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Abstract— In this paper, the fault detection (FD) problems
for discrete-time Markov jump linear systems (MJLS) are
addressed. A scheme for solving FD problem for discrete-
time MJLS, which is subject to the Gaussian disturbances,
is proposed. The Kalman filter (KF) is used as a residual
generator. Once a residual signal is generated, it will be
evaluated whether faults occur or not. Residual evaluation
function is selected such that the maximum fault detection rate
(FDR) is achieved, for a given false alarm rate (FAR). Finally,
threshold is computed by using an estimation of the variance of
evaluation function in the fault-free case. To demonstrate the
performance of this proposed method, a numerical example is
given.

I. INTRODUCTION

Nowadays, more and more fault diagnosis units are inte-
grated into the complex dynamic systems in order to increase
safety and reliability. The tasks of fault diagnosis are to
detect, isolate and identify faults that occur inside systems.
The first step of the fault diagnosis is fault detection (FD).
The task of FD is to detect whether faults occur in the
systems or not. Among various FD techniques, analytical
redundancy approaches have been intensively studied and
investigated due to the interesting properties. The main idea
of this FD technique is to generate the so-called residual
signal, which contains the information of faults. Applications
of this FD technique to various dynamic systems have been
reported in literatures, e.g. [8], [15] and references therein.

MJLS has been studied for decades in both continuous-
and discrete-time domains. This kind of system modeling has
a great success to model the behavior of the physical systems
that change their structure abruptly in a random manner, e.g.
[13], [21]. Recently, there are also numerous works dealing
with FD in MJLS, [23] and [24] proposed FD for MJLS
under the assumption that the transition probabilities are
known, whereas, [22] proposed FD using partially known
of these probabilities. [20] designed robust fault detection
filter for MJLS and recently [4] proposed FD for MJLS with
parameter varying.
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Early work on FD for MJLS studies concentrated on
residual generation such as observer design or KF, e.g.
[22], [23] and references therein. When the system is pure
stochastic, the abrupt change detection is evaluated by the
hypothesis testing. The Generalized Likelihood Ratio (GLR)
[10] is of the most popular. However, this test requires the
density of residual signal to be known before, and after the
faults occur [7]. As this information is difficult to be obtained
from MJLS, other schemes for residual evaluation are of
interest and still be an open issue.

Based on the dynamic behavior of residual signal, which
is obtained from KF, the variance of its evaluation function
can be estimated. From this information, it is possible to
compute the threshold for solving FD problem.

The main objectives of this paper are to
• utilize KF as the residual generator for discrete-time

MJLS.
• compute a threshold based on an estimation of variance

of the proposed residual evaluation function.
• illustrate the detection performance of the proposed

scheme by a numerical example.
The paper is organized as follows: In Section II, prelimi-

naries and formulation of the problem are addressed. Section
III presents the residual evaluation function and threshold
computation, which are the main contributions of this paper.
The proposed scheme is illustrated by a numerical example
in Section IV. Finally, the conclusion of the paper and future
work are presented in Section V.

II. PRELIMINARIES AND PROBLEM
FORMULATION

Suppose (Ω,F ,P) is a probability space, where Ω is
the sample space, F is the algebra of events and P is
the probability measure, which is defined on F . A discrete-
time MJLS, which is subject to faults and disturbances, is
described as follows:

x(k+1) = A(mk)x(k)+B(mk)u(k)+G(mk)w(k)

+E f (mk) f (k) (1)
y(k) = C(mk)x(k)+D(mk)u(k)+ v(k)

+Ff (mk) f (k) (2)

where k ∈ Z+ is the time index, x(k)∈Rn is the state vector,
u(k)∈Rnu is the control input vector, f (k)∈Rn f is the fault
vector to be detected, y(k) ∈Rq is the output vector.

Disturbances are modeled as process and measurement
noise, w(k) ∈ N (0,W ) and v(k) ∈ N (0,V ), respectively.
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These noises are assumed to be stationary, uncorrelated and
independent of initial state vector x(0).

