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Abstract— This paper presents a methodology to detect the
origin of closed-loop performance degradation of model-based
control systems. The approach exploits the statistical hypothesis
testing framework. The decision rule consists of examining if an
identified model of the true system lies in a set containing all
models that fulfill the closed-loop performance requirements.
This allows us to determine whether performance degradation
arises from changes in system dynamics or from variations
in disturbance characteristics. The probability of making an
erroneous decision is estimated a posteriori using the known
distribution of the identified model with respect to the unknown

true system.

I. INTRODUCTION

The life time performance of model-based control systems

such as model predictive controllers and real-time dynamic

optimizers is often limited. This primarily arises from the

quality of their underlying models that affect the closed-loop

performance. Models are almost always prone to plant-model

mismatch. In addition, various changes typically occur in

system dynamics over time that may increase the mismatch

and consequently invalidate the models identified at the

commissioning stage of these control systems.

Performance monitoring and diagnosis comprises a crucial

step in maintenance of model-based control systems. In the

event of performance degradation, diagnostic tools should

allow us to verify if the unsatisfactory closed-loop operation

results from plant-model mismatch. Hypothesis testing can

be utilized to assess whether an observed deviation from

nominal performance is due to a system change and/or

variations in disturbance characteristics. Hypothesis testing

is a classical statistical methodology to make a decision

between contradictory hypotheses by comparing their likeli-

hood of occurrence [10]. The foundations of research on the

use of hypothesis testing for performance diagnostics have

primarily been laid by Basseville and her coworkers, who

proposed a systematic approach for on-line fault detection

and isolation; see [2] and the references therein. Huang and

Tamayo [9] extended the so-called asymptotic local approach

presented in [3] by deriving a new detection statistic for on-

line model validation of model predictive control systems.
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Gustafsson and Graebe [8] were first to highlight the

need to detect control relevant system changes in closed-

loop operation and to distinguish them from variations in

disturbances. They applied hypothesis testing to examine

whether an observed performance degradation results from a

system change that has deteriorated the closed-loop stability

margins. A new closed-loop stability criterion was defined in

order to use a standard CUSUM change detector. Owing to

the deterministic nature of disturbances, explicit expressions

were derived for the probability of mistaking a disturbance

for a system change. Recently, Badwe et al. [1] proposed a

different methodology for detection and isolation of plant-

model mismatch based on the analysis of partial correla-

tions between the model residuals and system inputs. The

approach is applicable to MIMO systems. It can however be

used when it is decided that the root-cause of poor closed-

loop performance is significant plant-model mismatch.

This work presents a novel approach to address the prob-

lem of closed-loop performance diagnosis. Similar to [8], the

statistical hypothesis testing framework is applied to detect

whether performance degradation originates from control

relevant system changes or from variations in disturbance

characteristics. We exploit prediction error identification to

define a decision rule based on which the hypotheses are

distinguished. In contrast to [8], the presented approach is

capable of dealing with stochastic disturbances.

In the proposed performance diagnosis methodology, we

identify a model G(z, θ̂N ) of the true system G0(z) using

input-output data collected from the existing closed-loop

system. The decision rule consists of examining whether the

identified model lies in the set Dadm containing all models

G(z) that result in a satisfactory closed-loop performance. In

case that the identified model does not lie in Dadm, we decide

that the observed performance degradation is due to a change

in the system dynamics. On the contrary, the deviation from

nominal performance arises from variations in disturbance

characteristics when G(z, θ̂N ) ∈ Dadm. The decision rule

may however lead to erroneous decisions since G(z, θ̂N )
is only an estimate of G0(z). Thus, different procedures

are proposed to estimate a posteriori the probability of

making a wrong decision. For this purpose, we utilize the

known distribution of the identified model with respect to

the unknown true system.

II. THE PERFORMANCE DIAGNOSIS

METHODOLOGY

The key objective of the performance diagnosis methodol-

ogy presented in this paper is to detect whether an observed
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closed-loop performance deterioration is due to control rel-

evant system changes or due to variations in disturbance

characteristics. This is not necessarily the same as on-

line model validation and detection of any changes in the

system dynamics. We therefore aim to assess the closed-loop

performance instead of directly evaluating the model quality.

In this work, we analyze the performance of the closed-

loop system depicted in Fig. 1. Our attention is restricted to a

stable linear time-invariant single input single output system.

