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Abstract— This paper presents an application of polynomial
linear parameter varying (LPV) methods based on matrix
sum-of-squares (SOS) relaxations for the end-effector position
controller analysis of flexible-link manipulators. The proposed
approach exploits an effective way for solving polynomial
parameter-dependent linear matrix inequalities (PD-LMIs) and
allows to consider more general admissible sets than hyper-
rectangles or convex polytopes. This leads to less conservative
results when considering an H∞ output feedback controlled
system. In particular, some performance analysis results are
presented. A practical case study shows the effectiveness of the
proposed methodology.

I. INTRODUCTION

The control of robotic manipulators is a challenging re-
search area that has benefited from an extensive effort since
several decades [1]. In many applications, the mechanical
structure of the robot is supposed to be completely rigid and
the synthesis of control laws is made based on this assump-
tion. The rigidity can be reinforced by using appropriately
chosen materials or by performing a posteriori treatment of
the existing structure. However, when large control torques
are involved or when the control bandwidth is high, the
flexibility effects become significant and they must be taken
into account in the control algorithm.

One can distinguish two main classes of flexibility: joint
flexibility and link flexibility. In the former, the elasticity
is concentrated in the joints of the robot whereas in the
latter, the elastic deformation is distributed along the whole
mechanical structure. Typical examples of flexible link robots
are the lightweight robots that can be found in aerospace
[2] and medical [3] applications. When the flexible robot
has more than one link, its dynamic model is nonlinear.
Moreover, the presence of lightly damped flexible modes
as well as the underactuated character of the control system
(the deformation variables are neither measured nor actuated)
make the problem of accurate tracking of a reference signal
become very difficult. Solutions for trajectory tracking at
the joint level have been proposed in the litterature (see
for instance [4]), whereas direct position control of the end-
effector of a flexible robot remains a difficult problem [5].

Our research objective is the development of a complete
methodology for the linear parameter varying (LPV) identifi-
cation [6] and control [7] of flexible robot manipulators. Our
contribution herein is concerned with modeling and control.
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In our paper, we propose the use of a polynomial LPV
approach for the end-effector control of a flexible manipula-
tor. Based on an identified polynomial LPV model, we show
how to carry out a performance analysis of the closed-loop
system obtained using a linear H∞ controller. The proposed
controller analysis conditions are based on a matrix sum-of-
squares (SOS) formulation [8] of some classical linear matrix
inequality (LMI) results [9]. The interested reader can find
in [10] a recent overview on the use of polynomial methods,
in particular the SOS-based ones, in control applications. A
key feature of the proposed approach lies in the fact that
it offers the possibility to describe the admissibile domain
of the varying parameters (and therefore the workspace of
the robot), by using a collection of some (polynomial) semi-
algebraic sets. In fact, a tighter approximation of the real
operating conditions can lead to a significant reduction of
conservatism in the analysis and synthesis of control laws,
and as a consequence, to obtain better performance indices.
We focus herein on the performance analysis problem as a
first step towards the LPV controller synthesis problem.

Our paper is organized as follows. In the second section,
we present the considered application that consists of a
robotic manipulator with two flexible links. The proposed
LPV modeling of the system is detailed in the third section.
Section four is devoted to the development of LPV analysis
conditions using matrix SOS relaxations. Simulation results
are presented in section five, whereas the sixth section
concludes our paper. Notations: A � (�)0 and A ≺ (�)0
denote a positive (semi-)definite matrix and a negative
(semi-)definite matrix respectively. AT is the transpose of A.
In stands for the identity matrix of dimension n. ∗ is used for
the blocks induced by symmetry and He{A} means A+AT .
⊗ represents the Kronecker product and diag is used for
block diagonal concatenation of matrices.

II. CONSIDERED FLEXIBLE ROBOT

A. Kinematics

A schematic view of the flexible robot that is considered
as an application for our study is displayed in Figure 1. This
case study is inspired by the second and third degrees-of-
freedom (DOF) of a 6 DOF medical robot prototype [11].

