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Abstract— This paper studies n-person simultaneous-move
games with linear best response function, where individuals
interact within a given network structure. This class of games
have been used to model various settings, such as, public goods,
belief formation, peer effects, and oligopoly. The purpose of
this paper is to study the effect of the network structure on
Nash equilibrium outcomes of this class of games. Bramoullé
et al. derived conditions for uniqueness and stability of a Nash
equilibrium in terms of the smallest eigenvalue of the adjacency
matrix representing the network of interactions. Motivated by
this result, we study how local structural properties of the
network of interactions affect this eigenvalue, influencing game
equilibria. In particular, we use algebraic graph theory and
convex optimization to derive new bounds on the smallest
eigenvalue in terms of the distribution of degrees, cycles, and
other relevant substructures. We illustrate our results with
numerical simulations involving online social networks.

I. INTRODUCTION

In most social and economic settings, individuals do not
interact uniformly with the rest of a society. Instead, they
influence each other according to a structured network of
interactions. In this context, an interesting question is to
study how the network structure affects the outcome of the
interactions of the agents. With this purpose, one can model
strategic interactions in a networked society as a multi-
player simultaneous-move game. In particular, we focus
our attention on the broad class of games with linear best
response function [1]. This class of games have been used
to model various settings such as belief formation [2], peer
effects [3], and public goods [4]. In order to analyze the
influence of the network structure on the game outcome, we
use two recent results by Bramoullé et al. [5] and Ballester
et al. [6] relating the Nash equilibria of the game with the
largest and smallest eigenvalues of the adjacency matrix of
interactions. Motivated by the results of Bramoullé et al.
[5], we study how local structural properties of the network
affect game equilibria. Therefore, our results build a bridge
between structural properties of a network of interactions and
the outcome of games with linear best responses.

The paper is organized as follows. In the next subsec-
tion, we review graph-theoretical terminology needed in
our derivations. In Section II, we review the relationship
between the equilibria of games with linear best responses
in a network and the smallest eigenvalue of the adjacency
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matrix of interactions. In Section III, we use algebraic graph
theory to derive closed-form expressions for the so-called
spectral moments of a network in terms of local structural
features. In Section IV, we use convex optimization to derive
optimal bounds on the smallest (and largest) eigenvalue of
the interaction network from these moments. Our bounds
help us to understand how structural properties of a network
impact the stability properties of the Nash equilibria in the
game. We illustrate our results with numerical simulations
in real online social networks in Section V.

A. Notation

Let G = (V, E) denote an undirected graph with n
nodes, e edges, and no self-loops1. We denote by V (G) =
{v1, . . . , vn} the set of nodes and by E (G) ⊆ V (G)×V (G)
the set of undirected edges of G. If {vi, vj} ∈ E (G) we
call nodes vi and vj adjacent (or neighbors), which we
denote by vi ∼ vj and define the set of neighbors of vi
as Ni = {w ∈ V (G) : {vi, w} ∈ E (G)}. The number of
neighbors of vi is called the degree of the node, denoted
by di. We define a walk of length k from v0 to vk to
be an ordered sequence of nodes (v0, v1, ..., vk) such that
vi ∼ vi+1 for i = 0, 1, ..., k − 1. If v0 = vk, then the walk
is closed. A closed walk with no repeated nodes (with the
exception of the first and last nodes) is called a cycle. For
example, triangles, quadrangles and pentagons are cycles of
length three, four, and five, respectively.

Graphs can be algebraically represented via matrices. The
adjacency matrix of an undirected graph G, denoted by
AG = [aij ], is an n × n symmetric matrix defined entry-
wise as aij = 1 if nodes vi and vj are adjacent, and
aij = 0 otherwise2. The eigenvalues of AG , denoted by λ1 ≥
λ2 ≥ . . . ≥ λn, play a key role in our paper. The spectral
radius of AG , denoted by ρ (AG), is the maximum among
the magnitudes of its eigenvalues. Since AG is a symmetric
matrix with nonnegative entries, all its eigenvalues are real
and the spectral radius is equal to the largest eigenvalue, λ1.
We define the k-th spectral moment of the adjacency matrix
AG as:

mk (AG) =
1
n

n∑
i=1

λki . (1)

As we shall show in Section III, there is a direct connection
between the spectral moments and the presence of certain
substructures in the graph, such as cycles of length k.