The true system is represented as:

y(t) =

G0(z)
︷ ︸︸ ︷

G(z, θ0)u(t) +

v(t)
︷ ︸︸ ︷

H(z, θ0)e(t), (1)

where θ0 ∈ R
k is an unknown parameter vector; e(t) is

a white noise with variance σ2
e ; G(z, θ0) and H(z, θ0) are

stable discrete-time transfer functions. Note that H(z, θ0) is

assumed to be monic and minimum-phase. In Fig. 1, r(t)
represents an excitation signal used for identification.

The performance of a closed-loop system can be expressed

in various ways. We adopt the following performance mea-

sure for a stable closed-loop system made up of a system

G(z, θ) and an existing controller C(z):

J(G, C, Wl, Wr) = sup
ω

J̄(ω, G, C, Wl, Wr) (2)

with

J̄(ω, G, C, Wl, Wr) = σ̄
(
Wl(e

jω)F (G(ejω),C(ejω))Wr(ejω)
)

F (G, C) ,

(
GC

1+GC
G

1+GC
C

1+GC
1

1+GC

)

,

(3)

where σ̄(A) denotes the largest singular value of A; Wl(z)
and Wr(z) are chosen diagonal performance weighting fil-

ters. It is evident that J(G, C, Wl, Wr) ≤ 1 ensures that

the four entries of Wl(z)F (G, C)Wr(z) have an H∞-norm

smaller than or equal to one. Note that Eq. (3) gives the

most general form of the adopted performance measure. The

performance filters can be selected such that the performance

measure is expressed as a weighted function of C
1+GC

or
1

1+GC
. The latter transfer functions relate the disturbance

v(t) to the system input u(t) and system output y(t),
respectively.

The weightings Wl and Wr are chosen at the com-

missioning stage such that any loop [C G] achieving

J(G, C, Wl, Wr) ≤ 1 is able to reject adequately the distur-

bance v(t). This is to ensure that signals u(t) and y(t) have a

sufficiently small variance in the presence of the disturbance

v(t) to fulfill some pre-specified requirements.

The controller C(z) in the closed-loop system of Fig. 1

has been constructed based on the knowledge of system

dynamics at the commissioning stage. The controller C(z)
stabilizes G0(z) and ensures the nominal performance level:

J(G, C, Wl, Wr) ≤ 1 (4)

with G = G0(z). The loop [C G0] at commissioning thus

exhibits a satisfactory performance in terms of coping with

the disturbance v(t).

To present our performance diagnosis methodology, we

first introduce the sets Dadm and VJ .

Definition 1 : Given the existing controller C(z), the region

Dadm is the set of all transfer functions G(z) that are

stabilized by C(z) and achieve the nominal performance

J(G, C, Wl, Wr) ≤ 1.

Definition 2 : The set VJ contains the power spectrum

Φv(ω) of all disturbances v(t) which are sufficiently rejected

by all loops [C G] satisfying J(G, C, Wl, Wr) ≤ 1. The

disturbance v(t) is deemed to be sufficiently rejected by

a loop if the corresponding input and output signals have

a reasonably small variance in accordance with the pre-

specified requirements.

At the commissioning stage, the controller C(z) ensures

that G0 ∈ Dadm and Φv(ω) ∈ VJ . In the course of operation,

situations may arise that the system dynamics G0(z) and/or

the disturbance spectrum Φv(ω) change. In the event of an

observed performance drop, i.e. an increase in the variance of

input and output signals, one of the following two scenarios

holds:

1) the system dynamics G0(z) remains in Dadm which

implies that the disturbance spectrum Φv(ω) no longer

lies in VJ ;

2) the system dynamics G0(z) moves outside Dadm.

Therefore, the detection problem under study in this paper is

to decide which one of the following hypotheses holds when

a performance drop is observed:

H0 : G0(z) ∈ Dadm

H1 : G0(z) /∈ Dadm.
(5)

In a nutshell, the hypothesis test can be restated as:

H0 : performance drop does not result from changes in G0(z)

H1 : performance drop results from changes in G0(z).
(6)

Remark: Under the null hypothesis H0, the system dy-

namics G0(z) is not necessarily the same as that at com-

missioning, but the eventual changes in G0(z) do not lead

to a degraded performance level, i.e. J(G0, C, Wl, Wr)
remains smaller than or equal to 1. On the contrary,

J(G0, C, Wl, Wr) > 1 under the alternative hypothesis.