In addition to the joint angular positions θ1 and θ2 that are
measured using encoders, a direct measurement of the carte-
sian coordinates F = [X Y ]T of the end-effector is provided
by a video camera. The workspace of the robot is horizontal
and only the transverse deformations w1(x1, t), x1 ∈ [0, l1]
and w2(x2, t), x2 ∈ [0, l2] are considered.
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Fig. 1. Schematic view of the flexible robot

B. Nonlinear dynamic model

According to the assumed-modes approach [12], a dy-
namic model of the flexible manipulator can be obtained
using Euler-Lagrange equations of motion. Such a model
exhibits a second order behaviour:

M(q)q̈+Dq̇+Kq+C(q, q̇)+Γ(q) = Gτ (1)

where q is the vector of generalized coordinates. M(q),
D and K are the inertia, damping and stiffness matrices
respectively, C(q, q̇) and Γ(q) are the Coriolis/centripetal and
the gravitational torques vectors and G is an input matrix.
The vector of torques τ is considered as the input of the
system.

The deformation in any point of the link is considered as
a sum of elementary deformations. Each of them represents
a flexible mode that is characterized by a shaping function
φki(xk) and a time-varying amplitude δki(t):

wk(xk, t) =
nd

∑
i=1

φki(xk)δki(t), xk ∈ [0, lk], k = 1, 2 (2)

Herein, we make the choice of monomial shaping func-
tions φki(xk) = xi+1

k of order greater than or equal to two in
order to preserve the continuity and the smoothness of the
bending deformation. Furthermore, we assume that nd = 1,
i.e. only the first flexible mode is considered. The resulting
vector of generalized coordinates is then q = [θ T δ T ]T , where
θ = [θ1 θ2]T and δ = [δ11 δ21]T . The gravitational torques
vector Γ(q) in (1) can be neglected because of the horizontal
workspace of the robot. Using the kinematics of the robot, as
depicted in Figure 1, the end-effector coordinates F = [X Y ]T

are given by:

X = cos(θ1)
(
l1−2/3δ

2
11l3

1
)
− sin(θ1)δ11 l2

1

+cos(θ1 +θ2 +2δ11 l1)
(
l2−2/3δ

2
21l3

2
)

−sin(θ1 +θ2 +2δ11 l1)δ21 l2
1

(3)

Y = sin(θ1)
(
l1−2/3δ

2
11l3

1
)
+ cos(θ1)δ11 l2

1

+sin(θ1 +θ2 +2δ11 l1)
(
l2−2/3δ

2
21l3

2
)

+cos(θ1 +θ2 +2δ11 l1)δ21 l2
1 .

(4)

An internal controller Kp with a proportional effect on the
joint velocities is implemented:

τ = Kp(θ̇ ∗(t)− θ̇(t)) (5)

This low-level control loop simplifies the control issue of
the system and reduces the effects of some nonlinearities
such as Coulomb friction. This leads to consider the velocity
reference trajectory θ̇ ∗(t) as the new input of the system.

III. LPV MODELING

A. State-space LPV model

Several techniques allow to obtain a reliable LPV model
that accurately describes the behaviour of a dynamic
system [13]. One can distinguish the analytical models that
are based on the laws of physics from the identified models
that are obtained by selecting an appropriate structure for the
LPV system and using experimental data.

In our work, we consider the identified LPV model:

Σ(s,ρ) :

{
ẋ(t) = A(ρ1(t))x(t) + B(ρ1(t))θ̇ ∗(t)
y(t) = C0x(t)

(6)

where ρ1(t) = cos(θ2(t)) is the time-varying parameter. The
state matrices have the following expressions:

A(ρ1) = A0 +ρ1A1 +ρ2
1 A11

B(ρ1) = B0 +ρ1B1 +ρ2
1 B11

C0 is constant.

