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Abstract— It is well-known that the parameter estimation is
difficult in many real-world application where continuous non-
linear dynamics interact with discrete-event ones. In this paper,
we address the problem of state estimation in hybrid systems
exhibited by a mix of continuous time dynamics, discrete-
time and discrete-event dynamics. We also demonstrate that
a set of parameters is identifiable if the operating modes are
detectable and observable. An application will illustrate the
results proposed.

Index Terms— MIMO Hybrid system, state estimation, ob-
servability, identifiability, detectability, persistently exciting.

I. INTRODUCTION

The question of identifiability is central to system iden-

tification [1], as it sets the boundaries of applicability of

any system identification method. In other words, no system

identification algorithm can properly estimate the parameters

of a system which is not identifiable. For instance, in power

systems [2], system-wide measurements of disturbances are

frequently used in post-mortem analysis to gain a better

understanding of system behaviour [3].

For the hybrid dynamical systems (HDS), the parameter

estimation is one more complex task due to the interactions

between continuous (smooth or none) and discrete dynamics

[4], [5], [6]. Therefore, two alternative approaches is dis-

tinguished in the literature for HDS: either the operating

conditions are fixed a priori, or they are estimated both with

the sub-models. In the first case, finding a model representing

the behavior of the system by observing a set of input-output

data is straightforward, because data classification is easy to

build, and estimation of the sub-models can be carried out

by standard linear identification techniques as it shown in

[8] and also argued in [9]. In the second case, the regions

must be shaped to the clusters of data, and the strict relation

among data classification, parameter estimation and regions

for estimation must be verified.

In the literature we can find two subclasses of models to

approximate continuous phenomena in nonlinear dynamics,

namely Hinging hyperplanes ARX (HHARX) [12], [11],

[7], and Piece Wise ARX (PWARX) models. These can be

also solved via Mixed-Integer Linear Programming/ Mixed-

Integer Quadratic Programming (MILP/MIQP) [13].

In this paper, a hybrid system defined by a set of linear

continuous model interconnected with discrete event atomic
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model is proposed and analyzed for observation and identi-

fication of nonlinear hybrid and/or switched systems (figure

1). The first model is necessary to describe the continuous

dynamical of the real process and the second one is used to

identify the operating modes of global system. So, we focus

on the identifiability and state reconstruction.

Fig. 1. Hybrid Complex System Representation

This paper is organized as follows. Section 2 introduces

the class of hybrid systems which interests us and reports

several formulations of the identification problem for each

model which defines the real process. Section 3 presents the

parameter estimation procedure adopted for the class of the

system considered. Section 4 discusses on the observability

and identifiability of each sub-model. Section 5 gives some

experimental results for the identification of an greenhouse

system. Conclusions are given in Section 6.

II. HYBRID DYNAMICAL SYSTEM MODELS

It is well-known that hybrid dynamical systems are sys-

tems composed of several sub-systems interconnected, in-

troducing correlations, being subjected to commutations or

to transitions (continuous or discrete). So, we can suggest

some structures for the sub-models and nonlinear functions

combining commutations and switching between structures.

Then we have to define some methods for supervision and

control of the main partial models. In this case, several

simple sub-models (SSmi
), defined by the following relations,

needs to identify :

SSmi
:

{

x(k+ 1) = fmi
(x,u,w,k), k ∈R

y(k) = gmi
(x,k)

, (1)

for mi = 1,2, ...s and that each one of these models is valid in

some state subspaces Ωmi
⊂R

n. u, y and w is respectively the

set of input, output and noise term of the system. k defines

the discrete time.

Let’s consider that the nominal behavior of this system is

driven by multiple models orchestrated by events governing

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 5455



by system operation. This corresponds to some operating

conditions for the main components or sub-systems in co-

ordination of the discrete events. Thus, equation (1) can be

writting as follows :

SSmi
:







x(k+ 1) = fmi
(x,u,w,k), k ∈ R

y(k) = gmi
(x,k)

mi = 〈Mode, I,O,δint ,δext ,λ , ta〉
, (2)

where: fmi
and gmi

are non linear functions, Mode is the set

of sequential operating modes. I is the set of external events.