Parameter mk represents a system mode at any time instant
k, which is modeled by a discrete homogeneous Markov
chain taking value in a finite set M = {1, . . . ,M}. The
transitions between modes are governed by the transition
probability matrix:

Π = [πi j] (3)

where

πi j = Pr[mk+1 = j|mk = i],∀i, j ∈M (4)

and follows the restrictions, πi j > 0 and
M

∑
i=1

πi j = 1 for any

i, j ∈M
Define the probabilities of mode at any time instant k as

a vector:

Λ(k) =
[

λ1(k) λ2(k) . . . λM(k)
]

(5)

where

λi(k) = Pr[mk = i],∀i ∈M (6)

and follows the restrictions, 0≤ λi(k)≤ 1 and
M

∑
i=1

λi(k) = 1

for any i ∈M .
Mode probabilities at any time instant k is computed from

Λ(k) = Λ(k−1)Π (7)

If lim
k→∞

Π
k = constant , then lim

k→∞
Λ(k) =Λ(∞). This implies

that mode probabilities are time invariant and independent
of mode transition probabilities, i.e. Λ(0) = Λ(∞). Hence,
Markov chain can be considered into two groups:
• Stationary, if Λ(0) = Λ(∞)
• Non-stationary, if Λ(0) 6= Λ(∞)

In this paper, the MJLS under consideration is governed
by the stationary Markov chain with known real constant
system matrices associated with the i− th mode.

An KF for system (1) and (2), ∀mk ∈M is formulated as
follows:

x̂(k+1) = A(mk)x̂(k)+B(mk)u(k)+K(mk)(y(k)− ŷ(k))

(8)
ŷ(k) = C(mk)x̂(k)+D(mk)u(k) (9)

where K(mk) is the Kalman gain, x̂(k) ∈Rn and ŷ(k) ∈Rq

are state and output vector estimation, respectively.

Denote state estimation error by e(k) = x(k)− x̂(k), then
the dynamic behavior of residual signal r(k) is governed by:

e(k+1) = Ā(mk)e(k)+ Ē f (mk) f (k)+G(mk)w(k)

−K(mk)v(k) (10)
r(k) = C(mk)e(k)+Ff (mk) f (k)+ v(k) (11)

where r(k) = y(k)− ŷ(k), Ā(mk) = A(mk)−K(mk)C(mk)
and Ē f (mk) = E f (mk)−K(mk)Ff (mk)

For the sake of simplicity, the system matrices and Kalman
gain associated with the i− th mode are denoted as

A(mk = i) = Ai, B(mk = i) = Bi

C(mk = i) = Ci, D(mk = i) = Di

E f (mk = i) = E f i, Ff (mk = i) = Ff i

G(mk = i) = Gi, K(mk = i) = Ki

with appropriate dimension.

Throughout this paper, the following assumptions are
made for the discrete-time MJLS.

Assumption 1: The discrete-time MJLS reaches a steady
state before any faults occurred.

Assumption 2: The transition probability matrix (Π) and
mode probability (Λ) are assumed to be known.

The following definition will be useful in the paper.

Definition 1: [1] System (1) and (2) with u(k) = 0 and
f (k) = 0, ∀k ≥ 0 is mean square stable (MSS) if for any
initial condition x0 ∈Rn and initial mode m0 ∈M , the state
trajectory of (1) and (2) satisfies

lim
k→∞

E[||x(k,x0,m0)||2] = 0

where E[·] is the expected value operator.

Solving FD problem for discrete-time MJLS begins with
residual generation. To this end, the following theorem is
introduced.

Theorem 1:[14] Suppose that system (1) and (2) with
f (k) = 0 is MSS. Given a set of symmetric positive
definite matrices {Yi = Y T

i }, ∀i ∈M , there exist two sets
of symmetric positive definite matrices {Pi = PT

i } and
{Qi = QT

i } such that {Pi} and {Qi} are stabilizing solutions
of the following two sets of coupled Riccati equations

AT
i P̄iAi−Pi +AT

i P̄iW 1/2(I−W 1/2P̄iW 1/2)−1W 1/2P̄iAi +Yi = 0

ÂiQ̄iÂT
i −Qi− ÂiQ̄iCT

i (CiQ̄iCT
i +V )−1CiQ̄iÂT

i +Mi = 0

where

P̄i =
M

∑
j=1

πi jPj, Q̄i =
M

∑
j=1

πi jQ j

Âi = Ai +W (P̄−1
i −W )−1Ai

Mi = W +W (P̄−1
i −W )−1W

Then the KF in (8) and (9) with gain

Ki = ÂiQ̄iCT
i (CiQ̄iCT

i +V )−1

is MSS with guaranteed cost

E[eT (k)e(k)] ≤ σi := max
i∈M

trace(Qi)
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Proof: It follows the proof of [14], when model uncertain-
ties are neglected. �

The solutions of coupled Riccati equations arise in this
theorem can be founded in [2] ,[9] or [16].

