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Abstract— This paper is concerned with robust state-
feedback controller synthesis for discrete-time linear
periodic/time-invariant systems subject to polytopic-type
parametric uncertainties. In recent studies, some of the
authors conceived an LMI-based approach to periodically
time-varying memory controller (PTVMC) synthesis and
proved that this approach is indeed effective to get less
conservative robust controller design procedures. However,
since the peculiar controller structure requires to reset
memory to zero in a periodic way, it is pointed out that the
control performance depends on the timing of implementation.
In this paper we tackle this issue and propose a reset-less
state-feedback Periodic FIR Controller (PFIRC), which turns
out to be suitable to improve robustness on periodic and
time-invariant systems. Moreover, as a special case, a design
condition is provided for FIR-type LTI controllers that robustly
stabilize uncertain LTI systems. Numerical examples illustrate
the efficiency of the proposed approaches.
Keywords: discrete-time systems, periodic FIR controller, para-
metric uncertainties, LMI.

I. INTRODUCTION

Uncertain parameters and even some types of nonlineari-
ties in physical systems can be treated effectively by means
of polytopic uncertainties [2]. The usefulness of linear matrix
inequalities (LMIs) was suggested more than two decades
ago [3] for this study area. In this framework, the problem of
robust stabilization of uncertain linear discrete-time periodic
systems was first tackled in [9]. This work is part of the
renewed interest for periodic systems since the end of the
eighties [6], mainly due to the variety and the originality of
the possible applications. One can first recall the now classic
examples of control of vibrations in helicopters [4] as well as
autonomous orbit control [13] or the attitude control systems
of satellites equipped with magnetorquers [15].

Following this line, a synthesis condition leading to an
efficient static periodic controller for discrete-time periodic
systems is provided in [1]. Nevertheless, as mentioned in
[11], if we persist in this kind of static control law, it
should be hard to obtain a systematic single-shot LMI-
based design method that outperforms the existing results.
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Therefore, in [10], [11], it was proposed to rather consider
a new kind of periodic controller (the so-called PTVMC
for Periodic Time-Varying Memory Controller) in which
past states of the plant are kept in memory and actively
used to construct current inputs. Using the basic idea of
extended LMI proposed in [8] and [7], a particular effort
has been made to render the synthesis problem convex and
effective for handling polytopic uncertainties. However, for
the convexity requirement, stored information are required
to be reset to zero in a periodic fashion and, as pointed
out in [10], the level of robust performance depends on
this timing. This might cause several problems in practical
implementation since the designer should first determine the
timing of the resets over time instances during one period,
which is not an obvious issue in general.

In this paper, we tackle this issue and propose a reset-less
state-feedback Periodic Finite Impulse Response Controller
(PFIRC). In addition, because of the FIR structure, the
number of degrees-of-freedom increases which improves
robustness. Relying on a time-invariant representation [12],
an extended sufficient LMI-based condition of robust stabi-
lization is provided. Through a simple academic example,
the proposed controller is indeed shown to be effective for
robust stabilization of periodic systems.

Moreover, by regarding time-invariant models as N -
periodic models with constant matrices, it is shown that
PFIRCs allow to enlarge the closed-loop stability margins for
uncertain LTI systems as well. In this case, N is a tuning
parameter. Finally, as a special case, a constructive design
condition for FIR-type LTI controllers that robustly stabilize
uncertain LTI systems is provided. This is indeed beyond
reach in the existing PTVMC approach where the controllers
become inherently periodic because of the resets.

We use the following notations in this paper. The symbols
1 and 0 stand for the identity and zero matrices of appropriate
dimensions, respectively. The set of symmetric matrices and
positive-definite symmetric matrices of the size l are denoted
by Sl and Sl+ , respectively. For a real square matrix A, we
define He {A} = A + AT . The operator diag builds block
diagonal matrix from input arguments. The convex hull of
the collection of N elements A[1], · · · , A[N ] is denoted by
co
{
A[1], · · · , A[N ]

}
. Variables n and m refer to the size of

the state vector xk and the input vector uk, respectively. The
time instant q is expressed as a multiple of the period N
plus a reminder such that q = Nk + r.
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II. PFIRC SYNTHESIS FOR 2-PERIODIC MODELS

