t) (19)

The Poincare Theorem is generally used to calculate the

overall system reliability of complex systems. Hence, this

theorem is adapted in this work to obtain the relation of the

overall system reliability for the controlled system defined

by the matrices (A,B). The proposed evaluation is applied

off-line where the reliability bloc diagram and the connection

between the actuators is fixed in the system design stage and

does not change.

Consequently, the actuators criticality can be evaluated

by the following indicator obtained based on the sensitivity

study such as:

si =
∂R0

g(tM )

∂R0
i (tM )

(20)

In order to maximize the overall system reliability, the

applied loads depending on the effective controller K∗ ∈
K should guarantee the stability of the faulty closed-loop

system with respect to the actuators criticality.

IV. ACTIVE FAULT TOLERANT CONTROLLER GAIN

SYNTHESIS VERSUS RELIABILITY

Before presenting the main contribution on the effective

fault tolerant controller design, let us consider the following

lemma:

Lemma 2 ([4]): The applied load of the control input

u(t) = −Kx(t) evaluated as the norm ‖u(t)‖ can be

enforced to respect an upper bound ‖u(t)‖ < µ at all times

t ≥ 0 if the LMI
[

P ST

S µ2

]

≥ 0 (21)

holds for a given µ > 0, where P > 0, x(0)T P−1x(0) ≤
1 and K = SP−1 such that S satisfies the stabilizing

condition,

AP + PAT + BS + ST BT < 0 (22)

Admissible model matching method proposed in [12] is

considered to design a fault tolerant controller gain such

that the poles of the closed-loop system are inside a pre-

established region even in faulty case. This algorithm will

be combined with an additional LMI constraint that enforce

the applied load to respect as possible to predefined level

with a priority to the actuators based on its criticalities. The

set of admissible behaviors Ma can be proposed as:

Ma = {(A,Bf ,Kf ) : Λ(A − BfKf ) ∈ Dα} (23)

where Λ(.) is the set of the eigenvalues of the matrix (.). Dα

is a desired region included in the unite circle with an affix

(−q, 0) and a radius r such that (q + r) < 1 is fixed. These

two scalars q and r are used to determine a specific region

included in the unite circle. According to [1], (23) can be

rewritten as follows:
[

−rP qP + PMT

qM + MP −rM

]

< 0 (24)

where M = A − BfKf and P > 0. Da is the region en-

compassing the desired system poles Λd and the admissible

ones.

In the following, we propose to design an effective nomi-

nal controller gain K∗ in order to maximize the overall sys-

tem reliability and to improve the system dependability. The

proposed controller gain K∗ places the system eigenvalues

Λ(M) in the admissible region as close as possible to the

desired eigenvalues Λd and manages effectively the actuators.

For that, an additional LMI constraint is considered in the

controller design and the effective controller gain K∗ can be

obtained in the nominal functional operation as follows:

Theorem 1: Given a scalar µ and the criticality indicators

si defined by (20), an effective nominal controller gain K∗ =
SP−1 can realize Λ(A−BK∗) ∈ Dα and Rg(tM ) → Rmax

g

by solving the following LMIs problem:
[

−rP qP + PAT − ST BT

qP + AP − BS −rP

]

< 0 (25)

[

P ST

S (Ω−1µ)2

]

≥ 0, i = 1 . . . m (26)

where P > 0 ∈ IRm×m, S ∈ IRn×m and Ω =
diag {Ω1,Ω2, . . . ,Ωm} with

Ωi =
si

smin

, , smin = min(si) (27)

Proof: Based on lemma (2), ‖u‖ < µ can be satisfied

by considering the weighing norm ‖Ωu‖ where

‖u‖ ≤ ‖Ωu‖ < µ (28)

for Ω = diag{Ω1,Ω2, . . . ,Ωm} ≥ 0, and Ωi ≥ 1, i ∈
[1, . . . ,m].

Based on the weighted norm ‖Ωu‖, the applied load

constraint ‖u‖ < µ is satisfied by considering a specified

priority level to each actuator. In fact the applied load of

each control input ui(t) can be enforced to respect a fixed

upper bound for each actuator. The values of Ωi are chosen

as (27) in order to manage the control inputs based on the
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criticality indicators where the required applied loads of the

actuators are bounded by considering their criticality. This

additional property can be expressed as follows:
[

P ST

S (Ω−1µ)2

]

> 0 (29)

The stability condition and the admissibility solution are

both guaranteed by the LMI region constraint of poles

placement (25).

After the fault occurrence at t = tf , the criticality indicator

si can be re-estimated on-line by considering the failure rates

λi defined in (9). The applied load in this case is calculated

until tM = tf and evaluated as:

gi(ℓ, ϑ) = exp(βi

∫ tf

0

u2
i (t)dt), i = 1, . . . ,m (30)

Thus, the stability and the admissibility of the closed-loop

system in the faulty case can be guaranteed by considering

K∗
f = SP−1 in the inequality (25) and the new criticality

indicators si in the inequality (27) computed based on the

re-estimated actuator failure rates λi .