When H1 is true, the disturbance spectrum may not be

identical to that at the commissioning stage as Φv(ω) might

have also moved outside VJ . In this case, we could consider

a subsequent hypothesis test distinguishing between Φv(ω) ∈
VJ and Φv(ω) 6∈ VJ . This hypothesis test can be performed

in a similar way as discussed in this paper.

C G0
+ ++

-

0

r(t)

u(t)

v(t)

y(t)

Fig. 1. The closed-loop system [C G0].
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To be able to discriminate between the two hypotheses in

Eq. (5), an identification experiment is performed in closed-

loop with the existing controller to identify a model of the

unknown true system G0(z). The identification experiment

consists of exciting the system with a sequence r(t) (t =
0 · · ·N−1), as depicted in Fig. 1, and generating for instance

the data set ZN = {u(t), y(t) | t = 0 · · ·N − 1}. It is

assumed that we can construct a full order model structure

M = {G(z, θ), H(z, θ)} such that θ0 is the only value of

the parameter vector for which {G(z, θ), H(z, θ)} represents

the true system. The identified parameter vector θ̂N can then

be defined as:

θ̂N = arg min
θ

1

N

N−1∑

t=0

ǫ2(t, θ), (7)

where ǫ(t, θ) = H(z, θ)−1(y(t) − G(z, θ)u(t)). Provided

that N is sufficiently large, θ̂N is asymptotically normally

distributed around the true parameter vector θ0. This suggests

that θ̂N ∼ N (θ0, Pθ) with Pθ being a strictly positive definite

matrix:

Pθ =
σ2

e

N

(
E
[
(
∂ǫ(t, θ)

∂θ
|θ0

)(
∂ǫ(t, θ)

∂θ
|θ0

)T
])−1

, (8)

which can be estimated from θ̂N and ZN [11].

We use the identified model G(z, θ̂N ) to determine the

most likely hypothesis. The decision rule that allows us to

decide between H0 and H1 is formulated as:

G(z, θ̂N ) ∈ Dadm ⇒ choose H0

G(z, θ̂N ) /∈ Dadm ⇒ choose H1.
(9)

A decision rule is typically characterized by probabilities that

quantify the probability of making wrong and right choices.

Fig. 2 illustrates the two possibilities of making an erroneous

decision in the decision rule stated in Eq. (9). As can be seen,

there is a risk that we opt for H0 while the true system G0(z)
does not lie in Dadm. Clearly this is a wrong decision as the

closed-loop performance degradation arises from changes in

the system dynamics, whereas we have attributed the cause

of deviation from the nominal performance to variations in

Φv(ω). On the other hand, H1 might be chosen erroneously

when in effect Dadm includes the true system G0(z) as

shown in Fig. 2(b). This is also a wrong decision since the

system dynamics are not responsible for the performance

deterioration.

To assess the quality of our decision a posteriori, we

first use the confidence region that is constructed based on

θ̂N ∼ N (θ0, Pθ). The confidence region D(θ̂N , Pθ) is a

set of systems G(z, θ) centered around the identified model

G(z, θ̂N ). The set contains the unknown true system G0(z)
at a pre-specified probability level α [7]:

D(θ̂N , Pθ) =
{
G(z, θ) | θ ∈ U,

U = {θ | (θ − θ̂N )T P−1
θ (θ − θ̂N ) < X}

}
.

(10)

In Eq. (10), X is a real constant such that

Pr(χ2(k) < X ) = α, (11)

)

(a) (b)

Fig. 2. The possibilities of making an erroneous decision in the decision
rule stated in Eq. (9).

where χ2(k) is a chi-square distribution with k degrees of

freedom. In fact, D(θ̂N , Pθ) comprises a set of transfer func-

tions that are parameterized by the real vector θ belonging

to an uncertainty ellipsoid. In case we can verify that for

instance not only G(z, θ̂N ) lies in Dadm, but also the whole

set D(θ̂N , Pθ) is within Dadm, the confidence in our choice

of H0 will at least be equal to the probability level α. This

test can be performed by computing the so-called worst and

best case performance achieved over all closed-loop systems

made up of the existing controller C(z) and the systems

lying in D(θ̂N , Pθ).
Definition 3 : Consider an uncertainty set D(θ̂N , Pθ) of

the parameterized transfer functions G(z, θ). For the exist-

ing controller C(z), the worst and best case performance

achieved over all systems in D(θ̂N , Pθ) are defined as:

JWC(G, C, Wl, Wr) = sup
ω

J̄WC(ω, G, C, Wl, Wr) (12)

and

JBC(G, C, Wl, Wr) = sup
ω

J̄BC(ω, G, C, Wl, Wr), (13)

respectively, where

J̄WC(ω, G, C, Wl, Wr) = max
G(z,θ)∈D

J̄ (ω,G,C,Wl,Wr) (14)

J̄BC(ω, G, C, Wl, Wr) = min
G(z,θ)∈D

J̄ (ω,G,C,Wl,Wr). (15)

A procedure to compute the worst and best case performance

is described in Section III.

Since G0(z) ∈ D(θ̂N , Pθ), the worst and best case

performance represent a lower bound and an upper bound for

the closed-loop performance achieved with the true system,

respectively. These bounds allow us to assess the probability

of making a wrong decision by examining whether the worst

and best case performance satisfy the nominal performance

level, i.e. J(G, C, Wl, Wr) ≤ 1. Hence, we define the

following likelihood measure on the basis of the decision

rule given in Eq. (9):

If H0 is chosen, verify JWC ≤ 1

If H1 is chosen, verify JBC > 1.
(16)

In case that the above measure holds for the chosen hy-

pothesis, the probability of making a correct decision is at

least α, i.e. the probability level at which D(θ̂N , Pθ) contains
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G0(z). Eq (16) indicates that when the worst case perfor-

mance meets the nominal performance level, i.e. Eq (4),

the likelihood that variations in Φv(ω) cause the observed

performance degradation is at the probability level α. This

results from the fact that the uncertainty region D(θ̂N , Pθ)
lies entirely in Dadm and therefore the probability that Dadm

contains G0(z) is at least α. On the contrary, if JBC > 1,

D(θ̂N , Pθ) is fully outside Dadm. The latter suggests that

the deviation from nominal performance is due to changes

in the true system, i.e. G0(z) /∈ Dadm, for a probability of

at least α.

Nonetheless, the likelihood measure stated in Eq. (16) is

a conservative tool to determine the chances of making a

wrong decision. Situations may occur that the uncertainty

region D(θ̂N , Pθ) lies neither entirely in Dadm nor entirely

outside Dadm. For instance in Fig. 3, Dadm fully contains

D(θ̂N , Pθ) only for small probability levels, whereas the

probability that G(z, θ̂N ) has been generated by a true

system G0(z) inside Dadm can be much larger. Thus, the

likelihood measure becomes misleading particularly when

G(z, θ̂N ) lies close to the boundary of Dadm. We there-

fore employ the following procedure to estimate the actual

probability of making a wrong decision directly based on

the distribution of the identified parameter vector, i.e. θ̂N ∼
N (θ0, Pθ). This procedure no longer relies on the uncertainty

region D(θ̂N , Pθ).
The probability of making an erroneous decision when

opting for H0 and H1 can be expressed as:

PrH0
{G(z, θ̂N) generated by G0(z) /∈ Dadm} (17)

and

PrH1
{G(z, θ̂N ) generated by G0(z) ∈ Dadm}, (18)

respectively. PrH0
is the probability that G(z, θ̂N ) has been

generated by a true system, which does not exhibit satisfac-

tory closed-loop performance. It therefore represents the like-

lihood of making a wrong decision when G(z, θ̂N ) ∈ Dadm

as shown in Fig. 2(a). On the contrary, Eq. (18) corresponds

to the probability of making an erroneous decision when H1

is chosen; see Fig. 2(b). PrH1
denotes the probability that

G(z, θ̂N ) has been generated by a true system lying in Dadm.

Hence, PrH1
represents the probability of attributing the

performance degradation to changes in the system dynamics

while in effect G0(z) ∈ Dadm.

Fig. 3. The situation in which the measure stated in Eq. (16) will become
conservative to assess the probability of making an erroneous decision.

As Dadm cannot be explicitly described, the probability

of making a wrong decision is approximated by the use

of randomized algorithms; see, e.g., [12]. We utilize the

procedure presented in [6] to estimate PrH0
and PrH1

.