A. A new structure for periodic systems
First of all, we describe our underlying ideas for PFIRC

synthesis. For simplicity, we confine our discussion to the 2-
periodic case for the time being. The standard discrete-time
state-space description of such model is{

x2k+1 = A0x2k +B0u2k
x2k+2 = A1x2k+1 +B1u2k+1

(1)

where k = 0, 1, · · · and the corresponding classical Periodic
State-Feedback Controller (PSFC), used in [1], is

PSFC :
{
u2k = K0x2k
u2k+1 = K1x2k+1

(2)

First proposed in [10], the PTVMC enriches this control
law by allowing uq to depend, not only on the current state
xq , but also on the state history since the beginning of the
period kept in memory:

PTVMC :
{
u2k = K0,0x2k
u2k+1 = K1,0x2k+1 +K1,1x2k

(3)

The idea is to increase the number of degrees of freedom
to improve performance and robustness of the closed-loop
system. It is now a dynamic controller whose order increases
along the period. As shown in [11], its main drawback comes
from the dependency of closed-loop robustness achievement
on the timing of the resets of memory that is determined
beforehand. Indeed, another PFIRC is{

u2k = K0,0x2k +K0,1x2k−1

u2k+1 = K1,0x2k+1
(4)

which happens to be distinct of (3).
To tackle this problem, we propose to allow uq to always

depend on the complete state history over one period such
that (3) becomes the so-called PFIRC:

PFIRC :
{
u2k = K0,0x2k +K0,1x2k−1

u2k+1 = K1,0x2k+1 +K1,1x2k
(5)

This equation highlights that the PFIRC is indeed a FIR
controller with periodically time-varying coefficients.

Under this control law, (1) becomes{
x2k+1 = A0,0x2k +A0,1x2k−1

x2k+2 = A1,0x2k+1 +A1,1x2k
(6)

with
A0,0 = A0 +B0K0,0 A0,1 = B0K0,1

A1,0 = A1 +B1K1,0 A1,1 = B1K1,1
(7)

For this reason, this paper is concerned with closed-loop
periodic model described by (6) instead of xq+1 = (Aq +
KqBq)xq corresponding to the standard PSFCs.

B. Stability analysis
1) The lifted model: In order to directly apply theories

coming from the time-invariant world (or at least be inspired
by it), it is often useful to find a time-invariant representation
of periodic systems. Following this line, the peculiar periodic
model (6) is shown to be equivalent to

Eξk+1 = Aξk (8)

where

E =

[
1 −A1,0

0 1

]
, A =

[
A1,1 0
A0,0 A0,1

]
, ξk+1 =

[
x2k+2

x2k+1

]
(9)

This readily follows by rewriting (6) as

[
−1 A1,0 A1,1 0
0 −1 A0,0 A0,1

]
x2k+2

x2k+1

x2k
x2k−1

 = 0 (10)

Moreover, since E is non-singular, (6) can be reformulated
as another (and more classical) time-invariant model which
state matrix, denoted by Ψ, is

Ψ = E−1A = −
[
A1,0A0,0 +A1,1 A1,0A0,1

A0,0 A0,1

]
(11)

2) Building a suitable stability condition: The matrix Ψ
is the monodromy matrix of (6). According to [5], Schur sta-
bility of Ψ is equivalent to the stability of the periodic model
(6). Therefore, stability condition for time-invariant models
can be directly applied to Ψ. However, using this matrix
is unsuitable neither for state-feedback stabilization nor for
robust stability analysis in case of polytopic uncertainties due
to multiplications between Ai,j matrices. Consequently, an
LMI that preserves the structure of (10) is desirable. This
purpose can be achieved by first considering a dual model
of (8).

Theorem 2.1: A dual version of the model (8) is
AT ξdk+1 = ET ξdk (12)

Proof: By first multiplying (8) by E−1 on the left and
then using the usual definition of system duality, one gets

ηdk =
(
E−1A

)T
ηdk+1 (13)

which can be rewritten as

ET
(
E−1

)T
ηdk = AT

(
E−1

)T
ηdk+1 (14)

To avoid inversion of E, the change of variables ξdk =(
E−1

)T
ηdk is introduced and one gets (12).

Since duality preserves stability, the following theorem
gives a more suitable stability condition for our analysis and
synthesis purpose.