The state vector is x(t) = [δ (t)T θ̇(t)T δ̇ (t)T ]T . The time-
dependence of the parameters is omitted from now on for
simplicity. The LPV model (6) has been obtained under
the hypothesis of relatively low joint velocities. For the
sake of simplicity, the output y(t) is chosen as the joint
velocities of a fictitious rigid robot whose end-effector
position is F = [X Y ]T . The corresponding virtual posi-
tions α can be obtained simply by setting to zero the
deformation variables δi1, i = 1,2 in the expression of
F = g(q) given in (4)− (5). The resulting rigid kinematics
expression is denoted g0(θ). The rigid fictitious velocity α̇

is related to the end-effector velocity Ḟ by the formula:
α̇ = J−1

0 (θ)Ḟ where J0(θ) = d
dθ

(g0(θ)) is the rigid Jaco-
bian. The output of model (6) is simply y(t) = α̇ = C0x(t)

with C0 =
[

0 0 1 0 l1 0
0 0 0 1 l1 l2

]
.

B. Model augmentation for end-effector position control

The LPV model (6) can be augmented in order to directly
control the end-effector position of the robot, as depicted
in Figure 2. By introducing the new varying parameters
ρ2 = cos(θ1), ρ3 = sin(θ2) and ρ4 = sin(θ1), the augmented
LPV model can be taken as:[

ẋ
Ḟ

]
=
[

A(ρ) 06×2
C(ρ) 02

][
x
F

]
+
[

B(ρ)
02

]
θ̇
∗(t) (7)

The output of the augmented system is the end-effector
position ỹ = F = C̃x. Equation (7) can be rewritten in a
compact way as: ˙̃x = Ã(ρ)x̃ + B̃(ρ)θ̇ ∗ where x̃ = [xT FT ]T .
The vector of varying parameters is ρ = [ρ1 ρ2 ρ3 ρ4]T .
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Fig. 2. Augmented LPV model

While matrices A(ρ) and B(ρ) are the same as in
(6), the matrix C(ρ) is obtained in the following way.
The rigid kinematics of the robot gives the relation:
Ḟ = J0(θ)α̇ = J0(θ)C0x. Actually, the rigid Jacobian of the
2-links planar manipulator has the expression:

J0(θ) =
[
−l1 sin(θ1)− l2 sin(θ1 +θ2) −l2 sin(θ1 +θ2)
l1 cos(θ1)+ l2 cos(θ1 +θ2) l2 cos(θ1 +θ2)

]
(8)

Using the four varying parameters previously defined, equa-
tion (8) reads:

J0(ρ) =
[
−l1ρ4− l2(ρ1ρ4 +ρ2ρ3) −l2(ρ1ρ4 +ρ2ρ3)
l1ρ2 + l2(ρ1ρ2−ρ3ρ4) l2(ρ1ρ2−ρ3ρ4)

]
(9)

Therefore, Ḟ = C(ρ)x, with C(ρ) = J0(ρ)C0.

As a result, we have obtained an LPV model Σ̃(s,ρ) :
{Ã(ρ), B̃(ρ), C̃, 0} where the state matrices Ã(ρ) and B̃(ρ)
are polynomial with respect to the varying parameters and
the output matrix C̃ is constant. This model may be used for
the analysis and synthesis of controllers for the tracking of an
operational space reference trajectory F∗(t) = [X∗(t)Y ∗(t)]T .

C. Modeling of the robot workspace

The workspace of the robot can be modeled by the
admissible sets of the varying parameters of the LPV system
Σ̃(s,ρ). Clearly, these varying parameters are not indepen-
dent. They are interrelated pairwise by exact trigonometric
relations:

G1 = {(ρ1,ρ3) ∈ R2 : g1(ρ) = ρ
2
1 +ρ

2
3 −1 = 0} (10)

G2 = {(ρ2,ρ4) ∈ R2 : g2(ρ) = ρ
2
2 +ρ

2
4 −1 = 0} (11)

Given the maximal joint velocities VM1 and VM2 , the admis-
sible set of the parameter derivatives Sρ̇ can be described
by the following semi-algebraic sets:

G3 = {(ρ̇1, ρ̇3) ∈ R2 : g3(ρ) = ρ̇
2
1 + ρ̇

2
3 −V 2

M2
≤ 0} (12)

G4 = {(ρ̇2, ρ̇4) ∈ R2 : g4(ρ) = ρ̇
2
2 + ρ̇

2
4 −V 2

M1
≤ 0} (13)

In brief, the admissible domain of the parameters and
their time-derivatives are defined as: Sρ = G1 ∪ G2 and
Sρ̇ = G3∪G4.