O is the set of internal events. δint : Mode → Mode is the

internal state transition function. δext : Mode−× I → Mode+
is the external state transition function. λ : Mode → O is the

output function and ta is the time advance function.

In the linear and stationary cases, the class of studied

system is composed by three elements. The first one is a set

of behavioral linear models, the second one is a transition

or commutation device and the last one is a discrete events

supervisor managing the different commutation or transition.

This choice allows the relaxation of the partitioning num-

ber of the state-space (studied in [8]) thanks to the use of

discrete events atomic models, and increase the possibility of

deal with multi-variable inputs and outputs using a piecewise

affine models in state-space form. These coupled models can

be described by the following relations :







x(k+ 1) = Ami
x(k)+Be

mi
e(k)+Bw

mi
w(k)+ v(k)

y(k) = Cmi
x(k)+De

mi
e(k)+Dw

mi
w(k)+ µ(k)

mi = 〈Mode, I,O,δint ,δext ,λ , ta〉
, (3)

where v(k) ∈ R
n and µ(k) ∈ R

p are noise/error terms. w(k)
is the input which define the external environment. The real

matrices/vectors Ami
,Be

mi
,Bw

mi
,Cmi

, De
mi

and Dw
mi

, with appro-

priate dimensions, describe each affine dynamics. Mode is

the operating modes of the system (i.e. the operating zone

where each sub-model is available). The discrete system is

in Modemi
when operation is in the region Ωmi

. I is the

set of input event values (i.e. all the values that input event

can take). The events may be considered as defined by state

x(k) of the system and any internal x(k)-dependent variable.

Then, events depend on input values of the mi associated

to valid model noted I(k) [5]. As consequence, the validity

domain Ωmi
depends also on this input. O is the set of output

event values. λ is the output function which warrants the

activity execution. δint is the internal transition function. It

ensures mode switches when no exogenous events come out

before elapsed time ti and time advance of this mode ta

[14] : Mode j = δint(Modei, ti+ ta). δext is the external transit

function. This function is used when exogenous events come

out [14] : Mode j = δext(Modei, ti, Ii).

Here, one see that the hybrid nature of this structure

requires at each time instant to determine the active local

model, estimation of the time switching between two local

models, estimation of the current state of the system. Thus,

new forms of analysis like observability, and identifiability

[15] is necessary because discrete changes are not handled

well by continuous algorithm.

III. IDENTIFIABILITY OF HDS

This section addresses the problem of state estimation

with the structure defined by the expression (3). Let’s recall

that for behavioral modeling, it is important to know if the

structure is well defined, in other words, all the parameters

in the model can be estimated accurately with data provided

[21]. In the sequel, this observation is now formalized in

terms of model identifiability.

Furthermore, it is well-known that the identifiability prop-

erty is based on the observability one. But the verification

of the observability property is another challenging problem

[26], [27] due to the complex interactions between the

discrete and continuous behavior exhibited by hybrid systems

[10] [17] [18]. Thus, in the following paragraph, we define

identifiability for HDS and we discuss its relationship with

discrete state observations and continuous state output.

A. Discrete State Observability

To check the discrete state observability the following

notions is introduced.

Definition 1: A discrete state is observable if the current

continuous state can be determined uniquely from the current

continuous state output and either the last or next event (resp.

Mode− or Mode+).