Theorem 2.2: Any model described by (8) and (9) is
stable if and only if there exists F ∈ R2n×4n and X ∈ S2n+
such that
X (X) + He

{[
A
−E

]
F
}
≺ 0, X (X) :=

[
−X 0

0 X

]
(15)

Proof: For a quadratic Lyapunov function Vk =(
ξdk
)T
Xξdk , the system (12) is stable if and only if there

exists X ∈ S2n+ such that[
ξdk+1

ξdk

]T
X (X)

[
ξdk+1

ξdk

]
≺ 0, ∀

[
AT −ET

] [ ξdk+1

ξdk

]
= 0. (16)

Thus, the end of the proof follows immediately from Elim-
ination Lemma (see [14]) which leads to (15).

Remark: By multiplying (15) by R =
[

1 AE−1
]

from
left and its transpose from right, it can be stated that (15) is
nothing but a Schur stability condition of Ψ.
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3) A robust stability condition: Let us consider now the
case where the system (1) is subject to polytopic uncertainties
as follows:[
A0 B0

A1 B1

]
∈ co

{[
A

[1]
0 B

[1]
0

A
[1]
1 B

[1]
1

]
, · · · ,

[
A

[L]
0 B

[L]
0

A
[L]
1 B

[L]
1

]}
. (17)

Controlled by a PFIRC, the closed-loop system can be
reformulated as (8) with[
E A

]
∈ co

{[
E[1] A[1]

]
, · · · ,

[
E[L] A[L]

]}
(18)

Here the definitions of E[i] and A[i] (i = 1, · · · , L) are
obvious. As these matrices appear linearly in (15), the Th 2.2
can be directly extended to the robust case by repeating
(15) for each of the L vertices of the polytope. Moreover,
to reduce the conservatism of the condition, the Lyapunov
matrix P can be allowed to depend on uncertainties. This
leads to the following sufficient robust stability condition.

Theorem 2.3: Any model described by (8), (9) and (18)
is robustly stable if there exists F ∈ R2n×4n and X [i] ∈ S2n+
such that, for i = 1, · · · , L
X (X [i]) + He

{[
A[i]

−E[i]

]
F
}
≺ 0 (19)

Obviously if (15) holds then (19) holds for constant
matrices P [i] = P . Hence, using Th 2.3 instead of Th 2.2
can only reduce the conservatism of robust stability analysis.

C. Robust stabilization of periodic systems via PFIRC
1) The nominal case: To move on to robust PFIRC

synthesis, we first consider the nominal (i.e uncertainty free)
case. Using (7), the necessary and sufficient condition for
closed-loop stability of Th 2.2 is rewritten as:

X (X) + He {(A+ BK)F} ≺ 0 (20)

where

A =


0 0
A0 0
−1 A1

0 −1

 , B =


B1 0 0
0 B0 0
0 0 B1

0 0 0

 , K =

K1,1 0
K0,0 K0,1

0 K1,0

 . (21)

Unfortunately, the bilinear term KF appearing when ex-
panding (20) makes this inequality unsuitable for controller
synthesis. To get around this difficulty, we apply the classical
change of variables W = KF . More precisely, in order to
allow the recovery of K from the knowledge of W and F ,
we propose to constraint F such that F =

[
0 G

]
with G

block diagonal. Consequently, KF is written as
[

0 Y
]

with KG = Y , where the structure of Y is inherited from K.
Theorem 2.4: Any 2-periodic model described by (1) can

be stabilized by a PFIRC if there exists G, Y and X ∈ S2n+
such that
X (X) + He

{
(AG + BY)

[
02n 12n

]}
≺ 0 (22)

with A, B and K given by (21) and G and Y such that

G =

[
G0 0
0 G1

]
, Y =

 Y1,1 0
Y0,0 Y0,1

0 Y1,0

 (23)

The controller can then be recovered by solving K = YG−1.
Proof: The proof that (22) implies closed-loop stability

follows directly by rewritingAG+BY as (A+ BK)F which
leads to (20) with F =

[
0 G

]
.

This theorem provides a sufficient condition for the
existence of stabilizing state-feedback PFIRCs. Of course
the lack of the necessity stems from the restriction F =[

0 G
]

with G being block-diagonal. Because of this
restriction, we cannot ensure that all the stabilizing PFIRCs
can be parametrized by (22).