To achieve a successful FD, the generated residual signal
will be evaluated and compared with the predefined thresh-
old.

It can be seen that, the covariance of residual signal in
(11) can be computed from

S(k) = E[r(k)rT (k)] (12)

which is affected from fault f (k). Thus, it is possible to use
the covariance as the residual evaluation function for solving
FD problem in MJLS.

The following definition and lemma are fruitful to the
proof of the main result.

Definition 2: [1] Given the probability space (Ω,F ,P),
the indicator function 1F is defined for any F ∈F and ω ∈Ω

as

1F(ω) =

{
1 if ω ∈ F
0 if ω /∈ F

(13)

Lemma 1:[3] For a given random number x and constant
ε > 0 satisfying ε2≥E[x− x̄ ]2, Chebyshev’s inequality states
that

Pr[|x− x̄ | ≥ ε]≤ E[x− x̄ ]2

ε2 (14)

where x̄ = E[x]

In the next section, residual evaluation and threshold
computation, which is the main contribution of this paper,
will be addressed.

III. RESIDUAL EVALUATION AND THRESHOLD
COMPUTATION

As mentioned in the last section that the application of
GLR for FD problem in discrete-time MJLS is difficult due
to the lack of distribution knowledge of residual signal after
faults occurred. Finding alternative detection scheme is of
interest and will be proposed in this section.

The attempt to detect a fault in discrete-time MJLS starts
with the residual evaluation. Finally, this value is compared
with the threshold, and the FD can be obtained from the
following decision logic:

J > Jth : Fault
J ≤ Jth : Fault-free

Performance of this FD scheme is evaluated by fault alarm
rate (FAR) and fault detection rate (FDR), which are defined
as follows:

Definition 3:[3] Given an evaluation function J and thresh-
old Jth, the FAR is defined as

Pr[J > Jth| f (k) = 0] (15)

Definition 4:[3] Given an evaluation function J and thresh-
old Jth, the FDR is defined as

Pr[J > Jth| f (k) 6= 0] (16)

To this end, the problem of FD is generally comprised of:
• Selection of a residual evaluation function.
• For a selected residual evaluation function and an al-

lowed FAR, compute a threshold value.
It can be seen that residual signal, which is generated from

KF in (8) and (9), is a stochastic process. Thus, based on
the Chebyshev’s inequality given in Lemma 1, the FAR is
estimated according to [3] as

Pr[J−E[J]> Jth| f (k) = 0]≤ α

Then it turns out that

E[(J−E[J])2]

J2
th

≤ E[J2]

J2
th
≤ α (17)

where α := FAR is used as the detection performance index.
Hence, the allowed FAR is fulfilled by the determination

of E[J2] and Jth.

In the first step, evaluation function of residual signal
is defined according to [3], in order to reduce FAR and
maximize FDR. This requirement can be achieved by using
the evaluation function

J =

√√√√( 1
N

N

∑
a=1

r̃(k−a)

)T (
1
N

N

∑
a=1

r̃(k−a)

)
(18)

where r̃(k− a) = (
√

S(k−a))−1r(k− a) is the normalized
residual and S̃(k−a) is its covariance matrix, ∀(k−a) ∈ Z+

Corresponding to evaluation function (18), the threshold
is generally set according to [3]:

Jth =

√
β (N) · trace(S̃max) (19)

where β (N)> 0 and S̃max =max
k

S̃(k) is the covariance matrix
of the normalized residual.

From (17) and (19), it obtains

β (N)≥ E[J2]

α · trace(S̃max)
(20)

To this end, threshold computation problem is reduced to
find E[J2], which can be obtained by the following theorem.