The sets (10) and (11) can be modified in order to model
some robustness properties. For instance, inexact measure-
ment of the varying parameters can be considered. For this
purpose, the unit circle within which evolve the parameters
in G1 and G2 is replaced by a circular band of width ε ∈ [0 1]

(tolerance on the parameters measurement) and of mean
radius 1. Therefore, the resulting admissible sets are defined
as the intersection of some newly defined semi-algebraic sets.
G1 = G11∩G12 and G2 = G21∩G22, where:

G11 = {(ρ1,ρ3) ∈ R2 : g11(ρ) = ρ
2
1 +ρ

2
3 −R2

M ≤ 0} (14)

G12 = {(ρ1,ρ3) ∈ R2 : g12(ρ) =−ρ
2
1 −ρ

2
3 +R2

m ≤ 0} (15)

G21 = {(ρ2,ρ4) ∈ R2 : g21(ρ) = ρ
2
2 +ρ

2
4 −R2

M ≤ 0} (16)

G22 = {(ρ2,ρ4) ∈ R2 : g22(ρ) =−ρ
2
2 −ρ

2
4 +R2

m ≤ 0}. (17)

Rm = 1− ε

2 and RM = 1+ ε

2 are the minimal and the maximal
radius of the circular band respectively.

It is well known that the LPV analysis and controller
synthesis conditions that are based on the resolution of
parameter-dependent LMIs generally lead to an infinite di-
mensional LMI feasibility problem. Classical control ap-
proaches mostly consider hyperrectangles or more general
convex polytopes for the admissible sets, which allows to
solve the problem on the vertices based on some convexity or
multiconvexity properties [14]. More recently, some specific
methods for polynomial LPV systems have been proposed
[15], [16]. These methods allow to consider admissibility
regions described by semi-algebraic sets that are similar to
those given in (12)-(17). The approach considered herein is
based on appropriate matrix SOS relaxations of the original
analysis or synthesis semi-definite program (SDP).

IV. ANALYSIS USING MATRIX SOS RELAXATIONS

A. Matrix sum-of-squares

1) Scalar positivity: A sum-of-squares decomposition
[17] of a scalar multivariate polynomial f (ϑ) = f (ϑ1, ...,ϑn),
ϑi ∈ R is given by:

f (ϑ) =
m

∑
k=1

( fk(ϑ))2 (18)

where fk(ϑ), k = 1, ..,m are given polynomials. Obviously,
the existence of such a decomposition implies the global
nonnegativity of the scalar polynomial f (ϑ).

2) Matrix positivity: Let us consider the following spec-
tral factorization of a symmetric matrix S(ϑ):

S(ϑ) = HT (ϑ)QH(ϑ). (19)

Given the monomial matrix H(ϑ), the existence of a sym-
metric matrix Q� 0 satisfying (19) is a necessary and suffi-
cient condition for (19) to be an SOS decomposition, which
in turn, guarantees the global positive semi-definiteness of
the matrix S(ϑ). The matrix SOS formulation (19) is very
interesting in that it transforms the problem of proving the
global positive semi-definiteness of a parameter-dependent
matrix S(ϑ) into a problem of proving the positive semi-
definiteness of a constant matrix Q. This transformation is
referred to as matrix SOS relaxation.
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3) Positivity over a specified domain: Matrix SOS relax-
ation (19) considers the global positivity of a parameter-
dependent matrix S(ϑ), where ϑ typically stands for the
parameters and their time-derivatives ϑ = (ρ, ρ̇). In order to
restrict the positive semi-definiteness condition to a domain
described by the semi-algebraic sets given in (12)-(17), it
is possible to use the following conditions that are obtained
using the weak Lagrange duality [15]. Let us introduce:

S′(ϑ) = S(ϑ)+
N

∑
j=1

Z jg j(ϑ) (20)

If matrix S′(ϑ) is SOS (i.e. if it admits an SOS decomposi-
tion of the form (19)), where the Z j, j = 1, ..,N are positive
semi-definite symmetric matrices, then S(ϑ) � 0 for all the
values of ϑ that satisfy g j(ϑ)≤ 0, ∀ j = 1, ..,N.