However, we can ensure at least that (22) is always feasible
if the nominal system (1) is stabilizable. Indeed, in this case,
a stabilizing PSFC (2) exists, which is equivalent to the
feasability of the following condition [10]:

diag {−Xs, 0, Xs}+

He


A0 +B0K0 0

−1 A1 +B1K1

0 −1

 [0 G
] ≺ 0

(24)

where Xs ∈ Sn+ and G is given by (23). This clearly validates
the assertion since, if this LMI holds, then there exists ε > 0
such that
diag {−ε1,−Xs, ε1, Xs}+

He




0 0
A0 +B0K0 0
−1 A1 +B1K1

0 −1

 [0 0 G
] ≺ 0

(25)

which complies with the structure of (22) with X =
diag (ε1, Xs) ∈ S2n+ and G and Y given by (23) with
Y1,1 = Y0,1 = 0.

As clarified later on, the extra freedom introduced by K1,1

and K0,1 is effective for the robust stabilization of uncertain
systems. Hence, by relaxing Y , Th 2.4 cannot increase the
conservatism of condition (24).

2) Robust controller synthesis: We are now ready to state
the main result of this paper, namely the robust version
of Th 2.4 which readily follows with simple convexity
arguments.

Theorem 2.5: Any uncertain 2-periodic model described
by (1) and (17), can be stabilized by a PFIRC if there exists
G, Y and X [i] ∈ S2n+ such that, for i = 1, · · · , L
X (X [i]) + He

{(
A[i]G + B[i]Y

) [
02n 12n

]}
≺ 0. (26)

Here, G and Y are given by (23) and A[i] and B[i] are given
by (21) and correspond to the vertex matrices of the polytope.
The controller can then be recovered by solving K = YG−1.

In the next section, we compare the effectiveness of robust
PFIRC synthesis by this theorem with those proposed in the
literature.

III. COMPARISONS WITH OTHER ROBUST
STATE-FEEDBACK CONTROLLER SYNTHESIS

A. The PSFCs case [1]

The robust PSFC synthesis condition proposed in [1] is
shown to be equivalent to the LMI of the following theorem
[10].

Theorem 3.1: Any uncertain 2-periodic model described
by (1) and (17), can be stabilized by a PSFC if there exists
G, Ys and X [i]

s ∈ Sn+ such that, for i = 1, · · · , L
diag

{
−X [i]

s , 0, X [i]
s

}
+

He
{

(Ā[i]G + B̄[i]Ys)
[

02n×n 12n
]}
≺ 0

(27)
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Ā[i] :=

A[i]
0 0
−1 A[i]

1

0 −1

 , B̄[i] :=

B[i]
0 0
0 B

[i]
1

0 0

 , Ys :=

[
Y0 0
0 Y1

]
. (28)

where G is given by (23). The controller can then be
recovered by solving Kq = YqG−1

q (q = 0, 1).
Following the same lines as for establishing (25), we can

prove that, if (27) holds, then there exists ε > 0 such that (26)
holds with the same G0, G1 and with Y0,0 = Y0, Y1,0 = Y1,
Y0,1 = 0, Y1,1 = 0 and X [i] = diag{ε1, X [i]

s }. It follows that
the condition (26) for robust PFIRC synthesis is not more
conservative than condition (27).

B. The PTVMCs case [11]

We first remind the LMI condition for robust synthesis of
the PTVMC (4) established in [11].

Theorem 3.2: Any uncertain 2-periodic model described
by (1) and (17), can be stabilized by the PTVMC (4) if there
exists Gm, Ym and X [i]

m ∈ Sn+ such that, for i = 1, · · · , L
diag

{
−X [i]

m , 0, X [i]
m

}
+

He
{

(Ā[i]Gm + B̄[i]Ym)
[

02n×n 12n
]}
≺ 0,

Gm :=

[
G0,0 G0,1

0 G1,0

]
, Ym :=

[
Y0,0 Y0,1

0 Y1,0

]
.