1An undirected graph with no self-loops is also called a simple graph.
2For simple graphs, aii = 0 for all i.
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II. STRATEGIC INTERACTIONS IN NETWORKS

In this section we present the game-theoretical model of
strategic interactions considered in this paper and present
interesting connections between the Nash equilibria and the
eigenvalues of the adjacency matrix of the network.

A. The Model

We represent the network of influences using a simple
graph G. Let N = {1, · · · , n} denote the set of n players
located at each node of the graph G. We denote by xi ∈
[0,∞) the action chosen by agent i, and by x the vector that
represents the joint actions for all agents. We denote by x−i
the vector of actions of all players excluding player i. As
mentioned before, players interact according to a network of
influences that we describe using its adjacency matrix AG .
The interactions are assumed to be symmetric, aij = aji, and
we do not allow self-loops, aii = 0. The payoff function
for agent i is given by Ui(xi,x−i; δ, AG) where δ ∈ R is
a parameter that can be tuned to change the influence of
neighboring nodes on each player’s action.

B. Games with Linear Best Response Functions

We study a class of games whose best response functions
take a linear form. One well known example of this class of
games is the differentiated-product Cournot oligopoly with
linear inverse demand and constant marginal cost with payoff
function defined as [5]:

Ui(xi,x−i; δ, AG) = xi

a− b(xi + 2δ
n∑
j=1

aijxj)

− dxi,
(2)

where d is the constant marginal cost, and xi represents
the amount produced by agent i in the oligopoly. Here, the
inverse demand for agent i is given by Pi(xi,x−i; δ, AG) =
a − b(xi + 2δ

∑n
j=1 aijxj). One can prove that the best

response function for this type of games yield the form [5]:

fi(x, δ, AG) = max(0, x̄i − δ
n∑
j=1

aijxj), (3)

where x̄i is the action that agent i would take in isolation,
i.e., x̄i ∈ arg maxxi

Ui(xi,x−i; δ, AG) with aij = 0, for all
j. Without loss of generality, one can normalize x̄i ≡ 1 for
all i, so that fi(x) ∈ [0, 1]. Then, a Nash equilibrium for this
game is a vector x ∈ [0, 1]n that satisfies xi = fi(x, δ, AG),
for all agents i ∈ N , simultaneously. In what follows, we
briefly describe a strategy to compute the complete set of
Nash equilibria for δ ∈ [0, 1].

C. Complete Set of Nash Equilibria

Using the best response function in (3), one can determine
the entire set of equilibria by simultaneously solving for the
best response of each player. In [5], an algorithm that finds
the full set of Nash equilibria in exponential time is proposed.
For a vector x, let S denote the set of active agents, i.e.,
S = {i : xi > 0}. Let xS denote the vector of actions of the
agents in S. The set of active players induce a subgraph GS ⊆

G, with node-set S ⊆ V (G) and a set of edges ES ⊆ E (G)
connecting active agents. We denote by GN\S,S the subgraph
of G whose edges connect active agents in S to inactive
agents in N\S. The adjacency matrices of GS and GN\S,S
are denoted by AS ∈ R|S|×|S| and AN\S,S ∈ Rn−|S|×|S|,
respectively. Then, one can show the following [5]:

Proposition 1: A profile x with active agents S is a Nash
equilibrium if and only if:

(I|S| + δAS)xS = 1|S|, and
δAN\S,S xS ≥ 1n−|S|,

where Ip is the p × p identity matrix and 1q is the q-
dimensional vector of ones.