Corollary 2: The proposed method can be generalized to

tracking problem:

u∗(t) = −K∗
f x(t) + K∗

r r(t) (31)

where r(t) ∈ IRnr is the desired reference to be tracked by

the system input. The gain K∗
r can be designed according to

the state feedback gain K∗
f as follows:

K∗
r = (C(BfK∗

f − A)−1Bf )+ (32)

V. AN APPLICATION TO FLIGHT CONTROL

In order to illustrate the novel fault tolerant controller gain

synthesis, a linearized flight control problem considered in

[2] is adopted where x(t) = [p̃, q̃, r̃,∆α, β, φ, θ]T is the state.

u(t) = [δa, δr, δe]
T is the control input, where δa is the

aileron deflection angle, δr is the rudder deflection angle and

δe is the elevator deflection angle. The controlled outputs

y(t) = [β, φ, θ] are respectively, the angle of sideslip, the

angle of bank and pitch angle.

To illustrate the proposed approach in a short time window,

the values of the baseline actuators failure rates λ0
i are

considered with a very huge values and given as follows:

λ0 = {0.005, 0.09, 0.01} min−1

The degraded closed-loop behavior is considered admis-

sible if the eigenvalues of M lie in a disk around q = 3.5
with a radius of 1. The corresponding admissible behavior

is defined as

Ma = {M : Λi(A − BfK∗
f ) ∈ Dα(3.5, 1)} ∀i ∈ [1, 2, 3]

where Λ(A−BK) ∈ Dα(3.5, 1)} is verified in the nominal

case.

In order to obtain the criticality indicator (20), the relia-

bility block diagram of the system (A,B) can be obtained

by testing the controllability condition as in (16).

For simplicity, complete failure of actuator 1 is not consid-

ered and the overall system reliability R0
g(t) can be expressed

as:

R0
g(t) = R0

3(t) + R0
1(t)R

0
2(t)(1 − R0

3(t))

where the criticality indicator is obtained for tM = 20sec as,

s = [0.03, 0.164, 0.8504]. Based on (26), the corresponding

weighting matrix Ω is equal to,

Ω = diag{28.3821, 5.185, 1}

It can be seen that actuator 1 is the most critical actuator

in term of reliability.

Figure (1) shows the evaluation of the required outputs

with a constant degraded mode characterized by Γ =
[1, 0.5, 1]. The fault is assumed occurred at tf = 7sec where

a time delay of few samples is considered for fault detection,

isolation and magnitude estimation and consequently to

modify the controller gain. Three controller gains have been

synthesized in order to illustrate our method:

- a controller gain K in nominal case;

- an admissible model matching controller gain Kf in

faulty case solution of (21) and (25) without respect to the

reliability analysis;

- a reliable admissible controller gain K∗
f in faulty case

obtained by solving the LMI problems (25) and (26).

The controller gains have been obtained by using YALMIP

to solve the LMIs problems where µ = 50 is considered.

As presented in Figure (1), the dynamic behavior has been

affected by the actuator fault. Without fault tolerant control

approach, the controller K is not able to guarantee the

performance of the closed-loop. However, with the fault

tolerant controller gain methods ( Kf or K∗
f ), the outputs

reach their reference with a time delay due to the FDI

module (see Figure (2)). Indeed, the reliable controller K∗
f is

calculated in order to find a novel distribution of the desired

efforts that tracks the reference with an admissible behavior

and stabilizes the system taking into account the actuators

criticality. The aim is to increase the overall system reliability

by minimizing the use of the critical actuators as much as

possible.
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K (dot-dashed line), with Kf (solide line) and K

∗

f
(dashed line).
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Fig. 3. Inputs responses in the faulty case with Kf (solide line) and K
∗

f
(dashed line).

As illustrated in Figure (3), the applied load of the most

critical actuator (Actuator 1) is minimized. This implies

the increasing of the applied load corresponding to the

less critical actuators. It can be seen also that after fault

occurrence, the faulty actuator 2 for K∗
f is stressed taken into

account the fault magnitude in addition to their criticality.

The developed method preserved the critical actuators which

cause a large degradation of the residual system life time

for a large applied loads. The increasing of the overall

system reliability improves the safety of the reconfigurable

system where it can be operate until the end of the mission

with a hight reliability. As presented in Figure (4), the

probability that the system remains operational with K∗
f is

larger compared to Kf .

VI. CONCLUSION

In this paper, a novel active fault tolerant controller gain

design based on actuators criticality is proposed. Under the

presence of faults, the aim is to design an effective controller

gain where the desired efforts are applied to the system with

an overview on the overall system reliability. The solution

is performed by considering the sensitivity of the overall

system reliability in the controller gain synthesis through lin-

ear matrix inequality technique. Effective admissible model
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Fig. 4. Evaluation of the difference between the reliabilities

matching fault tolerant control is proposed and illustrated by

a flight control application. The proposed approach improves

the overall system reliability and the system dependability.
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