Thus, assume that:

Definition 2: The set of all operating modes R
p
Ii

where the

system can evolve after an event is defined by

R
p
Ii
= {Modei ∈ Mode | ∀Mode j ∈ Mode,

∃Ii ∈ Ξ, Mode j = δext(Modei, ti, Ii)}

Definition 3: The set of all operating modes Rn
I j

represent-

ing all operating modes reached within an event is defined

by

Rn
I j
= {Mode j ∈ Mode | ∀Modei ∈ Mode,

∃I j ∈ Ξ, Mode j = δext(Modei, ti, Ii)}

so,

Proposition 1: the discrete event model is observable if:

(i) λ (Modei) 6= λ (Mode j) if Modei ∈ δext(Modei, ti, Ii)
with i 6= j, and

(ii)
∣

∣

∣
Mode∩R

p
Ii

∣

∣

∣
= 1, i.e the previous event is available.

(iii)
∣

∣

∣
Mode∩Rn

Ii

∣

∣

∣
= 1, i.e the next event is available.

(iv)
∣

∣

∣
R

p
Ii
∩Mode∩Rn

Ii

∣

∣

∣
= 1 i.e the next and the previous

events are available.

Proof: The first condition states that the unobservable

events can be detected and thus validates that the current

state output and the last (or the next) event are available

to determine current state. If condition (ii) (resp. (iii),(iv))
is true, there is only one state which has the current state

output is reachable through the last event. Thus, the current

state can be uniquely reconstructed.
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B. Persistent Mode and Detectability

We have seen that all operating modes can be detected

(observable modes and/or unobservable modes). Now, if the

sequence of discrete mode and switching times are observed

and switching signal has suitable large dwell time, then the

linear switched systems can be identified by identifying each

linear subsystem separately. Therefore, it is well-known that

the input/output signals, classified into the mode Modei, must

be changed sufficiently in order to excite the system for the

identifiability of each sub-system. This observation can be

associated with detectability notion of a persistent mode.

Thus, we characterize this notion as follows for the class

of system defined by the expression (3).

Definition 4: A persistent operating mode is detectable if

we can determine, after a finite number of switching signal

observations, the current continuous state of the system for

some trajectories of the system.

However, before deriving the Persistent Excitation (PE)

constraint for the class of system considerate, some defini-

tions on excitation of input signals are given.

Definition 5: A scalar input signal u is strongly persis-

tently exciting for order n if for all k there exists an integer

T such that

ρ1I >
k+T

∑
i=k











ui+n

ui+n−1

...

ui+1





















ui+n

ui+n−1

...

ui+1











′

> ρ0I, (4)

where ρ0,ρ1 > 0

Definition 6: A scalar input signal u is weakly persistently

exciting for order n if

ρ1I ≥ limN→∞
1

N

N

∑
i=1











ui+n

ui+n−1

...

ui+1





















ui+n

ui+n−1

...

ui+1











′

≥ ρ0I, (5)

where ρ0,ρ1 > 0

According to the definition 5, a suitable constraint for

MIMO-HDS is derived. The implementation is a priori

straightforward as follows:

ρ1I >Cmi =
m

∑
i=1

Nmi

∑
j=0











umi
i, j+n

umi
i, j+n−1

...

umi
i, j+1





















umi
i, j+n

umi
i, j+n−1

...

umi
i, j+1











′

> ρ0I, (6)

where ρ0,ρ1 > 0. So if the input u is bounded, there always

exists a positive scalar ρ1, so equation (6) is equivalent to:

Cmi =
m

∑
i=1

Nmi

∑
j=0











umi
i, j+n

umi
i, j+n−1

...

umi
i, j+1





















umi
i, j+n

umi
i, j+n−1

...

umi
i, j+1











′

> ρ0I, (7)

and in a more compact form, we can write :

Cmi =
m

∑
i=1

Nmi

∑
j=0

ΦmiΦ
′
mi > ρ0I, (8)

In this equation, m defines the number of the input variable.