Theorem 2: Given system (1) and (2), KF in (8) and (9)
when f (k) = 0, allowed FAR and the residual evaluation in
(18), the variance of evaluation function follows an inequality

E[J2]≤ γ

N
+

φ

N2 (21)

where γ > 0 and φ > 0 are some constants and the threshold
can be set as (19).
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Proof: Note that for b > a > 0,

E[J2] =
1

N2 trace
{ N

∑
a=1

E[r̃(k−a)r̃T (k−a)]

+
N

∑
b=2

b−1

∑
a=1

(
E[r̃(k−a)r̃T (k−b)]

+E[r̃(k−b)r̃T (k−a)]
)}

It can be seen that

N

∑
a=1

E[r̃(k−a)r̃T (k−a)]

=
N

∑
a=1

(
√

S(k−a))−1E[r(k−a)rT (k−a)](
√

S(k−a))−1

From the aid of Definition 2 and results from Theorem 1,

E[r(k−a)rT (k−a)]

= E[C(mk−a)e(k−a)eT (k−a)CT (mk−a)

+v(k−a)vT (k−a)]

=
M

∑
i=1

λi(CiQiCT
i +V )

≤ C jQ jCT
j +V

where Qi = E[e(k−a)eT (k−a)], ∀(k−a) ∈ Z+ and
Q j = max

i∈M
Qi

It turns out
N

∑
a=1

E[r̃(k−a)r̃T (k−a)]≤ N(
√

S j)
−1S j(

√
S j)
−1

where S j =C jQ jCT
j +V

Consider that

N

∑
b=2

b−1

∑
a=1

E[r̃(k−a)r̃T (k−b)]

=
N

∑
b=2

b−1

∑
a=1

(
√

S(k−a))−1E[r(k−a)rT (k−b)](
√

S(k−b))−1

From Definition 2 and results from Theorem 1,

E[r(k−a)rT (k−b)]

=
M

∑
iN=1

M

∑
iN−1=1

· · ·
M

∑
i1=1

λiN λiN−1 · · ·

· · ·λi1CiN (AiN−1 −KiN−1CiN−1) · · ·
· · ·(Ai2 −Ki2Ci2)(Ai1 Qi1C

T
i1 −Ki1(Ci1 Qi1C

T
i1 )+V )

≤ C j(A j−K jC j)(A jQ jCT
j −K j(C jQ jCT

j )+V )

It turns out

N

∑
b=2

b−1

∑
a=1

E[r̃(k−a)r̃T (k−b)]

≤ (
√

S j)
−1(

N

∑
b=2

(N−b+1)C jĀb−2
j U j)(

√
S j)
−1

where Ā j = A j−K jC j and U j = A jQ jCT
j −K jS j

The previous procedures also leads to

N

∑
b=2

b−1

∑
a=1

E[r̃(k−b)r̃T (k−a)]

≤ (
√

S j)
−1(

N

∑
b=2

(N−b+1)(C jĀb−2
j U j)

T )(
√

S j)
−1

Finally,

E[J2]≤ γ

N
+

φ

N2

where

γ = trace((
√

S j)
−1S j(

√
S j)
−1) = trace(Iq×q)

and

φ = trace((
√

S j)
−1(

N

∑
b=2

(N−b+1)[C jĀb−2
j U j

+(C jĀb−2
j U j)

T ](
√

S j)
−1)

This theorem is thus proved. �

With the aid of Theorems 1 and 2, the FD problem
for the discrete-time MJLS can be solved by the following
algorithm:

Algorithm 1: FD for the discrete-time MJLS

• Step 1: Compute the variance of residual evaluation
function E[J2] according to (21).

• Step 2: Compute β (N) according to (20) and set thresh-
old Jth according to (19).

• Step 3: Construct the residual evaluation function (18)
and compare with the threshold Jth.

Remark 1: It can be seen that a lower allowed FAR
requires a larger β (N) and leads to high value of Jth. How-
ever, increasing the number of sampling data N significantly
reduces the value of Jth while remains a preferable FAR.

Remark 2: The estimation value of E[J2] depends on the
number of sampling data N. For a given FAR, large number
of N leads to small value of Jth and increases FDR.

Remark 3: By using normalized residual r̃(k) in the
evaluation function ensures the maximum FDR for a given
FAR and threshold Jth when the number of sampling data N
is fixed.

In the next section, the numerical example will be pre-
sented in order to illustrate the performance of the proposed
residual evaluation scheme for the discrete-time MJLS.

IV. A NUMERICAL EXAMPLE

This section presents some numerical examples of the
proposed residual evaluation for the discrete-time MJLS.