Thus, in order to determine the complete set of all Nash
equilibria, one can check the conditions in Proposition 1 for
each one of the 2n possibilities of S. For each possible
S, these conditions can be checked by computing xS =
(I|S| + δAS)−11|S|,1 and checking whether δAN\S,S xS ≥
1n−|S|. If the last inequality holds, then xS is an equilibrium
outcome. Note that using this approach to compute the set of
equilibria runs in exponential time. However, we can analyze
some properties of the Nash equilibria, such as uniqueness
and stability, by looking into the eigenvalues of the adjacency
matrix.

D. Eigenvalues and Nash Equilibria

We can find several results in the literature providing
sufficient conditions for the existence of a unique Nash
equilibrium in games with linear best response functions in
terms of the eigenvalues of the network of influences. We
enumerate below some sufficient conditions that are related
with our work:

Proposition 2: Consider the class of games with linear
best response functions described in Section II-B. For these
games, we have the following sufficient conditions for the
existence of a unique Nash equilibrium:

(i) δ < −1/λn(AG), (Bramoullé et al., [5]).
(ii) δ < 1/ρ (AG), (Ballester et al., [6]).

We can compare the set of spectral conditions in Propo-
sition 2 using the following inequalities [5]:

Lemma 3: For any simple graph G, we have that
−1/λn(AG) ≥ 1/ρ (AG), where this inequality is strict when
no component of G is bipartite.

Remark 4: Hence, Condition (i) in Proposition 2 provides
the best sufficient condition for the uniqueness of Nash
equilibrium in these games. Furthermore, one can also prove
that under Condition (i) or (ii), all players are active at the
equilibrium point, i.e., S = N [5].

In Section IV, we shall derive upper bounds on λn (AG) in
terms of structural properties of the network. These bounds,
in combination with Condition (i) in Proposition 2, will allow

1The matrix
(
I|S| + δAS

)
is invertible for almost any δ ∈ R, excepting

the measure zero set {−1/µi, i = 1, ..., |S|}, where µ1, ..., µ|S| are the
eigenvalues of AS .
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us to derive sufficient conditions for the existence of a Nash
equilibrium in terms of structural properties of the network.

E. The Stability of Nash Equilibria

We present conditions for stability of a Nash equilibrium
in terms of λn(AS). A Nash equilibrium x is asymptotically
stable when the system of differential equations:

ẋi = fi(x; δ, AG)− xi, i = 1, ..., n,

is locally asymptotically stable around x. One can prove the
following necessary and sufficient condition for an equilib-
rium x to be asymptotically stable [5]:

Lemma 5: An equilibrium profile x is asymptotically sta-
ble if and only if δ < −1/λn(AS) and δ

∑n
j=1 aijxj > 1,

for all inactive agents i ∈ N\S.

From the above lemma and Remark 4, we conclude that
if δ < −1/λn(AG), there is a unique Nash equilibrium
and it is asymptotically stable. These results show the close
connection between the smallest and the largest eigenvalues
of the adjacency matrix of interactions and the outcome of
games with linear best response functions in a network. In
the rest of the paper, we propose a novel methodology to
compute optimal bounds on relevant eigenvalues of AG from
local information regarding the network structure. Our results
allow us to study the role of local structural information in
the outcome of games with linear best response functions.

III. SPECTRAL ANALYSIS OF THE INTERACTION MATRIX

We study the relationship between a network’s local struc-
tural properties and the smallest eigenvalue of its adjacency
matrix. Algebraic graph theory provides us with tools to
relate the eigenvalues of a network with its structural prop-
erties. Particularly useful is the following well-known result
relating the k-th spectral moment of AG with the number of
closed walks of length k in G [7]:

Lemma 6: Let G be a simple graph. The k-th spectral
moment of the adjacency matrix of G can be written as

mk(AG) =
1
n

n∑
i=1

λki =
1
n

∣∣∣Ψ(k)
G

∣∣∣ , (4)

where Ψ(k)
G is the set of all closed walks of length k in G. 3

From (4), we can easily compute the first three spectral
moments of AG in terms of the number of nodes, edges and
triangles as follows [7]:

Corollary 7: Let G be a simple graph with adjacency
matrix AG . Denote by n, e and ∆ the number of nodes,
edges and triangles in G, respectively. Then,

m1(AG) = 0, m2(AG) = 2e/n, m3(AG) = 6 ∆/n. (5)

Remark 8: Notice that the coefficients 2 (resp. 6) in the
above expressions corresponds to the number of closed walks

3We denote by |Z| the cardinality of a set Z.

of length 2 (resp. 3) enabled by the presence of an edge (resp.
triangle). Similar expressions can be derived for higher-order
spectral moments, although a more elaborated combinatorial
analysis in required.

In our case, we are interested in the following expressions,
derived in [8], for the first five spectral moments of G:

Lemma 9: Let G be a simple graph. Denote by e, ∆, Q
and Π the total number of edges, triangles, quadrangles and
pentagons in G, respectively. Define W2 =

∑n
i=1 d

2
i and

Cdt =
∑
i diti, where ti is the number of triangles touching

node i. Then,

m4 (AG) =
1
n

[8Q+ 2W2 − e] , (6)

m5 (AG) =
1
n

[10Π + 10Cdt − 30∆] . (7)

Observe how, as we increase the order of the moments,
more complicated structural features appear in the expres-
sions. In the following example, we illustrate how to use our
expressions to compute the spectral moments of an online
social network from empirical structural data.

Example 10: In this example, we study a subgraph F of
Facebook that has 2, 404 nodes and 22, 786 edges. Using
this real dataset, we compute the degrees di, the number
of triangles ti, quadrangles qi, and pentagons pi touching
each node i ∈ V (F). In Fig. 1, we plot the distributions of
degrees and triangles, as well as a scatter plot of ti versus di
(where each point has coordinates (di, ti), in log-log scale,
for all i ∈ V (F)). We can aggregate those quantities that
are relevant to compute the spectral moments to obtain the
following numerical values:

e/n =
∑
di/2n = 9.478, ∆/n =

∑
ti/3n = 28.15,

Q/n =
∑
qi/4n = 825.3, Π/n =

∑
pi/5n = 31, 794,

W2/n =
∑
d2
i /n = 1, 318, Cdt/n =

∑
diti/n = 8, 520.

Hence, using Corollary 7 and Lemma 9, we obtain the
following values for the spectral moments: m1 (AF ) = 0,
m2 (AF ) = 18.95, m3 (AF ) = 168.9, m4 (AF ) = 9, 230,
and m5 (AF ) = 402, 310.

In this section, we have derived expressions to compute
the first five spectral moment of AG from network structural
properties. In the next section, we use semidefinite program-
ming to extract information regarding eigenvalues of interest
from a sequence of spectral moments.

IV. OPTIMAL SPECTRAL BOUNDS FROM SPECTRAL
MOMENTS

Here, we introduce an approach to derive an upper
bound on the smallest eigenvalues of AG from its sequence
of spectral moments4. Since we have expressions for the
spectral moments in terms of local structural properties,
our bounds relate the eigenvalues of a network with these
properties. There is a large literature studying the relationship
between structural and spectral properties of graphs (see

4As a by-product of our analysis, we also derive lower bounds on the
spectral radius of AG , although these bounds are not essential in our
analysis.
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Fig. 1. In the left and center figures, we plot the distributions of degrees and triangles of the social network under study (in log-log scale). In the right
figure, we include a scatter plot where each point has coordinates (di, ti), in log-log scale, for all the nodes in the social graph.