(29)

The controller can then be recovered by solving[
K0,0 K0,1

0 K1,0

]
= YmG−1

m . (30)

In contrast with the case of (27), it seems hard to derive
explicit inclusion relationship among (26) and (29) since in
(29), the variable Gm is allowed to be block upper triangular.
However, similarly to (25), we can prove that if (29) holds
with Gm restricted to be block-diagonal (i.e., G0,1 = 0),
then there exists ε > 0 such that (26) holds with G0 =
G0,0, G1 = G1,0, X [i] = diag{ε1, X [i]

m } (i = 1, · · · , L)
and with the same Yi,j except for Y1,1 = 0. Therefore, the
condition (26) for robust PFIRC synthesis is at least no more
conservative than (29) with diagonal Gm.

On the other hand, as previously pointed out, the achieve-
ment of robust stabilization by PTVMCs depends on the
timing of the reset and the best choice cannot be determine
a priori. This might be problematic if the period becomes
large. In the following, we proved that it is not the case
anymore with the synthesis condition (26) leading to a
PFIRC.

Let us introduce the first Proposition 3.3 where, in relation
to (9), we define

Ẽ =

[
1 −A0,0

0 1

]
, Ã =

[
A0,1 0
A1,0 A1,1

]
. (31)

Proposition 3.3: For the two periodic system (6), suppose
there exists X ∈ S2n+ , G0, G1 such that

X (X)+He
{[

A
−E

] [
0 G

]}
≺ 0, G :=

[
G0 0
0 G1

]
.(32)

Then, there exists X̃ ∈ S2n+ such that

X (X̃)+He

{[
Ã

−Ẽ

] [
0 G̃

]}
≺ 0, G̃ =

[
G1 0
0 G0

]
.(33)

Proof: The condition (32) can be written as

[
−X 0

0 X

]
+


0 0 A11G0 0
∗ 0 A00G0 A01G1

∗ ∗ −G0 −GT
0 A10G1

∗ ∗ ∗ −G1 −GT
1

 ≺ 0.

Then, from Lemma 1 in [10], the above condition holds if
and only if there exists X̃ ∈ S2n such that[
−X 0

0 0

]
+

[
0 0

0 X̃

]
+

 0 0 A11G0

∗ 0 A00G0

∗ ∗ −G0 −GT
0

 ≺ 0,

[
0 0
0 X

]
+

[
−X̃ 0

0 0

]
+

 0 0 A01G1

∗ 0 A10G1

∗ ∗ −G1 −GT
1

 ≺ 0.

Noticing that the second inequality proves that X̃ � 0 and
eliminating X from these two inequalities by Lemma 1 in
[10], we obtain (33). This completes the proof.

This proposition implies that, if the stability of the mon-
odromy matrix Ψ is ensured by G0 and G1, then, the
stability of Ψ̃, defined by changing the starting time instance,
can be proved by the same matrices. This property holds
even for robustly stabilizing PFIRC synthesis. Therefore, the
possibility of robust stabilization is independent of the choice
of the starting time instance for defining the monodromy
matrix.

IV. EXTENSION TO THE N -PERIODIC CASE

To extend the previous results to general N -periodic case,
let us consider the following N -periodic system

xq+1 = Aqxq +Bquq, Aq+N = Aq, Bq+N = Bq. (34)

For this plant, we design a PFIRC of period N of the form

uq = Kq,0xq + · · ·+Kq,N−1xq−N+1,
Kq+N,j = Kq,j (j = 0, · · · , N − 1).

(35)

The closed-loop system can be written as

xq+1 = Aq,0xq + · · ·+Aq,N−1xq−N+1 (36)

with Aq,0 = Aq + BqKq,0 and Aq,j = BqKq,j (j 6= 0).
In this case as well, (36) can also be regarded as the time-
invariant lifted system (8) with

ξk =
[
xTkN+N · · · xTkN+1

]T
(37)

E = −


−1 AN−1,0 · · · · · · AN−1,N−2

0 −1 AN−2,0 · · · AN−2,N−3

...
. . . . . .

...
...

. . . −1 A1,0

0 · · · · · · 0 −1

 (38)

A =



AN−1,N−1 0 · · · · · · 0

AN−2,N−2 AN−2,N−1 0
...

...
. . . . . .

...
...