According to the known distribution ∆θ = θ̂N − θ0 ∼
N (0, Pθ), we generate n random realizations ∆θ(i) (i =
1 · · ·n) of ∆θ and subsequently construct the parameter

vectors θ(i) = θ̂N +∆θ(i) (i = 1 · · ·n). The latter parameter

vectors in fact include possible values for the unknown

true parameter vector θ0 that parameterizes the true system

G0(z). This allows us to estimate the probabilities PrH0
and

PrH1
as:

P̂ rH0
=

Number of realizations when G(z, θ(i)) /∈ Dadm

n

P̂ rH1
=

Number of realizations when G(z, θ(i)) ∈ Dadm

n
.

(19)

It is proven in [12] that if we choose

n >
1

2ǫ2
ln

2

δ
, (20)

the probability that |P̂ rHj
− PrHj

| > ǫ (j = 0, 1) will be

smaller than δ.

III. CLOSED-LOOP PERFORMANCE ANALYSIS

It is demonstrated that closed-loop performance analysis

can be used as a tool to assess the quality of our decision. In

this section, we present a procedure to compute the best case

performance achieved over all closed-loop systems made up

of the existing controller and systems lying in an uncertainty

set D(θ̂N , Pθ). The performance of a closed-loop system

[C G] is defined as the largest singular value of a weighted

version of the matrix containing the four closed-loop transfer

functions, i.e. Eq. (2). This implies that our description of

the worst and best case performance given in Definition

3 is general since the most commonly used performance

measures can be derived by an appropriate choice of the

weightings.

Bombois et al. [4] presented a procedure to compute the

worst case performance. They showed that the worst case

performance achieved over all systems in such an uncertainty

set is the solution of a convex optimization problem involving

LMI constraints. In the sequel, it is demonstrated that the best

case performance J̄BC(ω, G, C, Wl, Wr) can be computed

exactly at each frequency by translating Eq. (15) into an

LMI-based optimization problem. We exploit the fact that

all model structures can be rewritten as:

G(z, θ) =
ZN (z)θ

1 + ZD(z)θ
, (21)

where ZN and ZD are row vectors containing delays and

zeros. It is evident that the numerator and denominator of

the transfer function G(z, θ) are linearly dependent on the

uncertain parameter vector. The following proposition sum-

marizes the procedure to compute J̄BC(ω, G, C, Wl, Wr).
Proposition 4 : Consider an uncertainty set D(θ̂N , Pθ) and

a controller C(z) = X(z)/Y (z). The best case closed-loop
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performance achieved at a frequency ω over all systems in

D(θ̂N , Pθ) is
√

γopt, where γopt is the solution of the follow-

ing convex optimization problem involving LMI constraints

evaluated at the frequency ω:

max
γ, τ

γ

s.t.: τ ≥ 0
(

Re(a11) Re(a12)
Re(a∗

12) Re(a22)

)

− τ

(
R −Rθ̂

(−Rθ̂)T θ̂T Rθ̂ − 1

)

< 0,

(22)

where

a11 = γ(QZ∗
1Z1) − (Z∗

NW ∗
l1Wl1ZN − Z∗

DW ∗
l2Wl2ZD)

a12 = γ(QZ∗
1Y ) − W ∗

l2Wl2Z
∗
D

a22 = γ(QY ∗Y ) − W ∗
l2Wl2

Z1 = XZN + Y ZD

Q =
1

X∗W ∗
r1Wr1X + Y ∗W ∗

r2Wr2Y

R =
P−1

θ

X .

(23)

Proof. The proof is similar to that of the worst case perfor-

mance given in [4]. �

IV. NUMERICAL ILLUSTRATIONS

The performance diagnosis methodology is applied to

a simulation case study. Two scenarios are considered

to demonstrate the adequacy of the proposed method-

ology under different circumstances. We take the fol-

lowing Box-Jenkins system as the true system: y(t) =
B0(z)/F0(z)u(t) + C0(z)/D0(z)e(t) with B0(z) =
0.36z−1, F0(z) = 1 − 0.4z−1, C0(z) = 1 + 0.6z−1,

D0(z) = 1 + 0.1z−1, and e(t) being a realization of a

white noise process with variance σ2
e = 1.0. The control

performance measure of interest is related to the sensitiv-

ity function. Hence, the filters in Eq. (3) are chosen as

Wl(z) = diag(0, W (z)) and Wr(z) = diag(0, 1) with

W (z) = (0.52 − 0.46z−1)/(1 − 0.99z−1). The true system

is in closed-loop operation with a controller which has been

devised based on the 4-block H∞ control design method.

Note that the nominal performance level is initially satisfied.