[10], [11], and references therein, for an extensive list of
spectral results). For many real-world networks, there is a
particular set of structural properties that play a key role in
the network’s functionality. For example, it is well-known
that social networks contain a large number of triangles
(and other cycles). Hence, it would be useful to have
spectral bounds where these structural features are jointly
represented. In this section, we derive new upper bounds on
the smallest eigenvalue of the adjacency matrix in terms of
the structural properties involved in (5), (6) and (7). Our
results can be easily extended to derive lower bounds on the
spectral radius of the adjacency matrix, although this bound
is not of relevance in our analysis of games with linear best
responses.

Now, we derive bounds on the smallest eigenvalue of the
adjacency matrix in terms of relevant structural properties
by adapting the optimization framework proposed in [12].
We first need to introduce a probabilistic interpretation of a
network eigenvalue spectrum and its spectral moments. For
a simple graph G, we define its spectral density as:

µG (x) =
1
n

n∑
i=1

δ (x− λi) , (8)

where δ (•) is the Dirac delta function and {λi}ni=1 is the
set of (real) eigenvalues of the (symmetric) adjacency matrix
AG . Consider a random variable X with probability density
µG . The moments of X ∼ µG are equal to the spectral
moments of AG , i.e.,

EµG
(
Xk
)

=
∫

R
xkµG (x) dx

=
1
n

n∑
i=1

∫
R
xkδ (x− λi) dx

=
1
n

n∑
i=1

λki = mk (AG) ,

for all k ≥ 0.
In [12], Lasserre proposed a technique to compute the

smallest interval [a, b] containing the support5 of a positive

5Recall that the support of a finite Borel measure µ on R, denoted by
supp (µ), is the smallest closed set B such that µ (R\B) = 0.

Borel measure µ from its complete sequence of moments
(mr)r≥0. In our spectral problem, the positive Borel measure
under consideration is the spectral density µG (x), defined
in (8). Hence, in the context of our problem, the sequence
of moments (mr)r≥0 is equal to (mr (AG))r≥0, and the
smallest interval [a, b] containing the support of µG (x) is
equal to [λn, λ1], by the definition in (8).

Lasserre also proposed in [12] a numerical scheme to
compute tight bounds on the values of a and b when
a truncated sequence of moments (mr)0≤r≤k is known.
This numerical scheme involves a series of semidefinite
programs (SDP) in one variable. As we show below, at
step s of this series of SDP’s, we are given a sequence
of moments (m1, ...,m2s+1) and solve two SDP’s whose
solution provides an inner approximation [αs, βs] ⊆ [a, b]. In
our case, since we have expressions for the first five spectral
moments, (m1 (AG) , ...,m5 (AG)), we can solve the first two
steps of this series of SDP’s to find inner approximations
[αs, βs] ⊆ [λn, λ1]. In other words, the solution to the SDP’s
provide us with the bounds αs ≥ λn and βs ≤ λ1.

In order to formulate the series of SDP’s proposed in [12],
we need to define the so-called localizing matrix of our
problem [13]. Given a sequence of moments, m(2s+1) =
(m1, ...,m2s+1), our localizing matrix is a Hankel matrix
defined as:

Hs (c) , R2s+1 − c R2s, (9)

where R2s and R2s+1 are the Hankel matrices of moments
defined as

R2s =


1 m1 · · · ms

m1 m2 · · · ms+1

...
...

. . .
...

ms ms+1 · · · m2s

 , (10)

R2s+1 =


m1 m2 · · · ms+1

m2 m3 · · · ms+2

...
...

. . .
...

ms+1 ms+2 · · · m2s+1

 .
Hence, for a given sequence of moments, the entries of
Hs (c) depend affinely on the variable c. We can compute αs
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and βs as the solution to the following semidefinite programs
[12]:

Proposition 11: Let m(2s+1) = (m1, ...,m2s+1) be the
truncated sequence of moments of a positive Borel measure
µ. Then,

a ≤ αs , max
α
{α : Hs (α) < 0} , (11)

b ≥ βs , min
β
{β : −Hs (β) < 0} , (12)

for [a, b] being the smallest interval containing supp(µ).