Well, to tackle with extended PE constraint for HDS, we can

formulate the following proposition:

Proposition 2: Each persistent operating mode mi is de-

tectable, according to the excitation input signal u if:

(i) the discrete event model is observable,

(ii) there exists an integer ρ0 > 0 such that

Cmi =
m

∑
i=1

Nmi

∑
j=0

ΦmiΦ
′
mi > ρ0I,

is satisfied.

Proof: This proposition relates the possibility to re-

construct each model associated to each operating mode. In

fact, if first condition (i) is satisfied, all operating modes

are observable and guaranteed the exact reconstruction of

the continuous state. The second condition (ii) states for

persistently of whole operating modes, in other words the

experimental data contains enough information about the

dynamics of the system. Otherwise, a small-scale model can

be defined to preserve the detectability and observability

while eliminating modes not feasible.

C. Continuous State Observability

In this section, we consider observability properties re-

garding the continuous model. To verify this properties, we

recall main results given in [10] [17] [18].

A switching system is observable if:

Theorem 1: (C(k)−C(k′))A(k) is full rank for all k 6= k′ ∈
{1, ...,N} and the dwell time τk ≥ ε for all k ≥ 0, then the

initial state the switching times are observable if and only if

for all k 6= k′ ∈ {1, ...,N} we have rank([Oε (k) Oε(k
′)]) =

2n.

Unfortunately Bemporad [7] shows through counterexamples

that observability properties cannot be easily deduced. Thus,

an extension of this theorem is give in [25] to ensure

the exact reconstruction of the state. This is based on the

detectability and observability notion.

Theorem 2: A switching system is observable if the fol-

lowing conditions are satisfied:

(i) S(qi) is observable for any qi ∈ Q

(ii) ∀p ∈ Ω(γ),∀qi,q j ∈ γ−1(p),∃k ∈ N∪{0} : CiA
k
i Bi 6=

C jA
k
jB j

Theorem 3: A switching system is detectable if the fol-

lowing conditions are satisfied:

(iii) ∀p ∈ Ω(γ),∀qi,q j ∈ γ−1(p),∃k ∈N∪{0} :

Ci1Ak
i11Bi1 6=C j1Ak

j11B j1

(iv) for all initial states

(

ξ0

q0

)

∈Oi×Q, i ∈ J, and for any

ε > 0, there exist t > t0 such as ‖ξ (t, j)‖ ≤ ξ for any t ≥ t.

With regard to the linear state-space model, the reconstruc-

tion of the continuous state puts down on the observability

of the different behavioral models. Therefore,
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Proposition 3: the continuous state is observable if :

(vi) all linear sub-models are observable,

(vii) observability matrices (On) are full rank.

By combining three propositions (1), (2), (3), one gets the

following results on the observability and identifiability of

the global system.

For the class of the system considered, with the assump-

tion that the dwell time in operating mode must be a positive

number tek ≥ ε for all k ≥ 0. [16] :

Proposition 4 (Globally identifiable from measurements):

A model M defined by Mi, i = 1, ..,s is globally identifiable

at (A∗
mi,B

∗
mi,C

∗
mi,D

∗
mi) from measurements (u,y) if and only

if:

(1) each persistent operating mode is detectable,

(2) the switching system is observable.

Proof: The first condition states the observability and

detectability of a discrete state, is equivalent to verify the

observability of discrete event model and the detectability of

a persistent operating mode. The second condition is asso-

ciated to the observability of continuous state and validate

that the whole operating modes are observable, detectable

and guaranteed the exact reconstruction of the continuous

state.

IV. EXPERIMENTAL RESULTS

In this section we give some results about the green-

house identification. This greenhouse is equipped with many

sensors which allow to measure the external and internal

temperature, Te and Ti, (data expressed in oC), the external

and internal hydrometry He and Hi (data expressed in %),

the wind velocity Vv (data expressed in m/s) and the global

radiation Rg (data expressed in W/m2 ). Moreover, many

actuators allow to act on the heating Ch, the roofing Ov,

the moistening Br and the shutter Rd. We consider one day

of March to identify all parameters. Therefore, from expert

knowledge and with a data analyse, we retain the variables

Rg and Vv like descriptive variables of the environment

where our system evolves. The choice of these variables

have been done in previous work [19], [20]. Moreover, these

variables are necessary to construct transition table I which

used for the discretization of the descriptive variables.