The variance of the system output is originally 1.44.

Scenario 1: We alter the disturbance characteristics of the

true system by changing the parameters of the noise transfer

function, i.e. C(z) = 1 + 0.75z−1 and D(z) = 1 − 0.8z−1.

This results in a drastic change in the variance of the system

output, i.e. 6.74. The performance diagnosis methodology is

applied to verify whether it can detect the original cause of

the observed deviation from nominal performance. We first

identify a model of the true system by applying a white

noise excitation signal with σ2
r = 0.1 and measuring 500

samples of the signals {u(t), y(t)} under the closed-loop

operation. The signal to noise ratio is approximately equal to

that of the nominal operation. This implies that the excitation

signal barely disturbs the system output and therefore the

identification cost is reasonably low.
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Fig. 4. Scenario 1: G(z, θ̂N ) ∈ Dadm.

It appears that the identified model lies in Dadm. We

therefore choose H0 in the decision rule stated in Eq. (9),

attributing the performance degradation to the changes in

Φv(ω). To assess the quality of our decision a posteriori,

we analyze the worst case performance according to the

likelihood measure given in Eq. (16). Fig. 4(a) shows the

modulus of sensitivity functions. In fact, |S| allows us to

examine the closed-loop performance at different frequen-

cies. As can be seen, the identified as well as the true

modulus of the sensitivity function is bounded by the worst

and best case performance levels. It is evident that JWC < 1
since the worst case modulus of the sensitivity function,

i.e. |SWC |, over all systems in D(θ̂N , Pθ) obtained for the

pre-specified probability level 95% is smaller than |W−1
l |.

This suggests that the probability that we have opted for the

correct hypothesis is at least 95%, i.e. the probability level

at which G0(z) ∈ D(θ̂N , Pθ). We also estimate the actual

probability of making an erroneous decision P̂ rH0
. Fig. 4(b)

depicts 500 realizations of the parameter vector θ computed

around θ̂N according to the known normal distribution. This

figure indicates that over 99% of the generated parameter

vectors lead to a system G(z, θ) that lies in Dadm. Therefore,

the chances that the identified model G(z, θ̂N ) has been

generated by a true system outside Dadm are in fact less
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Fig. 5. Scenario 2: G(z, θ̂N ) /∈ Dadm.

than 1%, more precisely P̂ rH0
= 0.8%.

Scenario 2: We induce changes in the system dynamics

by adopting G0(z) = 0.36z−1/(1 − 0.8z−1) as the true

system while the disturbance characteristics remain intact.

The changes in the system dynamics lead to a slight variation

in the variance of the output, i.e. 1.70. We exploit the per-

formance diagnosis methodology to examine if the alteration

to the original system can be detected. Like in Scenario 1,

the identification exercise is performed using a white noise

excitation signal with σ2
r = 0.1 to collect 500 samples of the

signals {u(t), y(t)}. The signal to noise ratio in this case is

somewhat larger than the nominal operation, suggesting a

higher identification cost.

The identified model of the true system lies outside Dadm.

This implies that H1 is the most likely hypothesis. Thus, we

analyze the best case performance to assess the probability

of making a wrong decision. The modulus of sensitivity

functions is shown in Fig. 5(a). It is evident that the modulus

of the best case sensitivity function, i.e. |SBC |, over all

systems in D(θ̂N , Pθ) when α = 95% is smaller than |W−1
l |.

The use of the likelihood measure given in Eq. (16) can

therefore be conservative since JBC < 1. We estimate the

actual probability PrH1
by 500 realizations of θ around the

identified parameter vector θ̂N as depicted in Fig. 5(b). It

appears that about 94% of the generated parameter vectors

result in a system that is outside Dadm. This suggests that

the probability that G(z, θ̂N ) has been generated by a true

system lying in Dadm, i.e. P̂ rH1
, is approximatly 6%.

V. CONCLUSIONS

We have presented a novel methodology to distinguish

control relevant system changes in closed-loop operation

from variations in disturbance characteristics. The approach

consists of verifying whether an identified model of the

true system lies in a set containing all models that exhibit

satisfactory closed-loop performance. We have exploited the

known distribution of the identified model to characterize a

posteriori our confidence in the detected origin of perfor-

mance degradation.

In future, this work will be extended for performance

diagnosis of model predictive controllers. In addition, we

will investigate the use of prior information to reduce the

identification costs associated with this methodology.
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