Remark 12: Observe that αs and βs are the solutions to
two SDP’s in one variable, since the constraint Hs (α) < 0
(resp. −Hs (β) < 0) indicates that the matrix Hs (α) (resp.
−Hs (β)) is positive semidefinite and this matrix has affine
entries with respect to α (resp. β). Hence, they can be
efficiently computed using standard optimization software
(for example, CVX [14]). As we increase s in Proposition 11,
more moments are involved in the SDP’s, and the resulting
bounds become tighter, i.e., αs+1 ≤ αs and βs+1 ≥ βs.

In the context of our spectral analysis, the Borel measure
in Proposition 11 corresponds to the spectral density of
a graph G, and the smallest interval [a, b] corresponds to
[λn (AG) , ρ (AG)]. Thus, Proposition 11 provides an efficient
numerical scheme to compute the bounds αs ≥ λn (AG)
and βs ≤ ρ (AG). When we are given a sequence of five
spectral moments, we can solve the SDP’s in (11) and (12)
analytically for s = 2. In this case, the localizing matrix is:

H2 (c) =

 m1 − c m2 − cm1 m3 − cm2

m2 − cm1 m3 − cm2 m4 − cm3

m3 − cm2 m4 − cm3 m5 − cm4

 . (13)

As we proved in Section III, the spectral moments in the
localizing matrix depend on the number of nodes, edges,
cycles of length 3 to 5, the sum-of-squares of degrees W2,
and the degree-triangle correlation Cdt.

Furthermore, for s = 2, the optimal values α2 and β2 can
be analytically computed, as follows. First, note that H2(c) <
0 (resp. −H2(c) < 0) if and only if all the eigenvalues of H2

are nonnegative (resp. nonpositive). For a given sequence of
five moments, the characteristic polynomial of H2 (c) can be
written as

φ2 (λ) , det (λI −H2(c)) = λ3+p1 (c)λ2+p2 (c)λ+p3 (c) ,

where pj (c) is a polynomial of degree j in the variable
c (with coefficients depending on the moments). Thus, by
Descartes’ rule, all the eigenvalues of H2 (c) are nonpositive
if and only if pj (c) ≥ 0, for j = 1, 2, and 3. Similarly,
all the eigenvalues are nonnegative if and only if p2 (c) ≥ 0
and p1 (c) , p3 (c) ≤ 0. In fact, one can prove that the optimal
value of α2 and β2 in (12) can be computed as the smallest
and the largest roots of detH2 (c) = 0, which yields a
third degree polynomial in the variable c [12]. There are
closed-form expressions for the roots of this polynomial (for
example, Cardano’s formula [15]), although the resulting
expressions for the roots are rather complicated.

Fig. 2. Scatter plot of the spectral radius, ρ (Gi), versus the lower
bound β2 (Gi) , where each point is associated with one of the 100 social
subgraphs considered in our experiments.

In this subsection, we have presented a convex optimiza-
tion framework to compute optimal bounds on the maximum
and the minimum eigenvalues of a graph G from a truncated
sequence of its spectral moments. Since we have expressions
for spectral moments in terms of local structural properties,
these bounds relate the eigenvalues of a graph with its
structural properties.

V. NUMERICAL SIMULATIONS

As we illustrated in Section II, there is a close connection
between the largest and the smallest eigenvalues of a network
and the outcome of a game with linear best response func-
tions. In this section, we use our bounds on the support of the
eigenvalue spectrum to study the role of structural properties
in the existence and the stability of a Nash equilibrium. For
this purpose, we analyze real data from a regional network
of Facebook that spans 63, 731 users (nodes) connected by
817, 090 friendships (edges) [16]. In order to corroborate our
results in different network topologies, we extract multiple
medium-size social subgraphs from the Facebook graph by
running a Breath-First Search (BFS) around different starting
nodes. Each BFS induces a social subgraph spanning all
nodes 2 hops away from a starting node, as well as the edges
connecting them. We use this approach to generate a set
G = {Gi}i≤100 of 100 different social subgraphs centered
around 100 randomly chosen nodes.6