TABLE I

ENVIRONMENT SPECIFICATION DISCRETIZATION (R1 = 7.73m/s,

R′
1 = 120W/m2 ET R2 = 250W/m2)

X
X
X
X
X
X
XX

Input
Values

Lower Middle Upper

V v ≤ R1 − > R1

Rg ≤ R′
1 > R′

1 and ≤ R′
2 > R′

2

Furthermore, the wind speed will take the following values

Vv = {VvL,VvU} which are respectively Lower and U pper

values of Vv while the global radiation of the sun will

take Rg = {RgL,RgM,RgU} which are respectively Lower,

Middle and U pper values of Rg. The combination of the

descriptive variables values Rg et Vv allows us to have 6

operating modes which are in table II.

TABLE II

DISCRETE OPERATING MODES OF THE GREENHOUSE SYSTEM.

Mode Phase Input values

Mode1 NightWindLight I1 = {RgL,V vU}
Mode2 NightWindStrong I2 = {RgL,V vL}
Mode3 BreakWindLight I3 = {RgM,V vU}
Mode4 BreakWindStrong I4 = {RgM,V vL}
Mode5 DayWindLight I5 = {RgU,V vL}
Mode6 DayWindStrong I6 = {RgU,V vU}

• All operating modes are defined by: Mode =
Mode1,Mode2,Mode3,Mode4,Mode5,Mode6.

• The input variables defined by the set I =
{I1, I2, I3, I4, I5, I6}, associated respectively by the

input events set

ev = {ev1,ev2,ev3,ev4,ev5,ev6}.

• The set of corresponding output events is described by

O = {O1,O2,O3,O4,O5,O6}.

Fig. 2. Atomic Discrete Events Model.

The sub-models are in three categories : day, night, and

daybreak. In each category they are two classes : Cold

and Fresh. This leads to six sub-models associated with

six operating modes. The atomic model associated with

this system is illustrated in the figure (2). The simulation

done with the discrete events atomic model allows us to

check the detectability and observability of all operating

modes of the system and the corresponding time range

(figure(3)). This result shows us a priori that our system

is completely observable (resp. identifiable). To according

Fig. 3. Observability and Detectability Analysis with 6 Operating Modes.
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2  

3  

4  

5  

6  
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Switching sequence

Detectability?
Observability?

with proposition (4) given in the last section, our system

looses its observability for several not persistently operating

modes. For instance, modes 6, 3 and 1. However, a small-

scale model can be defined to preserve the observability and

the identifiability while eliminating modes not feasible.
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Therefore, the discreet events atomic model is

composed of operating modes defined by Mode∗ =
{

Mode∗1,Mode∗2,Mode∗3
}

, input variables defined by the set

I∗ =
{

I∗1 , I
∗
2 , I

∗
3

}

associated respectively by the input events

set ev∗ =
{

ev∗1,ev∗2,ev∗3
}

and the set of output events is

described by O∗ =
{

O∗
1,O

∗
2,O

∗
3

}

. The combination of the

descriptive variables values Rg et Vv allows us to have in

this case 3 persistent operating modes which are in table

III.

TABLE III

NOVEL DISCRETE MODE DESIGNATION OF THE SUPERVISION DEVICE

Mode Phase Input variable

Mode∗1 FreshNight I∗1 = {RgL,V vL}
Mode∗2 FreshDaybreak I∗2 = {RgM,V vL}
Mode∗3 ColdDay I∗3 = {RgU,V vL}

Thus, we have the following models for each mode as

illustrated in figure 4.

Fig. 4. Atomic Discrete Events Model with Observability and Identifiability
Constraints.