B. Application to H∞ controller analysis

In several application fields such as medical robotics,
because of the small workspace of the robot, a common
control approach is the synthesis of an H∞ controller for
a nominal operating point [11]. In such a case, the obtained
stability guaranty and performance index are valid in the
vicinity of this operating point only. It may be interesting,
however, to assess the effectiveness (stability, performance,
robustness) of the control design over a larger operating
space. It is the objective of an a posteriori H∞ analysis.

1) Controller synthesis around an operating point: Let us
consider an operating point described by a nominal value of
the vector of varying parameters ρ0 = [ρ0

1 ρ0
2 ρ0

3 ρ0
4 ]T . Based

on the corresponding linear model Σ̃0(s) : {Ã0, B̃0, C̃0, 0},
a linear time-invariant (LTI) controller K0(s) can be syn-
thesized using well-known control methods [18] [19]. We
use the following generalized plant description of the system
(Figure 3) containing a performance channel whose input is
w(t) ∈ Rnw and whose output is z(t) ∈ Rnz . The augmented
state vector is x1(t) = [xT (t) xT

w(t)]T , where xw(t) contains
the states of the weighting filter W1(s).

Σ1(s) :


ẋ(t) = Ã0x(t) + Bww(t) + B̃0θ̇ ∗(t)
z(t) = Czx(t)+Dww(t)
ez(t) = F∗(t)−F(t)

(21)

By an adequate tuning of the filter W1(s), this scheme allows
to impose the following performance specifications (see
Section V): a minimum modulus margin Mmod , a minimum
bandwidth ωc and a maximum relative position error Ep [20].

2) Analysis of the closed-loop over a larger do-
main: When an LTI controller K0(s) : {AK0 , BK0 , CK0 , 0}
is used in interconnection with the LPV system Σ̃(s,ρ),
the weighted closed-loop system is given by Σ′Cl(s,ρ) :
{A′Cl(ρ), B′Cl , C′Cl , D′Cl} where the state vector is x′Cl(t) =
[xT

1 (t) xT
K(t)]T of dimension n′. xK(t) contains the states of

the controller. The analysis scheme is obtained by replacing
Σ̃0(s) by Σ̃(s,ρ) in Figure 3. The proposed approach relies
on the LPV version of the well-known bounded real lemma
that is recalled in the following theorem.

+
− W1(s)

w = F ∗ eF

eF
K0(s)

θ̇∗

Σ1(s)

F
Σ̃0(s)

z

Fig. 3. H∞ nominal controller synthesis scheme

Theorem 4.1 (Stability and induced L2 performance [21]):
The weighted closed-loop system Σ′Cl(s,ρ) is stable and has
an induced L2 performance index less than a positive scalar
γ if there exists a matrix X(ρ) = XT (ρ)� 0 that satisfies the
following parameter-dependent LMI, ∀(ρ, ρ̇) ∈Sρ ×Sρ̇ :He{X(ρ)A′Cl(ρ)}+∑

k
ρ̇k

∂X(ρ)
∂ρk

∗ ∗

B′Cl
T X(ρ) −γI ∗
C′Cl D′Cl −γI

≺ 0 (22)

LMI (22) is denoted M (ρ, ρ̇)≺ 0 in the sequel.

The H∞ analysis problem is infinite dimensional because
of the parametric dependence of M (ρ, ρ̇), (ρ, ρ̇)∈Sρ×Sρ̇ .
Nevertheless, an SOS relaxation based on the form (20) can
be used in order to express (22) as a finite dimensional SDP
problem, as given in the following corollary.

Corollary 4.1: If the matrix M ′(ρ, ρ̇) that is defined as:

M ′(ρ, ρ̇) =−M (ρ, ρ̇)+
N

∑
j=1

Z jg j(ρ, ρ̇)−λ I (23)

where Z j = ZT
j � 0 and g j(ρ, ρ̇) are negative semi-definite

polynomials over Sρ×Sρ̇ , admits an SOS decomposition of
the form: M ′(ρ, ρ̇) = HT (ρ, ρ̇)QH(ρ, ρ̇), with Q = QT � 0
and λ > 0 is a scalar then M (ρ, ρ̇)≺ 0, ∀(ρ, ρ̇)∈Sρ×Sρ̇ .