From Corollary 7 and Lemma 9 we can compute the
first five spectral moments of a graph Gi from the fol-
lowing structural properties: number of nodes (ni), edges
(ei), triangles (∆i), quadrangles (Qi), pentagons (Πi), as
well as the sum-of-squares of the degrees (Wi), and the
degree-triangle correlation (Ci). For convenience, we define
S (Gi) , {ni, ei,∆i, Qi,Πi,Wi, Ci} as a set of relevant
structural properties of Gi. In our numerical experiment, we
first measure the set of relevant properties Si for each social

6Although this procedure is common in studying large social network ,
it introduces biases that must be considered carefully [17].
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Fig. 3. Scatter plot of −λmin (Gi) versus the bound −α2 (Gi) , where
each point is associated with one of the 100 social subgraphs considered in
our experiments.

subgraph Gi ∈ G, and then compute the first five spectral
moments of its adjacency matrix. From these moments,
we then compute the bounds α2 (Gi) and β2 (Gi) using
Proposition 11. As we mentioned before, these bounds can
be computed as the maximum and minimum roots of a third
order polynomial, for which closed form expressions are
known.

We illustrate the quality of our bounds in the following
figures. Fig. 2 is a scatter plot where each circle has
coordinates (ρ (Gi) , β2 (Gi)), for all Gi ∈ G. Observe
how the spectral radii ρ (Gi) of these social subgraphs are
remarkably close to the theoretical lower bound β2 (Gi).
Therefore, we can use β2 (Gi) as an estimate of ρ (Gi) for
social subgraphs. In Fig. 3 we include a scatter plot where
each circle has coordinates (−λn (Gi) ,−α2 (Gi)), for all
Gi ∈ G. Although α2 (Gi) is a looser bound than β2 (Gi),
we observe how there is a strong correlation between the
value of λn (Gi) and α2 (Gi).

In these numerical experiments, we have first showed
that α2 (Gi) and β2 (Gi) bound the smallest and the largest
eigenvalues of the adjacency matrix, and that these bounds
are tight, specially β2 (Gi). Since these bounds can be
written as explicit functions of the structural properties in
S (Gi), we can estimate the impact of structural perturbations
on the spectral radius and the smallest eigenvalue by studying
∂β2/ ∂pi and ∂α2/ ∂pi for pi ∈ S (Gi). (Details of this
perturbation analysis are left for future work due to space
limitations.)

VI. CONCLUSIONS

In this paper, we have studied games with linear best
response functions in a networked context. We have focused
on analyzing the role of the network structure on the game
outcome. In particular, the existence and the stability of a
unique Nash equilibrium in this class of games are closely
related with the smallest eigenvalue of the adjacency matrix

of the network. We take this spectral result as the foundation
to our work, and use algebraic graph theory and convex
optimization to study how local structural properties of
the network affect this eigenvalue. In particular, we have
derived expressions for the first five spectral moments of
the adjacency matrix in terms of local structural properties.
These structural properties are: the number of nodes and
edges, the number of cycles of length up to 5, the sum-of-
squares of the degrees, and the degree-triangle correlation.
From this sequence of five spectral moments, we propose
a novel methodology to compute optimal bounds on the
smallest and the largest eigenvalues of the adjacency matrix
by solving two semidefinite programs. In our case, we are
able to find analytical solutions to these optimal bounds by
computing the roots of a cubic polynomial, for which closed-
form expressions are available. Finally, we have verified the
quality of our bounds by running numerical simulations in
a set of 100 online social subgraphs. For future work, we
shall use the results herein presented to study the effect
of structural perturbations in the relevant eigenvalues of the
adjacency matrix, and in properties of the Nash equilibrium.
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