Now, we can identify the continuous dynamical models

parameters according to the algorithm described above. The

switching sequence used for the parameter estimation proce-

dure is illustrated in figure 5 where the persistent operating

modes are detectable.

Fig. 5. Equivalent Operating Modes Commutation for the Identification
Procedure.
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The identification result is given by the following:

for the mode: Mode∗1

AMode∗1
=

[

−0.2128 0.0819

0.1259 −0.2162

]

; CMode∗1
=

[

1 0

0 1

]

;

Bu
Mode∗1

=

[

0.1469 0 0 0

−0.1480 0 0 0

]

;

Bv
Mode∗1

=

[

0.0848 −0.0679 −0.1323 0

0.0109 0.1365 0.1780 0

]

;

for the mode : Mode∗2

AMode∗2
=

[

−0.2694 −0.3000

0.3795 −0.4274

]

; CMode∗2
=

[

1 0

0 1

]

;

Bu
Mode∗2

=

[

0 0 0 0

0 0 0 0

]

;

Bv
Mode∗2

=

[

0.3946 0.3160 −0.0630 0.1335

0.5616 0.6740 −0.1797 −0.9603

]

;

and for the mode : Mode∗3

AMode∗3
=

[

−0.3235 −0.0513

−0.2581 −1.1357

]

; CMode∗3
=

[

1 0

0 1

]

;

Bu
Mode∗3

=

[

0 −0.1304 −0.2003 −0.1020

0 0.5993 −0.5851 0.0743

]

;

Bv
Mode∗3

=

[

0.3186 0.1036 −0.0076 0.2572

0.9125 0.9130 0.2010 −0.1596

]

;

In the experimentation, we have considered three days of

March whose behaviors are not similar to validate our mod-

els. The figure 6 gives us the result of simulation between

the internal temperature and hydrometry of the estimated

and measured values. For the same way, we can show

the effectiveness of this approach, in modeling case while

considering only 3 modes where our system is observable

and detectable. The performance is given by

VAF = 1−
var(y(k)− ŷ(k))

var(y(k))
∗ 100, (9)

and if we compare the performance between the hybrid

dynamical model and a single global model we obtain the

following results (Table IV):

TABLE IV

PERFORMANCE INDEX FOR PARAMETERS ESTIMATION

Used model VAF-11 March VAF-12 March VAF-15 March

Hybrid model 80.9783 47.0203 79.6342

Single model 63.0511 0 74.3790

To talk about of the observability, one verify if Ci ∗Ak
i ∗

Bi 6=Ci∗ ∗Ak
i∗ ∗Bi∗ .

C1 ∗Ak
1 ∗B1 C2 ∗Ak

2 ∗B2 C3 ∗Ak
3 ∗B3

k = 1 0.0071 0 0.1466

k = 2 −0.003 0 −0.092

k = 3 0.001 0 0.0824

k = 4 −0.000337 0 −0.0876

To conclude our investigation about the observability anal-

ysis, it is necessary to check the rank of the observability

matrix of each mode. One gets rank(On
mi) will be always

equal to the sub-space dimension of the observable state n=
2. Thus, the system is locally observable and also globally

observable between switching sequence.

V. CONCLUSIONS

In this paper an approach to modeling a MIMO hybrid

dynamical system is proposed. The class of system is defined

by an interconnection between discrete atomic model with a
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Fig. 6. Modeling and Identification Validation.
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set of state-space linear models. The atomic model is used

to identify the operating modes where the system evolves,

and the state-space linear models to approximate continuous

phenomena in a nonlinear and not stationary dynamical

system.

Also, the parameter estimation procedure is addressed for

the class of system considered. Observability and identifia-

bility properties are discussed and some results are shown to

recover a best fitting and persistently model from data. Re-

sults obtained on the experimental greenhouse demonstrate

the effectiveness of the methodology.
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