. . . 0
A0,0 · · · · · · · · · A0,N−1


(39)
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As far as stability analysis is concerned, Th 2.2 and its
robust extension Th 2.3 remain valid for this more general
definition of E and A. Correspondingly, Th 2.4 and Th 2.5
still hold for stabilizing PFIRCs synthesis with the following
definition of the matrices

A =



0n(N−1)×nN

A0 0 · · · 0

−1 AN−1
. . .

...

0
. . . . . . 0

...
. . . . . . A1

0 · · · 0 −1


(40)

K =



KN−1,N−1 0 · · · 0
...

. . . . . .
...

...
. . . 0

K0,0 · · · · · · K0,N−1

0 KN−1,0 · · · KN−1,N−2

...
. . . . . .

...
...

. . . . . . K1,0


(41)

Y =



YN−1,N−1 0 · · · 0
...

. . . . . .
...

...
. . . 0

Y0,0 · · · · · · Y0,N−1

0 YN−1,0 · · · YN−1,N−2

...
. . . . . .

...
...

. . . . . . Y1,0


(42)

G = diag {G0, · · · , GN−1} (43)

B = diag
{
BN−1, · · · , B0, BN−1, · · · ,

[
B1

0n×m

]}
(44)

In the general N -periodic case, inclusion relationships
among synthesis theorems established in the preceding sec-
tion still hold: if Th 3.1 or Th 3.2 with Gm restricted to be
block-diagonal holds then Th 2.5 holds. Proofs are omitted
here for conciseness.

Remark: It is worth noticing that, in the proposed PFIRC
design method, the size of the Lyapunov matrix P is equal
to Nn and hence tends to increase with N . This is in stark
contrast with the PSFC and PTVMC methods, where the size
of the Lyapunov matrix remains to be n. We believe that the
freedom introduced by the enlarged size of Lyapunov matrix
allows us to enhance robustness, at the expense of increased
computational burden.

Numerical example: To illustrate the previous results, we
use the 3-periodic problem of Example 1 of [9] as a
benchmark. The goal is to maximize a properly defined
stability margin, i.e. the allowable maximal absolute value
of an uncertain parameter.

The 3-periodic controllers are designed by using the new

controller Th. 3.2 with
diagonal G

Th. 3.2 with
upper triangular G Th. 2.5

PSFC 0.5571 - 0.5571
PTVMC 0.7715 0.9275 0.7715
PFIRC - - 0.8111

TABLE I
CLOSED-LOOP STABILITY MARGIN FOR PERIODIC MODEL

PT
V

M
C K0,0 3.1624 -2.4025 K1,0 1.4338 -2.0730

K1,1 0.2105 -0.1657 K2,0 -2.3287 -2.5145
K2,1 0.1892 0.0180 K2,2 0.0790 0.1183

PF
IR

C

K0,0 3.1597 -2.5285 K0,1 -0.3366 0.0449
K0,2 0.1687 0.0028 K1,0 1.1496 -2.1476
K1,1 -0.3840 0.1333 K1,2 -0.2062 -0.0776
K2,0 -2.8963 -2.5987 K2,1 0.1560 -0.0417
K2,2 -0.1091 0.0992

TABLE II
GAINS OF THE DESIGNED PTVMC AND PFIRC FOR THE 3-PERIODIC

MODEL

Th 2.5, leading to PFIRCs, and Th 3.2, leading to PTVMCs,
with G diagonal and then upper triangular. Robustness of
every resulting closed-loop system is evaluated by means of
the new Th 2.3 since it encompasses all previous results. We
also designed a PSFC and a PTVMC by means of Th 2.5,
which is obviously possible by appropriately restricting the
structure of Y . Results are gathered in Table I.

Note that the first two elements of the first and last
columns are equal. Indeed, we have proved that the new
Th 2.5 encompasses Th 3.2 for a diagonal G. These results
are equivalent when applied to the same control structure.
Furthermore, designing PFIRC, which can be only done by
means of Th 2.5, improves the results as it can be seen on the
last line of the last column. Finally, this table brings to light
how crucial the choice of G is. Indeed, PTVMC designed by
means of Th 3.2 with G upper triangular leads to a better
result than PFIRCs designed by means of Th 2.5 (where G
is diagonal). Designed feedback gains of the controllers are
given by Table II.