Consider the two-mode discrete-time MJLS with m(k) =
i∈ {1,2},∀k≥ 0 described by (1) and (2) with the following
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matrices:

A1 =

[
0.5 0.4
0.3 0.1

]
, A2 =

[
0.2 0.7
0.1 0.3

]
B1 =

[
0
1

]
, B2 =

[
1
0

]
C1 =

[
0.7 0.5
0.1 0.2

]
, C2 =

[
0.5 0.2
0.7 0.5

]
D1 =

[
0.5
1

]
, D2 =

[
1

0.8

]
E f 1 =

[
0 0 0
1 0 0

]
, E f 2 =

[
1 0 0
0 0 0

]
Ff 1 =

[
0 1 0
0 0 1

]
, Ff 2 =

[
0 1 0
0 0 1

]
G1 =

[
0.1 0.5
0.5 0.1

]
, G2 =

[
0.5 0.1
0.1 0.5

]
W =

[
0.3 0
0 0.7

]
, V =

[
0.5 0
1 0.9

]
The mode transition probabilities are known and given by

Π = [πi j], ∀i, j ∈ {1,2}

where π11 = 0.2, π12 = 0.8, π21 = 0.2, π22 = 0.8
Also assume that the mode probabilities are known as

Λ =
[

λ1 λ2
]

where λ1 = 0.2 and λ2 = 0.8
Finally, assume that x(0)=

[
0 0

]T and m(0)= 2 where
m(k) changes stochastically between two modes as shown in
figure (1).

0 100 200 300 400 500

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Step time [k]

M
o

d
e

Fig. 1. Change of mode, m(k)

Design KF according to Theorem 1, then the following
results are obtained:

P1 =

[
0.5515 0.0400
0.0400 0.4699

]
P2 =

[
0.4228 −0.0061
−0.0061 0.3557

]
Q1 =

[
0.2046 −0.0063
−0.0063 0.4753

]
Q2 =

[
0.1837 −0.0704
−0.0704 0.4417

]

with Kalman gains

K1 =

[
0.2150 0.0358
0.1007 0.0107

]
,K2 =

[
0.0989 0.1540
0.0528 0.0798

]
a) Threshold computation when number of sampling data, N
is fixed
The first simulation shows an effect of allowed FAR to the
threshold (Jth) when the number of sampling data (N) is
kept constant. Given number of sampling data N = 20 and
allowed FAR = 5%, threshold can be obtained from (19) as
Jth = 1.4227 and if allowed FAR = 10%, yields Jth = 1.0060.
Finally, the results when the system is subject to fault f (k) =[

0 3 0
]T at k = 250 with FAR = 5% and FAR = 10%

are shown in figure (2) and (3), respectively.
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Fig. 2. Evaluated residual signal when FAR = 5%
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Fig. 3. Evaluated residual signal when FAR = 10%

It can be seen from this simulation that Jth is set higher
when allowed FAR is decreased. However, when required
FAR is set to low, Jth level is very high and may reduce the
FDR.

b) Threshold computation when FAR is fixed
The second simulation illustrates a situation when allowed
FAR is given with the difference number of sampling data
(N). Given FAR = 5%, threshold with N = 20 is computed
from (19) as Jth = 1.4227 and if the number of sampling
data is reduced to N = 10, the threshold is computed as
Jth = 2.0081. Finally, the results when the system is subject
to fault f (k) =

[
3 0 0

]T at k = 250 with N = 20 and
N = 10 are shown in figure (4) and (5), respectively.
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Fig. 4. Evaluated residual signal when N = 20
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Fig. 5. Evaluated residual signal when N = 10

From the results, number of sampling data (N) affects the
system such that when it is small, FDR will be reduced as
shown in figure (5). It can be seen also that reducing N yields
faster fault detection time.

V. CONCLUSIONS AND FUTURE WORKS

The problem of FD for the discrete-time MJLS has been
addressed in this paper. Due to the lack of residual density
after faults occur, the alternative FD scheme is proposed.
KF is used as the residual generator and FD problem is
formulated as the inequality relation between the variance
of residual evaluation function and threshold via the Cheby-
shev’s inequality. By estimating the variance of residual
evaluation function, threshold can be set according to a
given FAR. Finally, numerical example is given in order
to illustrate an efficiency of this proposed FD scheme. The
future work will investigate the FD problem when model
uncertainties are taking into account.
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