Remark 4.1: An important issue of the SOS relaxation
approach is the selection of an appropriate matrix H(ρ, ρ̇)
for the spectral factorization of M ′(ρ, ρ̇). This choice
influences the size of the final LMI condition Q = QT � 0
to be implemented.

Remark 4.2: In order to reduce the relaxation gap, i.e. to
get closer to the optimal value of the linear objective γ of
the original parameter-dependent SDP problem (22), several
extensions of the conditions of Corollary 4.1 have been pro-
posed [22]. It is possible, for instance, to consider parameter-
dependent multipliers Z j(ρ, ρ̇) in (23). Furthermore, the
spectral factorization M ′(ρ, ρ̇) = HT (ρ, ρ̇)(Q + N)H(ρ, ρ̇)
can be used, where N is any symmetric matrix satisfying
HT (ρ, ρ̇)NH(ρ, ρ̇) = 0. In that case, the LMI condition to
be implemented would be Q+N � 0.
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3) Proposed implementation: In order to simplify the
developments, let us consider a constant Lyapunov matrix
X = XT � 0. The proposed approach relies on the choice
of H(ρ) = diag(H1(ρ), I2, I2) for the spectral factorization,
where HT

1 (ρ) = [In′ ρ1In′ ρ2In′ ρ3In′ ρ4In′ ]. Thus, we have:

M (ρ) = HT (ρ)QH(ρ)

=

HT
1 (ρ)Q11H1(ρ) HT

1 (ρ)QT
21 HT

1 (ρ)QT
31

Q21H1(ρ) Q22 QT
32

Q31H1(ρ) Q32 Q33


(24)

Numerical software is available for performing the spectral
factorization, mainly involving scalarization [23]. In our our
work, the decomposition is done manually as described in
the following. Using (22), a monomial decomposition of each
(i, j)−block Mi j, i, j = 1..3 of the matrix M (ρ) is:
M11 = He{XA′Cl(ρ)} = He{XA′0 + XA′1ρ1 +
XA′2ρ2 + XA′4ρ4 + XA′11ρ2

1 + XA′12ρ1ρ2 + XA′14ρ1ρ4 +
XA′23ρ2ρ3 + XA′34ρ3ρ4}, where the constant matrices
A′0, A′1, A′2, A′4, A′11, A′12, A′14, A′23 and A′34 ∈ Rn′×n′ result
from a monomial decomposition of A′Cl(ρ).

HT
1 (ρ)Q11H1(ρ) is a spectral factorization of M11 where:

Q11 =He{XA′0−σ13−σ24} XA′1 XA′2 0 XA′4
∗ He{XA′11 +σ13} XA′12 0 XA′14
∗ ∗ He{σ24} XA′23 0
∗ ∗ ∗ He{σ13} XA′34
∗ ∗ ∗ ∗ He{σ24}


(25)

Let us point out that additional matrix variables σ13 and
σ24 ∈ Rn′×n′ have been introduced in order to avoid the
occurence of zero diagonal terms in Q11 that would make the
condition Q � 0 become impossible to satisfy. Introducing
these new variables has no effect on the value of M11 due
to the algebraic relations between the varying parameters
in (10)-(11). The other matrices of the decomposition are:
Q21 =

[
B′Cl

T X 02×4n′
]
, Q22 = −γInw , Q31 =

[
C′Cl 02×4n′

]
,

Q32 = D′Cl and Q33 =−γInz .

The semi-algebraic sets Gi j, i, j = 1..2 in (14)-(17) admit
the factorizations HT

1 (ρ)G̃i jH1(ρ), where:

G̃11 = diag(−R2
MIn′ , In′ , 0n′ , In′ , 0n′)

G̃12 = diag(R2
mIn′ ,−In′ , 0n′ ,−In′ , 0n′)

G̃21 = diag(−R2
MIn′ , 0n′ , In′ , 0n′ , In′)

G̃22 = diag(R2
mIn′ , 0n′ ,−In′ , 0n′ ,−In′).