As a conclusion, designing PFIRCs is promising consider-
ing the additional number of degrees-of-freedom and the lack
of dependency on the starting point. However, robustness
obtained by means of this controller does not overcome
results of PTVMC designed with an upper triangular G.
Therefore, reduction of conservatism in PTVMCs synthesis,
obtained by relaxing G, paves the way for further works in
PFIRCs synthesis.

V. SYNTHESIS FOR LTI SYSTEM

In this section, we clarify that the suggested PFIRC
structure and the associated LMI-based design method are
promising when dealing with LTI systems as well. As nomi-
nal system stabilization can always be achieved by means of
PSFCs, it is of course meaningless to complexify the control
law in this case. However, a complete definite solution for
robust stabilization problems of polytopic uncertain systems
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N [8] Th. 3.2 with
upper triangular G Th. 2.5 Th. 5.1

1 0.9228 0.9228 0.9228 0.9228
2 - 1.0272 0.9842 0.9842
3 - 1.1587 1.1276 1.1276

TABLE III
CLOSED-LOOP STABILITY MARGIN FOR LTI MODEL

[8] is not currently available and PFIRCs give a relatively
simple way, over the existing methods, to compute dynamic
state-feedback controller robust to parametric uncertainties.

Let us consider the polytopic-type uncertain LTI system

xq+1 = Axq +Buq (45)

where[
A B

]
∈ co

{
[ A[1] B[1] ], · · · , [ A[L] B[L] ]

}
.(46)

By regarding it as an N -periodic (i.e, Aq = A,Bq = B(q =
0, · · · , N − 1) in (34)), a robust stabilizing PFIRC (35) can
be designed by means of the Th 2.5. In this case, N is a
tuning parameter.

From numerical examples shown below, we can confirm
that it is possible to reduce the conservatism of [8] by de-
signing PFIRCs. Its complicated structure is nevertheless the
price to pay for this improvement. However, by constraining
(35) to be time-invariant, Th 2.5 gives a sufficient condition
to design the following time-invariant FIR controller:

uq = K0xq + · · ·+KNxq−N (47)

Theorem 5.1: Any uncertain time-invariant model (45)
with (46) can be stabilized by the FIR state-feedback con-
troller (47) if LMI (26) in Th 2.5 with A

[l]
i = A[l],

B
[l]
i = B[l] (l = 1, · · · , L), Kj,i = Ki, Gi = G and

Yj,i = Yi for (i = 0, · · · , N − 1) is feasible. The robustly
stabilizing feedback gains of the controller is computed by
Ki = YiG

−1.

Remark: As clearly illustrated by numerical examples below,
we can prove that the LMI condition of Th 5.1 encompasses
the extended-LMI condition proposed in [8]. This is validated
easily by following a similar idea to the one used to get (25).

Numerical example: To illustrate the effectiveness of the
suggested design methods, we first solve the robust state-
feedback stabilization problem for polytopic-type uncertain
LTI systems discussed in Section 4 of [8]. By regarding the
system as N -periodic, we maximize the closed-loop stability
margin γN . Results are evaluated by means of Th 2.3 and
gathered in Table III.

As expected, when N increases, the controllers tend to
improve the stability margin obtained in [8]. Moreover, for
this example, hierarchy between synthesis theorems seems to
be [8] < Th. 5.1 = Th. 2.5 < Th. 3.2. Once again, it proves
that a trade-off has to be made between the closed-loop
robustness and the complexity of the controller. Furthermore,
it highlights the importance of the structure imposed to the
design matrix G. Finally, these results seem to show that

Th. 5.1 gives the same results as Th. 2.5 in the case of time-
invariant system. Further works will investigate this point.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed an LMI-based design method
of Periodically time-varying Finite Impulse Response state-
feedback Controllers (PFIRC). Compared to existing con-
trollers of this framework, this new control law offers more
degrees-of-freedom which contribute to reduce the conser-
vatism of the obtained stability condition. Moreover, for a
given system, the best PFIRC is obtained by solving a single-
shot LMI condition. As a special case, an extended sufficient
condition to design time-invariant FIR state-feedback con-
trollers has been provided as well.

Even though we have successfully established a basic
strategy for robust PFIRC synthesis, some issues remain
under investigation to improve the proposed design theorem.
Among them, a challenging topic is to relax somehow the
block-diagonal restriction on G, composed of additional vari-
ables, without breaking convexity of the synthesis condition.
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