(26)

Moreover, the terms Zi jgi j(ρ) can be factorized as
HT

1 (ρ)(G̃i j⊗Zi j)H1(ρ). Finally, the implemented LMI con-
dition is −Q+∑

2
i, j=1(G̃i j⊗Zi j)−λ I � 0.

V. SIMULATIONS

The proposed methodology has been applied on an iden-
tified LPV model of the flexible robot of the form (6)
where the length of each link is l1 = l2 = 0.5 m. A nominal
H∞ controller K0(s) is synthesized on the operating point
ρ0 =

√
2

2 [1 1 1 1]T that corresponds to the robot config-
uration (θ1,θ2) = (45◦,45◦) and the end-effector position

F = [X Y ]T = [0.3536m 0.8536m]T . A one-block synthesis
scheme is used (Figure 3), in which W1(s) ensures the
closed-loop charactersitics: Mmod = 0.65, ωc = 20 rad.sec−1

and Ep = 10−2. When using the LMI synthesis method
available in MATLAB, the obtained performance index
is γsyn = 1.0581. In Figure 4, the sensitivity function
Sy(s) = Tr→e(s) is compared to the frequency template γ

W1(s) .
Figure 5 displays time simulations carried out using the LPV
system Σ̃(s,ρ) and the nominal controller K0(s).

Performance analysis of the previously described closed-
loop system is performed following the procedure detailed
in paragraph IV.B.3 and using the filter W1(s) employed for
the synthesis. The LMI problem Q� 0 that results from an
SOS relaxation is solved using the numerical solver SeDuMi
[24] associated with the YALMIP interface [25]. When
applying the analysis algorithm to the whole admissible
set Sρ that is defined using (14)-(17), the LMI problem
was found to be infeasible. This result is confirmed when
carrying out time simulations in operating points that are
different from the nominal one ρ0. Indeed, the oscillatory
modes have been observed to be very lightly damped and
closed-loop instability may occur. This result points out the
limitations of the nominal controller for the achievement of
the desired performance requirements over a large operating
range. In order to address this issue, we limit the admissible
domain Sρ to some arcs of circles that include the nominal
operating point ρ0 and its vicinity. In other words, we add
the constraint ρ ∈ [ρ ρ] in the analysis conditions, where
ρ = ρ0(1−ν) and ρ = ρ0(1+ν), ν > 0. Figure 6 illustrates
the considered analysis domain.

For instance, a choice of ν = 0.1 corresponds to the
workspace θ1,θ2 ∈ [39◦ 51◦]. The performance indices γana
that are obtained by the analysis are reported on Table 1
for the values ε = 0.01 and ε = 0.04 of the measurement
tolerance. Clearly, a degradation of the performance index
that is guaranteed by the nominal synthesis is observed, due
to the analysis over a larger domain. Another analysis is per-
formed in the immediate vicinity of the nominal parameter
ρ0, by taking ν = 0.0001. The obtained performance index
γana, that is reported in the last row of Table 1, indicates
an upper bound of the optimal value of the linear objective
γ that is slightly smaller than the γsyn guaranteed by the
nominal synthesis. The size of the LMI is 104× 104 and
the computaional time on an Intel Core 2 Duo processor is
264.17 seconds for the last test. These results demonstrate
the effectiveness of the proposed analysis approach.

ν ε γana
0.1 0.01 1.4209
0.1 0.04 1.4232

0.0001 0 1.0012

Table 1 - Performance analysis results: three different tests

VI. CONCLUSION

The main contribution of this paper is to propose a
polynomial LPV methodology for the performance analysis
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of flexible robot controllers. This issue is addressed through
the use an appropriate sum-of-squares relaxation. An impor-
tant feature of the proposed approach is to consider semi-
algebraic sets for the modeling of the parametric domain.
Such a description provides a tighter approximation of the
real workspace, and as a consequence, allows to obtain
better upper bounds for the linear objective of the original
semi-definite program. Future work will be devoted to the
application of a similar approach for the LPV synthesis
problem in order to a priori guarantee the performance
requirements over the whole parametric domain.
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